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 PREFACE     

  Regression analysis is one of the most widely used techniques for analyzing multi-
factor data. Its broad appeal and usefulness result from the conceptually logical 
process of using an equation to express the relationship between a variable of inter-
est (the response) and a set of related predictor variables. Regression analysis is 
also interesting theoretically because of elegant underlying mathematics and a well -
 developed statistical theory. Successful use of regression requires an appreciation 
of both the theory and the practical problems that typically arise when the technique 
is employed with real - world data. 

 This book is intended as a text for a basic course in regression analysis. It contains 
the standard topics for such courses and many of the newer ones as well. It blends 
both theory and application so that the reader will gain an understanding of the 
basic principles necessary to apply regression model - building techniques in a wide 
variety of application environments. The book began as an outgrowth of notes for 
a course in regression analysis taken by seniors and fi rst - year graduate students in 
various fi elds of engineering, the chemical and physical sciences, statistics, mathe-
matics, and management. We have also used the material in many seminars and 
industrial short courses for professional audiences. We assume that the reader has 
taken a fi rst course in statistics and has familiarity with hypothesis tests and confi -
dence intervals and the normal,  t ,   χ   2 , and  F  distributions. Some knowledge of matrix 
algebra is also necessary. 

 The computer plays a signifi cant role in the modern application of regression. 
Today even spreadsheet software has the capability to fi t regression equations by 
least squares. Consequently, we have integrated many aspects of computer usage 
into the text, including displays of both tabular and graphical output, and general 
discussions of capabilities of some software packages. We use Minitab®, JMP®, 
SAS®, and R for various problems and examples in the text. We selected these 
packages because they are widely used both in practice and in teaching regression 
and they have good regression. Many of the homework problems require software 
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for their solution. All data sets in the book are available in electronic form from the 
publisher. The ftp site  ftp://ftp.wiley.com/public/sci_tech_med/introduction_linear_
regression  hosts the data, problem solutions, PowerPoint fi les, and other material 
related to the book. 

  CHANGES IN THE FIFTH EDITION 

 We have made extensive changes in this edition of the book. This includes the reor-
ganization of text material, new examples, new exercises, a new chapter on time 
series regression, and new material on designed experiments for regression models. 
Our objective was to make the book more useful as both a text and a reference and 
to update our treatment of certain topics. 

 Chapter  1  is a general introduction to regression modeling and describes some 
typical applications of regression. Chapters  2  and  3  provide the standard results for 
least - squares model fi tting in simple and multiple regression, along with basic infer-
ence procedures (tests of hypotheses, confi dence and prediction intervals). Chapter 
 4  discusses some introductory aspects of model adequacy checking, including resid-
ual analysis and a strong emphasis on residual plots, detection and treatment of 
outliers, the PRESS statistic, and testing for lack of fi t. Chapter  5  discusses how 
transformations and weighted least squares can be used to resolve problems of 
model inadequacy or to deal with violations of the basic regression assumptions. 
Both the Box – Cox and Box – Tidwell techniques for analytically specifying the form 
of a transformation are introduced. Infl uence diagnostics are presented in Chapter 
 6 , along with an introductory discussion of how to deal with infl uential observations. 
Polynomial regression models and their variations are discussed in Chapter  7 . Topics 
include the basic procedures for fi tting and inference for polynomials and discussion 
of centering in polynomials, hierarchy, piecewise polynomials, models with both 
polynomial and trigonometric terms, orthogonal polynomials, an overview of 
response surfaces, and an introduction to nonparametric and smoothing regression 
techniques. Chapter  8  introduces indicator variables and also makes the connection 
between regression and analysis - of - variance models. Chapter  9  focuses on the mul-
ticollinearity problem. Included are discussions of the sources of multicollinearity, 
its harmful effects, diagnostics, and various remedial measures. We introduce biased 
estimation, including ridge regression and some of its variations and principal -
 component regression.Variable selection and model - building techniques are devel-
oped in Chapter  10 , including stepwise procedures and all - possible - regressions. We 
also discuss and illustrate several criteria for the evaluation of subset regression 
models. Chapter  11  presents a collection of techniques useful for regression model 
validation. 

 The fi rst 11 chapters are the nucleus of the book. Many of the concepts and 
examples fl ow across these chapters. The remaining four chapters cover a variety 
of topics that are important to the practitioner of regression, and they can be 
read independently. Chapter  12  in introduces nonlinear regression, and Chapter  13  
is a basic treatment of generalized linear models. While these are perhaps not 
standard topics for a linear regression textbook, they are so important to students 
and professionals in engineering and the sciences that we would have been seriously 
remiss without giving an introduction to them. Chapter  14  covers regression 
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models for time series data. Chapter 15 includes a survey of several important topics, 
including robust regression, the effect of measurement errors in the regressors, 
the inverse estimation or calibration problem, bootstrapping regression estimates, 
classifi cation and regression trees, neural networks, and designed experiments for 
regression. 

 In addition to the text material, Appendix  C  contains brief presentations of some 
additional topics of a more technical or theoretical nature. Some of these topics will 
be of interest to specialists in regression or to instructors teaching a more advanced 
course from the book. Computing plays an important role in many regression 
courses. Mintab, JMP, SAS, and R are widely used in regression courses. Outputs 
from all of these packages are provided in the text. Appendix  D  is an introduction 
to using SAS for regression problems. Appendix  E  is an introduction to R.  

  USING THE BOOK AS A TEXT 

 Because of the broad scope of topics, this book has great fl exibility as a text. For a 
fi rst course in regression, we would recommend covering Chapters  1  through  10  in 
detail and then selecting topics that are of specifi c interest to the audience. For 
example, one of the authors (D.C.M.) regularly teaches a course in regression to an 
engineering audience. Topics for that audience include nonlinear regression (because 
mechanistic models that are almost always nonlinear occur often in engineering), a 
discussion of neural networks, and regression model validation. Other topics that 
we would recommend for consideration are multicollinearity (because the problem 
occurs so often) and an introduction to generalized linear models focusing mostly 
on logistic regression. G.G.V. has taught a regression course for graduate students 
in statistics that makes extensive use of the Appendix  C  material. 

 We believe the computer should be directly integrated into the course. In recent 
years, we have taken a notebook computer and computer projector to most classes 
and illustrated the techniques as they are introduced in the lecture. We have found 
that this greatly facilitates student understanding and appreciation of the tech-
niques. We also require that the students use regression software for solving the 
homework problems. In most cases, the problems use real data or are based on 
real - world settings that represent typical applications of regression. 

 There is an instructor ’ s manual that contains solutions to all exercises, electronic 
versions of all data sets, and questions/problems that might be suitable for use on 
examinations.  

  ACKNOWLEDGMENTS 

 We would like to thank all the individuals who provided helpful feedback and 
assistance in the preparation of this book. Dr. Scott M. Kowalski, Dr. Ronald G. 
Askin, Dr. Mary Sue Younger, Dr. Russell G. Heikes, Dr. John A. Cornell, Dr. Andr é  
I. Khuri, Dr. George C. Runger, Dr. Marie Gaudard, Dr. James W. Wisnowski, Dr. 
Ray Hill, and Dr. James R. Simpson made many suggestions that greatly improved 
both earlier editions and this fi fth edition of the book. We particularly appreciate 
the many graduate students and professional practitioners who provided feedback, 
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1

  CHAPTER 1 

INTRODUCTION     

    1.1    REGRESSION AND MODEL BUILDING 

 Regression analysis is a  statistical technique  for investigating and  modeling the 
relationship between variables . Applications of regression are numerous and occur 
in almost every fi eld, including engineering, the physical and chemical sciences, 
economics, management, life and biological sciences, and the social sciences. In fact, 
regression analysis may be the most widely used statistical technique. 

 As an example of a problem in which regression analysis may be helpful, suppose 
that an industrial engineer employed by a soft drink beverage bottler is analyzing 
the product delivery and service operations for vending machines. He suspects that 
the time required by a route deliveryman to load and service a machine is related 
to the number of cases of product delivered. The engineer visits 25 randomly chosen 
retail outlets having vending machines, and the in - outlet delivery time (in minutes) 
and the volume of product delivered (in cases) are observed for each. The 25 obser-
vations are plotted in Figure  1.1  a.  This graph is called a  scatter diagram . This display 
clearly suggests a relationship between delivery time and delivery volume; in fact, 
the impression is that the data points generally, but not exactly, fall along a straight 
line. Figure  1.1  b  illustrates this straight - line relationship.   

 If we let  y  represent delivery time and  x  represent delivery volume, then the 
equation of a straight line relating these two variables is

    y x= +β β0 1     (1.1)   

 where   β   0  is the intercept and   β   1  is the slope. Now the data points do not fall 
exactly on a straight line, so Eq.  (1.1)  should be modifi ed to account for this. Let 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
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2  INTRODUCTION

the difference between the observed value of  y  and the straight line (  β   0     +      β   1  x ) be 
an  error   ε . It is convenient to think of  ε  as a statistical error; that is, it is a random 
variable that accounts for the failure of the model to fi t the data exactly. The error 
may be made up of the effects of other variables on delivery time, measurement 
errors, and so forth. Thus, a more plausible model for the delivery time data is

    y x= + +β β ε0 1     (1.2)   

 Equation  (1.2)  is called a  linear regression model . Customarily  x  is called the inde-
pendent variable and  y  is called the dependent variable. However, this often causes 
confusion with the concept of statistical independence, so we refer to  x  as the  pre-
dictor  or  regressor  variable and  y  as the  response  variable. Because Eq.  (1.2)  involves 
only one regressor variable, it is called a  simple linear regression model . 

 To gain some additional insight into the linear regression model, suppose that we 
can fi x the value of the regressor variable  x  and observe the corresponding value 
of the response  y . Now if  x  is fi xed, the random component  ε  on the right - hand side 
of Eq.  (1.2)  determines the properties of  y . Suppose that the mean and variance of 
 ε  are 0 and   σ      2 , respectively. Then the mean response at any value of the regressor 
variable is

   E y x E x xy x| |( ) = = + +( ) = +μ β β ε β β0 1 0 1   

 Notice that this is the same relationship that we initially wrote down following 
inspection of the scatter diagram in Figure  1.1  a . The variance of  y  given any value 
of  x  is

   Var Vary x xy x| |( ) = = + +( ) =σ β β ε σ2
0 1

2

  

 Thus, the true regression model   μ  y|x      =      β   0     +      β   1  x  is a line of mean values, that is, the 
height of the regression line at any value of  x  is just the expected value of  y  for that 

     Figure 1.1     ( a ) Scatter diagram for delivery volume. ( b ) Straight - line relationship between 
delivery time and delivery volume.  
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REGRESSION AND MODEL BUILDING  3

 x . The slope,   β   1  can be interpreted as the change in the mean of  y  for a unit change 
in  x . Furthermore, the variability of  y  at a particular value of  x  is determined by the 
variance of the error component of the model,   σ      2 . This implies that there is a dis-
tribution of  y  values at each  x  and that the variance of this distribution is the same 
at each  x . 

 For example, suppose that the true regression model relating delivery time to 
delivery volume is   μ  y   |   x      =    3.5    +    2 x , and suppose that the variance is   σ      2     =    2. Figure  1.2  
illustrates this situation. Notice that we have used a normal distribution to describe 
the random variation in  ε . Since  y  is the sum of a constant   β   0     +      β   1  x  (the mean) and 
a normally distributed random variable,  y  is a normally distributed random variable. 
For example, if  x     =    10 cases, then delivery time  y  has a normal distribution with 
mean 3.5    +    2(10)    =    23.5 minutes and variance 2. The variance   σ      2  determines the 
amount of variability or noise in the observations  y  on delivery time. When   σ      2  is 
small, the observed values of delivery time will fall close to the line, and when   σ      2  is 
large, the observed values of delivery time may deviate considerably from the line.   

 In almost all applications of regression, the regression equation is only an approx-
imation to the true functional relationship between the variables of interest. These 
functional relationships are often based on physical, chemical, or other engineering 
or scientifi c theory, that is, knowledge of the underlying mechanism. Consequently, 
these types of models are often called  mechanistic models . Regression models, on 
the other hand, are thought of as  empirical models . Figure  1.3  illustrates a situation 
where the true relationship between  y  and  x  is relatively complex, yet it may be 
approximated quite well by a linear regression equation. Sometimes the underlying 
mechanism is more complex, resulting in the need for a more complex approximat-
ing function, as in Figure  1.4 , where a  “ piecewise linear ”  regression function is used 
to approximate the true relationship between  y  and  x.    

 Generally regression equations are valid only over the region of the regressor 
variables contained in the observed data. For example, consider Figure  1.5 . Suppose 
that data on  y  and  x  were collected in the interval  x  1     ≤     x     ≤     x  2 . Over this interval the 

     Figure 1.2     How observations are generated 
in linear regression.  
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     Figure 1.4     Piecewise linear 
approximation of a complex relationship.  
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     Figure 1.5     The danger of extrapolation 
in regression.  
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linear regression equation shown in Figure  1.5  is a good approximation of the true 
relationship. However, suppose this equation were used to predict values of  y  for 
values of the regressor variable in the region  x  2     ≤     x     ≤     x  3 . Clearly the linear regres-
sion model is not going to perform well over this range of  x  because of model error 
or equation error.   

 In general, the response variable  y  may be related to  k  regressors,  x  1 ,  x  2 ,    . . .    ,  x k  , 
so that

    y x x xk k= + + + + +β β β β ε0 1 1 2 2 �     (1.3)   

 This is called a  multiple linear regression model  because more than one regressor 
is involved. The adjective linear is employed to indicate that the model is linear in 
the parameters   β   0 ,   β   1 ,    . . .    ,   β  k  , not because  y  is a linear function of the  x  ’ s. We shall 
see subsequently that many models in which  y  is related to the  x  ’ s in a nonlinear 
fashion can still be treated as linear regression models as long as the equation is 
linear in the   β   ’ s. 

 An important objective of regression analysis is to  estimate the unknown param-
eters  in the regression model. This process is also called fi tting the model to the data. 
We study several parameter estimation techniques in this book. One of these tech-
mques is the method of least squares (introduced in Chapter  2 ). For example, the 
least - squares fi t to the delivery time data is

   ˆ . .y x= +3 321 2 1762  

  where   ̂y is the fi tted or estimated value of delivery time corresponding to a delivery 
volume of  x  cases. This fi tted equation is plotted in Figure  1.1  b . 

 The next phase of a regression analysis is called  model adequacy checking , in 
which the appropriateness of the model is studied and the quality of the fi t ascer-
tained. Through such analyses the usefulness of the regression model may be deter-
mined. The outcome of adequacy checking may indicate either that the model is 
reasonable or that the original fi t must be modifi ed. Thus, regression analysis is an 
 iterative  procedure, in which data lead to a model and a fi t of the model to the data 
is produced. The quality of the fi t is then investigated, leading either to modifi cation 
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of the model or the fi t or to adoption of the model. This process is illustrated several 
times in subsequent chapters. 

 A regression model does not imply a cause - and - effect relationship between the 
variables. Even though a strong empirical relationship may exist between two or 
more variables, this cannot be considered evidence that the regressor variables and 
the response are related in a cause - and - effect manner. To establish causality, the 
relationship between the regressors and the response must have a basis outside the 
sample data — for example, the relationship may be suggested by theoretical consid-
erations. Regression analysis can aid in confi rming a cause - and - effect relationship, 
but it cannot be the sole basis of such a claim. 

 Finally it is important to remember that regression analysis is part of a broader 
data - analytic approach to problem solving. That is, the regression equation itself 
may not be the primary objective of the study. It is usually more important to gain 
insight and understanding concerning the system generating the data.  

   1.2    DATA COLLECTION 

 An essential aspect of regression analysis is data collection. Any regression analysis 
is only as good as the data on which it is based. Three basic methods for collecting 
data are as follows:

    •      A retrospective study based on historical data  
   •      An observational study  
   •      A designed experiment    

 A good data collection scheme can ensure a simplifi ed and a generally more appli-
cable model. A poor data collection scheme can result in serious problems for the 
analysis and its interpretation. The following example illustrates these three methods.   

 Example 1.1 

    Consider the acetone – butyl alcohol distillation column shown in Figure  1.6 . The 
operating personnel are interested in the concentration of acetone in the distillate 
(product) stream. Factors that may infl uence this are the reboil temperature, the 
condensate temperature, and the refl ux rate. For this column, operating personnel 
maintain and archive the following records:

    •      The concentration of acetone in a test sample taken every hour from the 
product stream    

   •      The reboil temperature controller log, which is a plot of the reboil 
temperature  

   •      The condenser temperature controller log  
   •      The nominal refl ux rate each hour    

 The nominal refl ux rate is supposed to be constant for this process. Only infre-
quently does production change this rate. We now discuss how the three different 
data collection strategies listed above could be applied to this process.       ■   
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     Retrospective Study     We could pursue a retrospective study that would use 
either all or a sample of the historical process data over some period of time to 
determine the relationships among the two temperatures and the refl ux rate on the 
acetone concentration in the product stream. In so doing, we take advantage of 
previously collected data and minimize the cost of the study. However, these are 
several problems:

   1.     We really cannot see the effect of refl ux on the concentration since we must 
assume that it did not vary much over the historical period.  

  2.     The data relating the two temperatures to the acetone concentration do not 
correspond directly. Constructing an approximate correspondence usually 
requires a great deal of effort.  

  3.     Production controls temperatures as tightly as possible to specifi c target values 
through the use of automatic controllers. Since the two temperatures vary so 
little over time, we will have a great deal of diffi culty seeing their real impact 
on the concentration.  

  4.     Within the narrow ranges that they do vary, the condensate temperature tends 
to increase with the reboil temperature. As a result, we will have a great deal 

     Figure 1.6     Acetone – butyl alcohol distillation column.  
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of diffi culty separating out the individual effects of the two temperatures. This 
leads to the problem of  collinearity  or  multicollinearity , which we discuss in 
Chapter  9 .    

 Retrospective studies often offer limited amounts of useful information. In 
general, their primary disadvantages are as follows:

    •      Some of the relevant data often are missing.  
   •      The reliability and quality of the data are often highly questionable.  
   •      The nature of the data often may not allow us to address the problem at hand.  
   •      The analyst often tries to use the data in ways they were never intended to be 

used.  
   •      Logs, notebooks, and memories may not explain interesting phenomena identi-

fi ed by the data analysis.    

 Using historical data always involves the risk that, for whatever reason, some of 
the data were not recorded or were lost. Typically, historical data consist of informa-
tion considered critical and of information that is convenient to collect. The conve-
nient information is often collected with great care and accuracy. The essential 
information often is not. Consequently, historical data often suffer from transcrip-
tion errors and other problems with data quality. These errors make historical data 
prone to  outliers , or observations that are very different from the bulk of the data. 
A regression analysis is only as reliable as the data on which it is based. 

 Just because data are convenient to collect does not mean that these data are 
particularly useful. Often, data not considered essential for routine process monitor-
ing and not convenient to collect do have a signifi cant impact on the process. His-
torical data cannot provide this information since they were never collected. For 
example, the ambient temperature may impact the heat losses from our distillation 
column. On cold days, the column loses more heat to the environment than during 
very warm days. The production logs for this acetone – butyl alcohol column do not 
record the ambient temperature. As a result, historical data do not allow the analyst 
to include this factor in the analysis even though it may have some importance. 

 In some cases, we try to use data that were collected as surrogates for what we 
really needed to collect. The resulting analysis is informative only to the extent that 
these surrogates really refl ect what they represent. For example, the nature of the 
inlet mixture of acetone and butyl alcohol can signifi cantly affect the column ’ s per-
formance. The column was designed for the feed to be a saturated liquid (at the 
mixture ’ s boiling point). The production logs record the feed temperature but do 
not record the specifi c concentrations of acetone and butyl alcohol in the feed 
stream. Those concentrations are too hard to obtain on a regular basis. In this case, 
inlet temperature is a surrogate for the nature of the inlet mixture. It is perfectly 
possible for the feed to be at the correct specifi c temperature and the inlet feed to 
be either a subcooled liquid or a mixture of liquid and vapor. 

 In some cases, the data collected most casually, and thus with the lowest quality, 
the least accuracy, and the least reliability, turn out to be very infl uential for explain-
ing our response. This infl uence may be real, or it may be an artifact related to the 
inaccuracies in the data. Too many analyses reach invalid conclusions because they 



8  INTRODUCTION

lend too much credence to data that were never meant to be used for the strict 
purposes of analysis. 

 Finally, the primary purpose of many analyses is to isolate the root causes under-
lying interesting phenomena. With historical data, these interesting phenomena may 
have occurred months or years before. Logs and notebooks often provide no sig-
nifi cant insights into these root causes, and memories clearly begin to fade over time. 
Too often, analyses based on historical data identify interesting phenomena that go 
unexplained.  

  Observational Study     We could use an observational study to collect data for this 
problem. As the name implies, an observational study simply observes the process 
or population. We interact or disturb the process only as much as is required to 
obtain relevant data. With proper planning, these studies can ensure accurate, com-
plete, and reliable data. On the other hand, these studies often provide very limited 
information about specifi c relationships among the data. 

 In this example, we would set up a data collection form that would allow the 
production personnel to record the two temperatures and the actual refl ux rate at 
specifi ed times corresponding to the observed concentration of acetone in the 
product stream. The data collection form should provide the ability to add com-
ments in order to record any interesting phenomena that may occur. Such a proce-
dure would ensure accurate and reliable data collection and would take care of 
problems 1 and 2 above. This approach also minimizes the chances of observing an 
outlier related to some error in the data. Unfortunately, an observational study 
cannot address problems 3 and 4. As a result, observational studies can lend them-
selves to problems with collinearity.  

  Designed Experiment     The best data collection strategy for this problem uses a 
designed experiment where we would manipulate the two temperatures and the 
refl ux ratio, which we would call the factors, according to a well - defi ned strategy, 
called the experimental design. This strategy must ensure that we can separate out 
the effects on the acetone concentration related to each factor. In the process, we 
eliminate any collinearity problems. The specifi ed values of the factors used in the 
experiment are called the levels. Typically, we use a small number of levels for each 
factor, such as two or three. For the distillation column example, suppose we use a 
 “ high ”  or  + 1 and a  “ low ”  or  − 1 level for each of the factors. We thus would use 
two levels for each of the three factors. A treatment combination is a specifi c com-
bination of the levels of each factor. Each time we carry out a treatment combina-
tion is an experimental run or setting. The experimental design or plan consists of 
a series of runs. 

 For the distillation example, a very reasonable experimental strategy uses 
every possible treatment combination to form a basic experiment with eight differ-
ent settings for the process. Table  1.1  presents these combinations of high and low 
levels.   

 Figure  1.7  illustrates that this design forms a cube in terms of these high and low 
levels. With each setting of the process conditions, we allow the column to reach 
equilibrium, take a sample of the product stream, and determine the acetone con-
centration. We then can draw specifi c inferences about the effect of these factors. 
Such an approach allows us to proactively study a population or process.      
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   1.3    USES OF REGRESSION 

 Regression models are used for several purposes, including the following:

   1.     Data description  
  2.     Parameter estimation  
  3.     Prediction and estimation  
  4.     Control    

 Engineers and scientists frequently use equations to summarize or describe a set of 
data. Regression analysis is helpful in developing such equations. For example, we 
may collect a considerable amount of delivery time and delivery volume data, and 
a regression model would probably be a much more convenient and useful summary 
of those data than a table or even a graph. 

 Sometimes parameter estimation problems can be solved by regression methods. 
For example, chemical engineers use the Michaelis – Menten equation  y     =      β   1  x /
( x     +      β   2 )    +     ε  to describe the relationship between the velocity of reaction  y  and con-
centration  x . Now in this model,   β   1  is the asymptotic velocity of the reaction, that 
is, the maximum velocity as the concentration gets large. If a sample of observed 
values of velocity at different concentrations is available, then the engineer can use 
regression analysis to fi t this model to the data, producing an estimate of the 
maximum velocity. We show how to fi t regression models of this type in Chapter  12 . 

 Many applications of regression involve prediction of the response variable. For 
example, we may wish to predict delivery time for a specifi ed number of cases of 
soft drinks to be delivered. These predictions may be helpful in planning delivery 
activities such as routing and scheduling or in evaluating the productivity of delivery 
operations. The dangers of extrapolation when using a regression model for predic-
tion because of model or equation error have been discussed previously (see Figure 
 1.5 ). However, even when the model form is correct, poor estimates of the model 
parameters may still cause poor prediction performance. 

 Regression models may be used for control purposes. For example, a chemical 
engineer could use regression analysis to develop a model relating the tensile 
strength of paper to the hardwood concentration in the pulp. This equation could 

  TABLE 1.1    Designed Experiment 
for the Distillation Column 

   Reboil 
Temperature  

   Condensate 
Temperature  

   Refl ux 
Rate  

   − 1     − 1     − 1  
   + 1     − 1     − 1  
   − 1     + 1     − 1  
   + 1     + 1     − 1  
   − 1     − 1     + 1  
   + 1     − 1     + 1  
   − 1     + 1     + 1  
   + 1     + 1     + 1  

     Figure 1.7     The designed experiment for the 
distillation column.  
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then be used to control the strength to suitable values by varying the level of hard-
wood concentration. When a regression equation is used for control purposes, it is 
important that the variables be related in a causal manner. Note that a cause - and -
 effect relationship may not be necessary if the equation is to be used only for pre-
diction. In this case it is only necessary that the relationships that existed in the 
original data used to build the regression equation are still valid. For example, the 
daily electricity consumption during August in Atlanta, Georgia, may be a good 
predictor for the maximum daily temperature in August. However, any attempt to 
reduce the maximum temperature by curtailing electricity consumption is clearly 
doomed to failure.  

   1.4    ROLE OF THE COMPUTER 

 Building a regression model is an iterative process. The model - building process is 
illustrated in Figure  1.8 . It begins by using any theoretical knowledge of the process 
that is being studied and available data to specify an initial regression model. 
Graphical data displays are often very useful in specifying the initial model. Then 
the parameters of the model are estimated, typically by either least squares or 
maximum likelihood. These procedures are discussed extensively in the text. Then 
model adequacy must be evaluated. This consists of looking for potential misspecifi -
cation of the model form, failure to include important variables, including unneces-
sary variables, or unusual/inappropriate data. If the model is inadequate, then must 
be made and the parameters estimated again. This process may be repeated several 
times until an adequate model is obtained. Finally, model validation should be 
carried out to ensure that the model will produce results that are acceptable in the 
fi nal application.   

 A good regression computer program is a necessary tool in the model - building 
process. However, the routine application of standard regression compnter pro-
grams often does not lead to successful results. The computer is  not  a substitute for 
creative thinking about the problem. Regression analysis requires the  intelligent  
and  artful  use of the computer. We must learn how to interpret what the computer 
is telling us and how to incorporate that information in subsequent models. Gener-
ally, regression computer programs are part of more general statistics software 
packages, such as Minitab, SAS, JMP, and R. We discuss and illustrate the use of 

     Figure 1.8     Regression model - building process.  

Data

Theory

Model
specification

Model
validation

Model
use

Parameter
estimation

Model
adequacy
checking

NoNo

YesYesYes



ROLE OF THE COMPUTER  11

these packages throughout the book. Appendix  D  contains details of the SAS pro-
cedures typically used in regression modeling along with basic instructions for their 
use. Appendix  E  provides a brief introduction to the R statistical software package. 
We present R code for doing analyses throughout the text. Without these skills, it 
is virtually impossible to successfully build a regression model.    
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  CHAPTER 2 

SIMPLE LINEAR REGRESSION     

    2.1    SIMPLE LINEAR REGRESSION MODEL 

 This chapter considers the  simple linear regression model , that is, a model with a 
single regressor  x  that has a relationship with a response  y  that is a straight line. 
This simple linear regression model is

    y x= + +β β ε0 1     (2.1)  

  where the intercept   β   0  and the slope   β   1  are unknown constants and  ε  is a random 
error component. The errors are assumed to have mean zero and unknown variance 
  σ      2 . Additionally we usually assume that the errors are uncorrelated. This means that 
the value of one error does not depend on the value of any other error. 

 It is convenient to view the regressor  x  as controlled by the data analyst and 
measured with negligible error, while the response  y  is a random variable. That is, 
there is a probability distribution for  y  at each possible value for  x.  The mean of 
this distribution is

    E y x x( ) = +β β0 1     (2.2a)  

  and the variance is

    Var Vary x x( ) = + +( ) =β β ε σ0 1
2     (2.2b)   

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 Thus, the mean of  y  is a linear function of  x  although the variance of  y  does not 
depend on the value of  x.  Furthermore, because the errors are uncorrelated, the 
responses are also uncorrelated. 

 The parameters   β   0  and   β   1  are usually called  regression coeffi cients . These coef-
fi cients have a simple and often useful interpretation. The slope   β   1  is the change in 
the mean of the distribution of  y  produced by a unit change in  x.  If the range of 
data on  x  includes  x     =    0, then the intercept   β   0  is the mean of the distribution of the 
response  y  when  x     =    0. If the range of  x  does not include zero, then   β   0  has no practi-
cal interpretation.  

   2.2    LEAST - SQUARES ESTIMATION OF THE PARAMETERS 

 The parameters   β   0  and   β   1  are unknown and must be estimated using sample data. 
Suppose that we have  n  pairs of data, say ( y  1 ,  x  1 ), ( y  2 ,  x  2 ),    . . .    , ( y n  ,  x n  ). As noted in 
Chapter  1 , these data may result either from a controlled experiment designed 
specifi cally to collect the data, from an observational study, or from existing histori-
cal records (a retrospective study). 

   2.2.1    Estimation of   β   0  and   β   1  

 The  method of least squares  is used to estimate   β   0  and   β   1 . That is, we estimate   β   0  
and   β   1  so that the sum of the squares of the differences between the observations 
 y i   and the straight line is a minimum. From Eq.  (2.1)  we may write

    y x i ni i i= + + =β β ε0 1 1 2, , , ,…     (2.3)   

 Equation  (2.1)  maybe viewed as a  population regression model  while Eq. 
 (2.3)  is a  sample regression model , written in terms of the  n  pairs of data ( y i  ,  x i  ) 
( i     =    1, 2,    . . .    ,  n ). Thus, the least - squares criterion is

    S y xi i

i

n

β β β β0 1 0 1

2

1

,( ) = − −( )
=
∑     (2.4)   

 The least - squares estimators of   β   0  and   β   1 , say   β̂0 and   β̂1, must satisfy
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 Simplifying these two equations yields
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 Equations  (2.5)  are called the  least - squares normal equations . The solution to the 
normal equations is

    ˆ ˆβ β0 1= −y x     (2.6)  
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  where
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  are the averages of  y i   and  x i  , respectively. Therefore,   β̂0 and   β̂1 in Eqs.  (2.6)  and  (2.7)  
are the  least - squares estimators  of the intercept and slope, respectively. The fi tted 
simple linear regression model is then

    ˆ ˆ ˆy x= +β β0 1     (2.8)   

 Equation  (2.8)  gives a point estimate of the mean of  y  for a particular  x.  
 Since the denominator of Eq.  (2.7)  is the corrected sum of squares of the  x i   and 

the numerator is the corrected sum of cross products of  x i   and  y i  , we may write these 
quantities in a more compact notation as
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 Thus, a convenient way to write Eq.  (2.7)  is

    β̂1 =
S

S
xy

xx

    (2.11)   

 The difference between the observed value  y i   and the corresponding fi tted value 
  ̂yi  is a  residual . Mathematically the  i th residual is

    e y y y x i ni i i i i= − = − +( ) =ˆ ˆ ˆ , , , ,β β0 1 1 2 …     (2.12)   

 Residuals play an important role in investigating  model adequacy  and in 
detecting departures from the underlying assumptions. This topic is discussed in 
subsequent chapters. 

 Example 2.1   The Rocket Propellant Data 

    A rocket motor is manufactured by bonding an igniter propellant and a sustainer 
propellant together inside a metal housing. The shear strength of the bond between 
the two types of propellant is an important quality characteristic. It is suspected that 
shear strength is related to the age in weeks of the batch of sustainer propellant. 
Twenty observations on shear strength and the age of the corresponding batch of 
propellant have been collected and are shown in Table  2.1 . The scatter diagram, 
shown in Figure  2.1 , suggests that there is a strong statistical relationship between 
shear strength and propellant age, and the tentative assumption of the straight - line 
model  y     =      β   0     +      β   1  x     +     ε  appears to be reasonable.     

  TABLE 2.1    Data for Example  2.1  

   Observation,  i   
   Shear Strength, 

 y i   (psi)  
   Age of Propellant, 

 x i   (weeks)  

  1    2158.70    15.50  
  2    1678.15    23.75  
  3    2316.00    8.00  
  4    2061.30    17.00  
  5    2207.50    5.50  
  6    1708.30    19.00  
  7    1784.70    24.00  
  8    2575.00    2.50  
  9    2357.90    7.50  

  10    2256.70    11.00  
  11    2165.20    13.00  
  12    2399.55    3.75  
  13    1779.80    25.00  
  14    2336.75    9.75  
  15    1765.30    22.00  
  16    2053.50    18.00  
  17    2414.40    6.00  
  18    2200.50    12.50  
  19    2654.20    2.00  
  20    1753.70    21.50  
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     Figure 2.1     Scatter diagram of shear strength versus propellant age, Example  2.1 .  

 To estimate the model parameters, fi rst calculate
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n
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⎞
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  and

   
S x y

x y

n
xy i i

i

n i

i

n

i

i

n

= − = − ( )
=

= =∑
∑ ∑

1

1 1 528 492 64
267 25 42 627 15

, .
. , .(( ) = −

20
41 112 65, .

  

 Therefore, from Eqs.  (2.11)  and  (2.6) , we fi nd that

   

ˆ , .
.

.β1
41 112 65
1106 56

37 15= =
−

= −
S

S
xy

xx  

  and

   
ˆ ˆ . . . .β β0 1 2131 3575 37 15 13 3625 2627 82= − = − −( ) =y x   
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  TABLE 2.2    Data, Fitted Values, and Residuals for Example  2.1  

   Observed Value,  y i       Fitted Value,   ŷi      Residual,  e i    

  2158.70    2051.94    106.76  
  1678.15    1745.42     − 67.27  
  2316.00    2330.59     − 14.59  
  2061.30    1996.21    65.09  
  2207.50    2423.48     − 215.98  
  1708.30    1921.90     − 213.60  
  1784.70    1736.14    48.56  
  2575.00    2534.94    40.06  
  2357.90    2349.17    8.73  
  2256.70    2219.13    37.57  
  2165.20    2144.83    20.37  
  2399.55    2488.50     − 88.95  
  1799.80    1698.98    80.82  
  2336.75    2265.58    71.17  
  1765.30    1810.44     − 45.14  
  2053.50    1959.06    94.44  
  2414.40    2404.90    9.50  
  2200.50    2163.40    37.10  
  2654.20    2553.52    100.68  
  1753.70    1829.02     − 75.32  

    ∑ =yi 42 627 15, .   
    ∑ =ˆ , .yi 42 627 15       ∑ =ei 0 00.   

 After obtaining the least - squares fi t, a number of interesting questions come 
to mind:

   1.     How well does this equation fi t the data?  
  2.     Is the model likely to be useful as a predictor?  
  3.     Are any of the basic assumptions (such as constant variance and uncorrelated 

errors) violated, and if so, how serious is this?    

 All of these issues must be investigated before the model is fi nally adopted for use. 
As noted previously, the residuals play a key role in evaluating model adequacy. 
Residuals can be viewed as realizations of the model errors  ε   i  . Thus, to check the 
constant variance and uncorrelated errors assumption, we must ask ourselves if the 
residuals look like a random sample from a distribution with these properties. We 

 The least - squares fi t is

   ˆ . .y x= −2627 82 37 15   

 We may interpret the slope  − 37.15 as the average weekly decrease in propellant 
shear strength due to the age of the propellant. Since the lower limit of the  x  ’ s is 
near the origin, the intercept 2627.82 represents the shear strength in a batch of 
propellant immediately following manufacture. Table  2.2  displays the observed 
values  y i  , the fi tted values   ̂yi, and the residuals.        ■     
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return to these questions in Chapter  4 , where the use of residuals in model adequacy 
checking is explored. 

  Computer Output     Computer software packages are used extensively in fi tting 
regression models. Regression routines are found in both network and PC - based 
statistical software, as well as in many popular spreadsheet packages. Table  2.3  
presents the output from Minitab, a widely used PC - based statistics package, for the 
rocket propellant data in Example  2.1 . The upper portion of the table contains the 
fi tted regression model. Notice that before rounding the regression coeffi cients 
agree with those we calculated manually. Table  2.3  also contains other information 
about the regression model. We return to this output and explain these quantities 
in subsequent sections.       

   2.2.2    Properties of the Least - Squares Estimators 
and the Fitted Regression Model 

 The least - squares estimators   β̂0 and   β̂1 have several important properties. First, note 
from Eqs.  (2.6)  and  (2.7)  that   ̂β0 and   β̂1 are  linear combinations  of the observations 
 y i  . For example,
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S
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  where   c x x Si i xx= −( )  for  i     =    1, 2,    . . .    ,  n . 
 The least - squares estimators   β̂0 and   β̂1 are  unbiased estimators  of the model 
parameters   β   0  and   β   1 . To show this for   ̂β1, consider
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  TABLE 2.3    Minitab Regression Output for Example  2.1  

    Regression Analysis                    

   The regression equation is               
   Strength  =  2628 -  37.2 Age               

   Predictor      Coef      StDev      T      P       
   Constant      2627.82      44.18      59.47      0.000       
   Age       - 37.154      2.889       - 12.86      0.000       

   S  =  96.11      R - Sq  =  90.2%      R - Sq(adj)  =  89.6%           

   Analysis of Variance               

   Source      DF      SS      MS      F      P   
   Regression      1      1527483      1527483      165.38      0.000   
   Error      18      166255      9236           
   Total      19      1693738               
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  since  E ( ε   i  )    =    0 by assumption. Now we can show directly that   ∑ ==i
n

ic1 0  and 
  ∑ ==i

n
i ic x1 1, so

   
E β̂ β1 1( ) =

  

 That is, if we assume that the model is correct [ E ( y i  )    =      β   0     +      β   1  x i  ], then   ̂β1 is an 

unbiased estimator of   β   1 . Similarly we may show that   β̂0 is an unbiased estimator 
of   β   0 , or

   
E β̂ β0 0( ) =

  

 The variance of   ̂β1 is found as

    Var Var Varβ̂1
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1

( ) = ⎛
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∑ ∑c y c yi i
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n

    (2.13)  

  because the observations  y i   are uncorrelated, and so the variance of the sum is just 
the sum of the variances. The variance of each term in the sum is   c yi i

2Var ( ), and we 
have assumed that Var( y i  )    =      σ      2 ; consequently,

    Var β̂ σ
σ

σ
1

2 2

1

2 2

1
2

2

( ) = =
−( )

=
=

=∑
∑
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x x

S S
i

i
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i

n
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    (2.14)   

 The variance of   β̂0 is

   

Var Var

Var Var Cov

ˆ ˆ

ˆ , ˆ

β β

β β

0 1

2
1 12

( ) = −( )
= ( ) + ( ) − ( )

y x

y x x y
  

 Now the variance of   y  is just   Var y n( ) = σ 2 , and the covariance between   y  and   ̂β1 
can be shown to be zero (see Problem 2.25). Thus,

    Var Var Varˆ ˆβ β σ0
2

1
2

21( ) = ( ) + ( ) = +⎛
⎝⎜

⎞
⎠⎟

y x
n

x
Sxx

    (2.15)   

 Another important result concerning the quality of the least - squares estimators 
  β̂0 and   β̂1 is the  Gauss - Markov theorem , which states that for the regression model 
 (2.1)  with the assumptions  E ( ε )    =    0, Var( ε )    =      σ      2 , and uncorrelated errors, the least -
 squares estimators are unbiased and have minimum variance when compared with 
all other unbiased estimators that are linear combinations of the  y i  . We often say 
that the least - squares estimators are  best linear unbiased estimators , where  “ best ”  
implies minimum variance. Appendix  C.4  proves the Gauss - Markov theorem for 
the more general multiple linear regression situation, of which simple linear regres-
sion is a special case. 

 There are several other useful properties of the least - squares fi t:
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   1.     The sum of the residuals in any regression model that contains an intercept   β   0  
is always zero, that is,

   
y y ei i

i

n

i

i

n

−( ) = =
= =
∑ ∑ˆ

1 1

0
  

 This property follows directly from the fi rst normal equation in Eqs.  (2.5)  and 
is demonstrated in Table  2.2  for the residuals from Example  2.1 . Rounding 
errors may affect the sum.  

  2.     The sum of the observed values  y i   equals the sum of the fi tted values   ̂yi, or

   
y yi

i

n

i

i

n

= =
∑ ∑=

1 1

ˆ

  

 Table  2.2  demonstrates this result for Example  2.1 .  
  3.     The least - squares regression line always passes through the  centroid  [the point 

(  y,   x)] of the data.  
  4.     The sum of the residuals weighted by the corresponding value of the regressor 

variable always equals zero, that is,

   
x ei i

i

n

=
∑ =

1

0
   

  5.     The sum of the residuals weighted by the corresponding fi tted value always 
equals zero, that is,

   
ŷ ei i

i

n

=
∑ =

1

0
      

   2.2.3    Estimation of   σ      2  

 In addition to estimating   β   0  and   β   1 , an estimate of   σ      2  is required to test hypotheses 
and construct interval estimates pertinent to the regression model. Ideally we would 
like this estimate not to depend on the adequacy of the fi tted model. This is only 
possible when there are several observations on  y  for at least one value of  x  (see 
Section  4.5 ) or when prior information concerning   σ      2  is available. When this 
approach cannot be used, the estimate of   σ      2  is obtained from the  residual  or  error 
sum of squares ,

    SS e y yi

i

n

i i

i

n

Res = = −( )
= =
∑ ∑2

1

2

1

ˆ     (2.16)   

 A convenient computing formula for  SS  Res  may be found by substituting   ̂ ˆ ˆy xi i= +β β0 1  
into Eq.  (2.16)  and simplifying, yielding
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    SS y ny Si
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n
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 But
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  is just the corrected sum of squares of the response observations, so

    SS SS SxyRes T= − β̂1     (2.18)   

 The residual sum of squares has  n     −    2 degrees of freedom, because two degrees 
of freedom are associated with the estimates   ̂β0 and   ̂β1 involved in obtaining   ̂yi . 
Section  C.3  shows that the expected value of  SS  Res  is  E ( SS  Res )    =    ( n     −    2)  σ      2 , so an 
 unbiased estimator of    σ       2   is

    σ̂ 2

2
=

−
=

SS
n

MSRes
Res     (2.19)   

 The quantity  MS  Res  is called the  residual mean square . The square root of   σ̂ 2 is 
sometimes called the  standard error of regression , and it has the same units as the 
response variable  y.  

 Because   σ̂ 2 depends on the residual sum of squares, any violation of the assump-
tions on the model errors or any misspecifi cation of the model form may seriously 
damage the usefulness of   σ̂ 2 as an estimate of   σ      2 . Because   σ̂ 2 is computed from the 
regression model residuals, we say that it is a  model - dependent  estimate of   σ      2 .    

 Example 2.2   The Rocket Propellant Data 

    To estimate   σ      2  for the rocket propellant data in Example  2.1 , fi rst fi nd
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 From Eq.  (2.18)  the residual sum of squares is

   

SS SS SxyRes T= −
= − −( ) −( ) =

ˆ

, , . . , . ,

β1

1 693 737 60 37 15 41 112 65 166 402..65   

 Therefore, the estimate of   σ      2  is computed from Eq.  (2.19)  as
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   2.2.4    Alternate Form of the Model 

 There is an alternate form of the simple linear regression model that is occasionally 
useful. Suppose that we redefi ne the regressor variable  x i   as the deviation from its 
own average, say   x xi − . The regression model then becomes

    

y x x x

x x x

x x

i i i

i i

i i

= + −( ) + +
= +( ) + −( ) +
= ′ + −( ) +

β β β ε
β β β ε
β β ε

0 1 1

0 1 1

0 1     (2.20)   

 Note that redefi ning the regressor variable in Eq.  (2.20)  has shifted the origin of the 
 x  ’ s from zero to   x . In order to keep the fi tted values the same in both the original 
and transformed models, it is necessary to modify the original intercept. The rela-
tionship between the original and transformed intercept is

    ′ = +β β β0 0 1x     (2.21)   

 It is easy to show that the least - squares estimator of the transformed intercept 
is   ˆ ′ =β0 y. The estimator of the slope is unaffected by the transformation. This alter-
nate form of the model has some advantages. First, the least - squares estimators 
  ˆ ′ =β0 y and   β̂1 = S Sxy xx are  uncorrelated , that is,   Cov ˆ , ˆ′( ) =β β0 1 0. This will make some 
applications of the model easier, such as fi nding confi dence intervals on the mean 
of  y  (see Section  2.4.2 ). Finally, the fi tted model is

    ˆ ˆy y x x= + −( )β1     (2.22)   

 Although Eqs.  (2.22)  and  (2.8)  are equivalent (they both produce the same value 
of   ̂y for the same value of  x ), Eq.  (2.22)  directly reminds the analyst that the regres-
sion model is only valid over the range of  x  in the  original data . This region is 
centered at   x .   

   2.3    HYPOTHESIS TESTING ON THE SLOPE AND INTERCEPT 

 We are often interested in testing hypotheses and constructing confi dence intervals 
about the model parameters. Hypothesis testing is discussed in this section, and 
Section  2.4  deals with confi dence intervals. These procedures require that we make 
the additional assumption that the model errors  ε   i   are normally distributed. Thus, 
the complete assumptions are that the errors are normally and independently dis-
tributed with mean 0 and variance   σ      2 , abbreviated NID(0,   σ      2 ). In Chapter  4  we 
discuss how these assumptions can be checked through  residual analysis . 

   2.3.1    Use of  t  Tests 

 Suppose that we wish to test the hypothesis that the slope equals a constant, say   β   10 . 
The appropriate hypotheses are

 Remember that this estimate of   σ      2  is  model dependent . Note that this differs slightly 
from the value given in the Minitab output (Table  2.3 ) because of rounding.      ■   
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    H H0 1 10 1 1 10: , :β β β β= ≠     (2.23)  

  where we have specifi ed a two - sided alternative. Since the errors  ε   i   are NID(0,   σ      2 ), 
the observations  y i   are NID(  β   0     +      β   1  x i  ,   σ      2 ). Now   β̂1 is a linear combination of the 
observations, so   β̂1 is normally distributed with mean   β   1  and variance   σ      2 / S xx   using 
the mean and variance of   β̂1 found in Section  2.2.2 . Therefore, the statistic

   
Z

Sxx

0
1 10

2
=

−β̂ β
σ  

  is distributed  N (0, 1) if the null hypothesis  H  0 :   β   1     =      β   10  is true. If   σ      2  were known, we 
could use  Z  0  to test the hypotheses  (2.23) . Typically,   σ      2  is unknown. We have already 
seen that  MS  Res  is an unbiased estimator of   σ      2 . Appendix  C.3  establishes that 
( n     −    2) MS  Res /  σ      2  follows a   χn−2

2
 distribution and that  MS  Res  and   β̂1 are independent. 

By the defi nition of a  t  statistic given in Section  C.1 ,

    t
MS Sxx

0
1 10=
−β̂ β

Res

    (2.24)  

  follows a  t n    − 2  distribution if the null hypothesis  H  0 :   β   1     =      β   10  is true. The degrees of 
freedom associated with  t  0  are the number of degrees of freedom associated with 
 MS  Res . Thus, the ratio  t  0  is the test statistic used to test  H  0 :   β   1     =      β   10 . The test procedure 
computes  t  0  and compares the observed value of  t  0  from Eq.  (2.24)  with the upper 
  α  /2 percentage point of the  t n    − 2  distribution ( t  α    /2,   n    − 2 ). This procedure rejects the null 
hypothesis if

    t t n0 2 2> −α ,     (2.25)   

 Alternatively, a  P  - value approach could also be used for decision making. 
 The denominator of the test statistic,  t  0 , in Eq.  (2.24)  is often called the  estimated 

standard error , or more simply, the  standard error  of the slope. That is,

    se Resβ̂1( ) = MS
Sxx

    (2.26)   

 Therefore, we often see  t  0  written as

    t0
1 10

1

=
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( )
ˆ

ˆ
β β

βse
    (2.27)   

 A similar procedure can be used to test hypotheses about the intercept. To test

    H H0 0 00 1 0 00: , :β β β β= ≠     (2.28)  

  we would use the  test statistic 

    t
MS n x Sxx

0
0 00
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0 00
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−
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    (2.29)  
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  where   se Resβ̂0
21( ) = +( )MS n x Sx  is the  standard error of the intercept . We reject 

the null hypothesis  H  0 :   β   0     =      β   00  if | t  0 |    >     t  α    /2,   n    − 2 .  

   2.3.2    Testing Signifi cance of Regression 

 A very important special case of the hypotheses in Eq.  (2.23)  is

    H H0 1 1 10 0: , :β β= ≠     (2.30)   

 These hypotheses relate to the  signifi cance of   regression . Failing to reject  H  0 :   β   1     =    0 
implies that there is no linear relationship between  x  and  y . This situation is illus-
trated in Figure  2.2 . Note that this may imply either that  x  is of little value in explain-
ing the variation in  y  and that the best estimator of  y  for any  x  is   ̂y y=  (Figure  2.2  a ) 
or that the true relationship between  x  and  y  is not linear (Figure  2.2  b ). Therefore, 
failing to reject  H  0 :   β   1     =    0 is equivalent to saying that there is  no linear relationship 
between   y   and   x .   

 Alternatively, if  H  0 :   β   1     =    0 is rejected, this implies that  x  is of value in explaining 
the variability in  y.  This is illustrated in Figure  2.3 . However, rejecting  H  0 :   β   1     =    0 
could mean either that the straight - line model is adequate (Figure  2.3  a ) or that even 

     Figure 2.2     Situations where the hypothesis  H  0 :   β   1     =    0 is not rejected.  

y

(b)

y

x
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x

     Figure 2.3     Situations where the hypothesis  H  0 :   β   1     =    0 is rejected.  
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though there is a linear effect of  x , better results could be obtained with the addition 
of higher order polynomial terms in  x  (Figure  2.3  b ).   

 The test procedure for  H  0 :   β   1     =    0 may be developed from two approaches. The 
fi rst approach simply makes use of the  t  statistic in Eq.  (2.27)  with   β   10     =    0, or

   

t0
1

1

= ( )
ˆ

ˆ
β
βse

  

 The null hypothesis of signifi cance of regression would be rejected if | t  0 |    >     t  α    /2,   n    − 2 . 

 Example 2.3   The Rocket Propellant Data 

    We test for signifi cance of regression in the rocket propellant regression model 
of Example  2.1 . The estimate of the slope is   ˆ .β1 37 15= − , and in Example  2.2 , we 
computed the estimate of   σ      2  to be   MSRes = =ˆ .σ 2 9244 59. The standard error of the 
slope is

   
se Resˆ .

.
.β1

9244 59
1106 56

2 89( ) = = =
MS

Sxx   

 Therefore, the test statistic is

   

t0
1

1

37 15
2 89

12 85= ( ) =
−

= −
ˆ

ˆ
.

.
.

β
βse

  

 If we choose   α      =    0.05, the critical value of  t  is  t  0.025,18     =    2.101. Thus, we would reject 
 H  0 :   β   1     =    0 and conclude that there is a linear relationship between shear strength 
and the age of the propellant.        ■   

  Minitab Output     The Minitab output in Table  2.3  gives the standard errors of the 
slope and intercept (called  “ StDev ”  in the table) along with the  t  statistic for testing 
 H  0 :   β   1     =    0 and  H  0 :   β   0     =    0. Notice that the results shown in this table for the slope 
essentially agree with the manual calculations in Example  2.3 . Like most computer 
software, Minitab uses the  P  - value approach to hypothesis testing. The  P  value for 
the test for signifi cance of regression is reported as  P     =    0.000 (this is a rounded 
value; the actual  P  value is 1.64    ×    10  − 10 ). Clearly there is strong evidence that 
strength is linearly related to the age of the propellant. The test statistic for 
 H  0 :   β   0     =    0 is reported as  t  0     =    59.47 with  P     =    0.000. One would feel very confi dent 
in claiming that the intercept is not zero in this model.     

   2.3.3    Analysis of Variance 

 We may also use an  analysis - of - variance  approach to test signifi cance of regression. 
The analysis of variance is based on a partitioning of total variability in the response 
variable  y . To obtain this partitioning, begin with the identity

    y y y y y yi i i i− = −( ) + −( )ˆ ˆ     (2.31)   
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 Squaring both sides of Eq.  (2.31)  and summing over all  n  observations 
produces
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 Note that the third term on the right - hand side of this expression can be 
rewritten as
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  since the sum of the residuals is always zero (property 1, Section  2.2.2 ) and the sum 
of the residuals weighted by the corresponding fi tted value   ̂yi is also zero (property 
5, Section  2.2.2 ). Therefore,

    y y y y y yi

i

n

i

i

n

i i

i

n

−( ) = −( ) + −( )
= = =
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1

2
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2

1

ˆ ˆ     (2.32)   

 The left - hand side of Eq.  (2.32)  is the corrected sum of squares of the observa-
tions,  SS  T , which measures the total variability in the observations. The two compo-
nents of  SS  T  measure, respectively, the amount of variability in the observations  y i   
accounted for by the regression line and the residual variation left unexplained by 
the regression line. We recognize   SS y yi

n
i iRes = ∑ −( )=1

2ˆ  as the residual or error sum 
of squares from Eq.  (2.16) . It is customary to call   ∑ −( )=i

n
iy y1

2ˆ  the  regression or 
model sum of squares . 

 Equation  (2.32)  is the  fundamental analysis - of - variance identity for a regression 
model . Symbolically, we usually write

    SS SS SST R Res= +     (2.33)   

 Comparing Eq.  (2.33)  with Eq.  (2.18)  we see that the regression sum of squares may 
be computed as

    SS SxyR = β̂1     (2.34)   

 The  degree - of - freedom  breakdown is determined as follows. The total sum of 
squares,  SS  T , has  df  T     =     n     −    1 degrees of freedom because one degree of freedom is 
lost as a result of the constraint   ∑ −( )=i

n
iy y1  on the deviations   y yi − . The model or 

regression sum of squares,  SS  R , has  df  R     =    1 degree of freedom because  SS  R  is 
completely determined by one parameter, namely,   β̂1 [see Eq.  (2.34) ]. Finally, we 
noted previously that  SS  R  has  df  Res     =     n     −    2 degrees of freedom because two 
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constraints are imposed on the deviations   y yi i− ˆ  as a result of estimating   β̂0 and   β̂1. 
Note that the degrees of freedom have an additive property:

    

df df df

n n
T R Res= +

− = + −( )1 1 2     (2.35)   

 We can use the usual  analysis - of - variance   F  test to test the hypothesis  H  0 :   β   1     =    0. 

Appendix  C.3  shows that (1)  SS  Res     =    ( n     −    2) MS  Res /  σ      2  follows a   χn−2
2

 distribution; 

(2) if the null hypothesis  H  0 :   β   1     =    0 is true, then  SS  R /  σ      2  follows a   χ1
2
 distribution; and 

(3)  SS  Res  and  SS  R  are independent. By the defi nition of an  F  statistic given in 
Appendix  C.1 ,

    F
SS df

SS df
SS

SS n
MS

MS
0

1
2

= =
−( )

=R R

Res Res

R

Res

R

Res

    (2.36)  

  follows the  F  1,   n    − 2  distribution. Appendix  C.3  also shows that the expected values of 
these mean squares are

   E MS E MS SxxRes R( ) = ( ) = +σ σ β2 2
1
2,   

 These expected mean squares indicate that if the observed value of  F  0  is large, then 
it is likely that the slope   β   1     ≠    0. Appendix  C.3  also shows that if   β   1     ≠    0, then  F  0  
follows a noncentral  F  distribution with 1 and  n     −    2 degrees of freedom and a  non-
centrality  parameter of

   
λ β

σ
= 1

2

2

Sxx

  

 This noncentrality parameter also indicates that the observed value of  F  0  should be 
large if   β   1     ≠    0. Therefore, to test the hypothesis  H  0 :   β   1     =    0, compute the test statistic 
 F  0  and reject  H  0  if

   F F n0 1 2> −α , ,   

 The test procedure is summarized in Table  2.4 .     

  TABLE 2.4    Analysis of Variance for Testing Signifi cance of Regression 

   Source of 
Variation     Sum of Squares  

   Degrees of 
Freedom     Mean Square      F  0   

  Regression      SS SxyR = β̂1     1     MS  R      MS  R / MS  Res   
  Residual      SS SS SxyRes T= − β̂1      n     −    2     MS  Res       

  Total     SS  T      n     −    1          
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  Minitab Output     The Minitab output in Table  2.3  also presents the analysis - of -
 variance test signifi cance of regression. Comparing Tables  2.3  and  2.5 , we note that 
there are some slight differences between the manual calculations and those per-
formed by computer for the sums of squares. This is due to rounding the manual 
calculations to two decimal places. The computed values of the test statistics essen-
tially agree.  

  More About the t Test     We noted in Section  2.3.2  that the  t  statistic

    t
MS Sxx

0
1

1

1= ( ) =
ˆ

ˆ

ˆβ
β

β
se Res

    (2.37)  

  could be used for testing for signifi cance of regression. However, note that on squar-
ing both sides of Eq.  (2.37) , we obtain

    t
S

MS

S

MS
MS

MS
xx xy

0
2 1

2
1= = =

ˆ ˆβ β
Res Res

R

Res

    (2.38)   

 Thus,   t0
2 in Eq.  (2.38)  is identical to  F  0  of the analysis - of - variance approach in 

Eq.  (2.36) . For example; in the rocket propellant example  t  0     =     − 12.5, so 
  t F0

2 2
012 5 165 12 165 21= −( ) = =. . .� . In general, the square of a  t  random variable 

with  f  degrees of freedom is an  F  random variable with one and  f  degrees of freedom 
in the numerator and denominator, respectively. Although the  t  test for  H  0 :   β   1     =    0 
is equivalent to the  F  test in simple linear regression, the  t  test is somewhat more 
adaptable, as it could be used for one - sided alternative hypotheses (either  H  1 :   β   1     <    0 
or  H  1 :   β   1     >    0), while the  F  test considers only the two - sided alternative. Regression 

  TABLE 2.5    Analysis - of - Variance Table for the Rocket Propellant Regression Model 

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  value  

  Regression    1,527,334.95    1    1,527,334.95    165.21    1.66    ×    10  − 10   
  Residual    166,402.65    18    9,244.59          
  Total    1,693,737.60    19              

 Example 2.4   The Rocket Propellant Data 

    We will test for signifi cance of regression in the model developed in Example 
 2.1  for the rocket propellant data. The fi tted model is   ̂ . .y x= −2627 82 37 15 , 
 SS  T     =    1,693,737.60, and  S xy      =     − 41,112.65. The regression sum of squares is computed 
from Eq.  (2.34)  as

   SS SxyR = = −( ) −( ) =ˆ . , . , , .β1 37 15 41 112 65 1 527 334 95   

 The analysis of variance is summarized in Table  2.5 . The computed value of  F  0  is 
165.21, and from Table A.4,  F  0.01,1,18     =    8.29. The  P  value for this test is 1.66    ×    10  − 10 . 
Consequently, we reject  H  0 :   β   1     =    0.        ■     
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computer programs routinely produce both the analysis of variance in Table  2.4  and 
the  t  statistic. Refer to the Minitab output in Table  2.3 . 

 The real usefulness of the analysis of variance is in  multiple regression models . 
We discuss multiple regression in the next chapter. 

 Finally, remember that deciding that   β   1     =    0 is a very important conclusion that is 
only  aided  by the  t  or  F  test. The inability to show that the slope is not statistically 
different from zero may not necessarily mean that  y  and  x  are unrelated. It may 
mean that our ability to detect this relationship has been obscured by the variance 
of the measurement process or that the range of values of  x  is inappropriate. A great 
deal of nonstatistical evidence and knowledge of the subject matter in the fi eld is 
required to conclude that   β   1     =    0.    

   2.4    INTERVAL ESTIMATION IN SIMPLE LINEAR REGRESSION 

 In this section we consider confi dence interval estimation of the regression model 
parameters. We also discuss interval estimation of the mean response  E ( y ) for given 
values of  x.  The normality assumptions introduced in Section  2.3  continue to apply. 

   2.4.1    Confi dence Intervals on   β   0 ,   β   1 , and   σ      2  

 In addition to point estimates of   β   0 ,   β   1 , and   σ      2 , we may also obtain confi dence inter-
val estimates of these parameters. The width of these confi dence intervals is a 
measure of the overall quality of the regression line. If the errors are normally and 

independently distributed, then the sampling distribution of both   ˆ ˆβ β β1 1 1−( ) ( )se  

and   ˆ ˆβ β β0 0 0−( ) ( )se  is  t  with  n     −    2 degrees of freedom. Therefore, a 100(1    −      α  ) 

percent confi dence interval (CI) on the slope   β   1  is given by

    ˆ ˆ ˆ ˆ ˆ
, ,β β β β βα α1 2 2 1 1 1 2 2 1− ( ) ≤ ≤ + ( )− −t tn nse se     (2.39)  

  and a 100(1    −      α  ) percent CI on the intercept   β   0  is

    ˆ ˆ ˆ ˆ
, ,β β β β βα α0 2 2 0 0 0 2 2 0− ( ) ≤ ≤ + ( )− −t tn nse se     (2.40)   

 These CIs have the usual frequentist interpretation. That is, if we were to take 
repeated samples of the same size at the same  x  levels and construct, for example, 
95% CIs on the slope for each sample, then 95% of those intervals will contain the 
true value of   β   1 . 

 If the errors are normally and independently distributed, Appendix  C.3  shows 
that the sampling distribution of ( n     −    2) MS  Res /  σ      2  is chi square with  n     −    2 degrees of 
freedom. Thus,

   
P

n MS
n nχ

σ
χ αα α1 2 2

2
2 2 2

22
1− − −≤

−( ) ≤{ } = −, ,
Res

 

  and consequently a 100(1    −      α  ) percent CI on   σ      2  is
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    n MS n MS

n n

−( ) ≤ ≤
−( )

− − −

2 2

2 2
2

2

1 2 2
2

Res Res

χ
σ

χα α, ,

    (2.41)    

 Example 2.5   The Rocket Propellant Data 

    We construct 95% CIs on   β   1  and   σ      2  using the rocket propellant data from Example 
 2.1 . The standard error of   β̂1 is   se ˆ .β1 2 89( ) =  and  t  0.025,18     =    2.101. Therefore, from 
Eq.  (2.35) , the 95% CI on the slope is

   
ˆ ˆ ˆ ˆ

. , . ,β β β β β1 0 025 18 1 1 1 0 025 18 1− ( ) ≤ ≤ + ( )t tse se
 

   − − ( )( ) ≤ ≤ − + ( )( )37 15 2 101 2 89 37 15 2 101 2 891. . . . . .β  

  or

   − ≤ ≤ −43 22 31 081. .β  

    In other words, 95% of such intervals will include the true value of the slope. 
 If we had chosen a different value for   α  , the width of the resulting CI would have 

been different. For example, the 90% CI on   β   1  is  − 42.16    ≤      β   1     ≤     − 32.14, which is nar-
rower than the 95% CI. The 99% CI is  − 45.49    ≤      β   1     ≤    28.81, which is wider than the 
95% CI. In general, the larger the confi dence coeffi cient (1    −      α  ) is, the wider the CI. 

 The 95% CI on   σ      2  is found from Eq.  (2.41)  as follows:

   

n MS n MS

n n

−( ) ≤ ≤
−( )

− −

2 2

0 025 2
2

2

0 975 2
2

Res Res

χ
σ

χ. , . ,  

   

18 9244 59 18 9244 59

0 025 18
2

2

0 975 18
2

. .

. , . ,

( ) ≤ ≤ ( )
χ

σ
χ   

 From Table A.2,   χ0 025 18
2 31 5. , .=  and   χ0 975 18

2 8 23. , .= . Therefore, the desired CI becomes

   

18 9244 59
31 5

18 9244 59
8 23

2.
.

.
.

( ) ≤ ≤ ( )σ
 

  or

    5282 62 20 219 032. , .≤ ≤σ          ■   

   2.4.2    Interval Estimation of the Mean Response 

 A major use of a regression model is to estimate the mean response  E ( y ) for a 
particular value of the regressor variable  x.  For example, we might wish to estimate 
the mean shear strength of the propellant bond in a rocket motor made from a batch 
of sustainer propellant that is 10 weeks old. Let  x  0  be the level of the regressor vari-
able for which we wish to estimate the mean response, say  E ( y | x  0 ). We assume that 
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 x  0  is any value of the regressor variable within the range of the original data on  x  
used to fi t the model. An unbiased point estimator of  E ( y | x  0 ) is found from the fi tted 
model as

    E y x xy x0 0 1 00( ) = = +� ˆ ˆ ˆμ β β     (2.42)   

 To obtain a 100(1    −      α  ) percent CI on  E ( y | x  0 ), fi rst note that   μ̂y x0  is a normally 
distributed random variable because it is a linear combination of the observations 
 y i  . The variance of   μ̂y x0  is

   

Var Var Varˆ ˆ ˆ ˆμ β β β

σ σ

y x x y x x

n
x x

0 0 1 0 1 0

2 2
0

2

( ) = +( ) = + −( )⎡⎣ ⎤⎦

= +
−( )

SS n
x x

Sxx xx
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−( )⎡

⎣
⎢

⎤

⎦
⎥σ 2 0
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  since (as noted in Section  2.2.4 )   Cov ,y β̂1 0( ) = . Thus, the sampling distribution of

   

μ̂y x

xx

E y x

MS n x x S

0 0

0
21

− ( )
+ −( )( )Res  

  is  t  with  n     −    2 degrees of freedom. Consequently,  a 100(1      −       α   ) percent CI on the 
mean response at the point   x      =      x   0   is
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    (2.43)   

 Note that the width of the CI for  E ( y | x  0 ) is a function of  x  0 . The interval width is 
a minimum for   x x0 =  and widens as   x x0 −  increases. Intuitively this is reasonable, 
as we would expect our best estimates of  y  to be made at  x  values near the center 
of the data and the precision of estimation to deteriorate as we move to the bound-
ary of the  x  space.   

 Example 2.6   The Rocket Propellant Data 

    Consider fi nding a 95% CI on  E ( y | x  0 ) for the rocket propellant data in Example 
 2.1 . The CI is found from Eq.  (2.43)  as
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 If we substitute values of  x  0  and the fi tted value   ̂ ˆy y x0 0= μ  at the value of  x  0  into this 
last equation, we will obtain the 95% CI on the mean response at  x     =     x  0 . For 
example, if   x x0 13 3625= = . , then   ˆ .μy x0 2131 40= , and the CI becomes

   2086 230 13 3625 2176 571. . .≤ ( ) ≤E y   

 Table  2.6  contains the 95% confi dence limits on  E ( y | x  0 ) for several other values of 
 x  0 . These confi dence limits are illustrated graphically in Figure  2.4 . Note that the 
width of the CI increases as   x x0 −  increases.        ■       

  TABLE 2.6    Confi dence Limits on  E ( y | x  0 ) for Several 
Values of  x  0  

   Lower 
Confi dence Limit      x  0   

   Upper 
Confi dence Limit  

  2438.919    3    2593.821  
  2341.360    6    2468.481  
  2241.104    9    2345.836  
  2136.098    12    2227.942  
  2086.230      x = 13 3625.     2176.571  
  2024.318    15    2116.822  
  1905.890    18    2012.351  
  1782.928    21    1912.412  
  1657.395    24    1815.045  

     Figure 2.4     The upper and lower 95% confi dence limits for the propellant data.  
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 Many regression textbooks state that one should never use a regression model 
to  extrapolate  beyond the range of the original data. By extrapolation, we mean 
using the prediction equation beyond the boundary of the  x  space. Figure  1.5  illus-
trates clearly the dangers inherent in extrapolation; model or equation error can 
severely damage the prediction. 

 Equation  (2.43)  points out that the issue of extrapolation is much more subtle; 
the further the  x  value is from the center of the data, the more variable our estimate 
of  E ( y | x  0 ). Please note, however, that nothing  “ magical ”  occurs at the boundary of 
the  x  space. It is not reasonable to think that the prediction is wonderful at the 
observed data value most remote from the center of the data and completely awful 
just beyond it. Clearly, Eq.  (2.43)  points out that we should be concerned about 
prediction quality as we approach the boundary and that as we move beyond this 
boundary, the prediction may deteriorate rapidly. Furthermore, the farther we move 
away from the original region of  x  space, the more likely it is that equation or model 
error will play a role in the process. 

 This is not the same thing as saying  “ never extrapolate. ”  Engineers and econo-
mists routinely use prediction equations to forecast a variable of interest one or 
more time periods in the future. Strictly speaking, this forecast is an extrapolation. 
Equation  (2.43)  supports such use of the prediction equation. However, Eq.  (2.43)  
does not support using the regression model to forecast many periods in the future. 
Generally, the greater the extrapolation, the higher is the chance of equation error 
or model error impacting the results. 

 The probability statement associated with the CI  (2.43)  holds only when a single 
CI on the mean response is to be constructed. A procedure for constructing several 
CIs that, considered jointly, have a specifi ed confi dence level is a  simultaneous sta-
tistical inference  problem. These problems are discussed in Chapter  3 .   

   2.5    PREDICTION OF NEW OBSERVATIONS 

 An important application of the regression model is prediction of new observations 
 y  corresponding to a specifi ed level of the regressor variable  x.  If  x  0  is the value of 
the regressor variable of interest, then

    ˆ ˆ ˆy x0 0 1 0= +β β     (2.44)  

  is the point estimate of the new value of the response  y  0 . 
 Now consider obtaining an interval estimate of this future observation  y  0 . The CI 

on the mean response at  x     =     x  0  [Eq.  (2.43) ] is inappropriate for this problem because 
it is an interval estimate on the  mean  of  y  (a parameter), not a probability statement 
about future observations from that distribution. We now develop a  prediction 
interval for the future observation   y   0  . 

 Note that the random variable

   ψ = −y y0 0ˆ  

  is normally distributed with mean zero and variance
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  because the future observation  y  0  is independent of   ̂y0. If we use   ̂y0 to predict  y  0 , 
then the standard error of   ψ = −y y0 0ˆ  is the appropriate statistic on which to base 
a prediction interval. Thus, the 100(1    −      α  ) percent prediction interval on a future 
observation at  x  0  is

    

ˆ

ˆ

,

,

y t MS
n

x x
S

y y t MS

n
xx

n

0 2 2
0

2

0 0 2 2

1
1

1

− + +
−( )⎛

⎝⎜
⎞
⎠⎟

≤ ≤ +

−

−

α

α

Res

Res ++ +
−( )⎛

⎝⎜
⎞
⎠⎟

1 0
2

n
x x

Sxx

    (2.45)   

 The prediction interval  (2.45)  is of minimum width at   x x0 =  and widens as   x x0 −  
increases. By comparing  (2.45)  with  (2.43) , we observe that the prediction interval 
at  x  0  is always wider than the CI at  x  0  because the prediction interval depends 
on both the error from the fi tted model and the error associated with future 
observations.   

 Example 2.7   The Rocket Propellant Data 

    We fi nd a 95% prediction interval on a future value of propellant shear strength in 
a motor made from a batch of sustainer propellant that is 10 weeks old. Using  (2.45) , 
we fi nd that the prediction interval is
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  which simplifi es to

   2048 32 2464 320. .≤ ≤y   

 Therefore, a new motor made from a batch of 10 - week - old sustainer propellant 
could reasonably be expected to have a propellant shear strength between 2048.32 
and 2464.32   psi. 
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 We may generalize  (2.45)  somewhat to fi nd a 100(1    −      α  ) percent prediction 
interval on the  mean  of  m  future observations on the response at  x     =     x  0 . Let   y0 be the 
mean of  m  future observations at  x     =     x  0 . A point estimator of   y0 is   ̂ ˆ ˆy x0 0 1 0= +β β . 
The 100(1    −      α  )% prediction interval on   y0 is
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    (2.46)    

   2.6    COEFFICIENT OF DETERMINATION 

 The quantity

    R
SS
SS

SS
SS

2 1= = −R

T

Res

T

    (2.47)  

  is called the  coeffi cient of determination . Since  SS  T  is a measure of the variability 
in  y  without considering the effect of the regressor variable  x  and  SS  Res  is a measure 

 Figure  2.5  shows the 95% prediction interval calculated from  (2.45)  for the rocket 
propellant regression model. Also shown on this graph is the 95% CI on the mean 
[that is,  E ( y | x ) from Eq.  (2.43) . This graph nicely illustrates the point that the predic-
tion interval is wider than the corresponding CI.        ■     

     Figure 2.5     The 95% confi dence and prediction intervals for the propellant data.  
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of the variability in  y  remaining after  x  has been considered,  R  2  is often called the 
proportion of variation explained by the regressor  x.  Because 0    ≤     SS  Res     ≤     SS  T , it 
follows that 0    ≤     R  2     ≤    1. Values of  R  2  that are close to 1 imply that most of the vari-
ability in  y  is explained by the regression model. For the regression model for the 
rocket propellant data in Example  2.1 , we have

   
R

SS
SS

2 1 527 334 95
1 693 737 60

0 9018= = =R

T

, , .
, , .

.
 

  that is, 90.18% of the variability in strength is accounted for by the regression model. 
 The statistic  R  2  should be used with caution, since it is always possible to make 

 R  2  large by adding enough terms to the model. For example, if there are no repeat 
points (more than one  y  value at the same  x  value), a polynomial of degree  n     −    1 
will give a  “ perfect ”  fi t ( R  2     =    1) to  n  data points. When there are repeat points,  R  2  
can never be exactly equal to 1 because the model cannot explain the variability 
related to  “ pure ”  error. 

 Although  R  2  cannot decrease if we add a regressor variable to the model, this 
does not necessarily mean the new model is superior to the old one. Unless the error 
sum of squares in the new model is reduced by an amount equal to the original 
error mean square, the new model will have a larger error mean square than the 
old one because of the loss of one degree of freedom for error. Thus, the new model 
will actually be worse than the old one. 

 The magnitude of  R  2  also depends on the range of variability in the regressor 
variable. Generally  R  2  will increase as the spread of the  x  ’ s increases and decrease 
as the spread of the  x  ’ s decreases provided the assumed model form is correct. By 
the delta method (also see Hahn  1973 ), one can show that the expected value of  R  2  
from a straight - line regression is approximately
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 Clearly the expected value of  R  2  will increase (decrease) as  S xx   (a measure of the 
spread of the  x  ’ s) increases (decreases). Thus, a large value of  R  2  may result simply 
because  x  has been varied over an unrealistically large range. On the other hand, 
 R  2  may be small because the range of  x  was too small to allow its relationship with 
 y  to be detected. 

 There are several other misconceptions about  R  2 . In general,  R  2  does not measure 
the magnitude of the slope of the regression line. A large value of  R  2  does not imply 
a steep slope. Furthermore,  R  2  does not measure the appropriateness of the linear 
model, for  R  2  will often be large even though  y  and  x  are nonlinearly related. For 
example,  R  2  for the regression equation in Figure  2.3  b  will be relatively large even 
though the linear approximation is poor. Remember that although  R  2  is large, 
this does not necessarily imply that the regression model will be an accurate 
predictor.  
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   2.7    A SERVICE INDUSTRY APPLICATION OF REGRESSION 

 A hospital is implementing a program to improve service quality and productivity. 
As part of this program the hospital management is attempting to measure and 
evaluate patient satisfaction. Table  B.17  contains some of the data that have been 
collected on a random sample of 25 recently discharged patients. The response vari-
able is satisfaction, a subjective response measure on an increasing scale. The poten-
tial regressor variables are patient age, severity (an index measuring the severity of 
the patient ’ s illness), an indicator of whether the patient is a surgical or medical 
patient (0    =    surgical, 1    =    medical), and an index measuring the patient ’ s anxiety 
level. We start by building a simple linear regression model relating the response 
variable satisfaction to severity. 

 Figure  2.6  is a scatter diagram of satisfaction versus severity. There is a relatively 
mild indication of a potential linear relationship between these two variables. The 
output from JMP for fi tting a simple linear regression model to these data is shown 
in Figure  2.7 . JMP is an SAS product that is a menu - based PC statistics package 
with an extensive array of regression modeling and analysis capabilities.   

     Figure 2.6     Scatter diagram of satisfaction versus severity.  
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     Figure 2.7     JMP output for the simple linear regression model for the patient 
satisfaction data.  
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RSquare 0.426596
RSquare Adj 0.401666
Root Mean Square Error 16.43242
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Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio

Model 1 4620.482 4620.48 17.1114
Error 23 6210.558 270.02 Prob > F

C. Total 24 10831.040 0.0004*

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t|

Intercept 115.6239 12.27059 9.42 <.0001*
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 At the top of the JMP output is the scatter plot of the satisfaction and severity 
data, along with the fi tted regression line. The straight line fi t looks reasonable 
although there is considerable variability in the observations around the regression 
line. The second plot is a graph of the actual satisfaction response versus the pre-
dicted response. If the model were a perfect fi t to the data all of the points in this 
plot would lie exactly along the 45 - degree line. Clearly, this model does not provide 
a perfect fi t. Also, notice that while the regressor variable is signifi cant (the ANOVA 
 F  statistic is 17.1114 with a  P  value that is less than 0.0004), the coeffi cient of deter-
mination  R  2     =    0.43. That is, the model only accounts for about 43% of the variability 
in the data. It can be shown by the methods discussed in Chapter  4  that there are 
no fundamental problems with the underlying assumptions or measures of model 
adequacy, other than the rather low value of  R  2 . 

 Low values for  R  2  occur occasionally in practice. The model is signifi cant, there 
are no obvious problems with assumptions or other indications of model inade-
quacy, but the proportion of variability explained by the model is low. Now this is 
not an entirely disastrous situation. There are many situations where explaining 30 
to 40% of the variability in  y  with a single predictor provides information of con-
siderable value to the analyst. Sometimes, a low value of  R  2  results from having a 
lot of variability in the measurements of the response due to perhaps the type of 
measuring instrument being used, or the skill of the person making the measure-
ments. Here the variability in the response probably arises because the response is 
an expression of opinion, which can be very subjective. Also, the measurements are 
taken on human patients, and there can be considerably variability both within 
people and between people. Sometimes, a low value of  R  2  is a result of a poorly 
specifi ed model. In these cases the model can often be improved by the addition of 
one or more predictor or regressor variables. We see in Chapter  3  that the addition 
of another regressor results in considerable improvement of this model.  

   2.8    USING  SAS  ®  AND R FOR SIMPLE LINEAR REGRESSION 

 The purpose of this section is to introduce readers to SAS and to R. Appendix  D  
gives more details about using SAS, including how to import data from both text 
and EXCEL fi les. Appendix  E  introduces the R statistical software package. R is 
becoming increasingly popular since it is free over the Internet. 

 Table  2.7  gives the SAS source code to analyze the rocket propellant data that 
we have been analyzing throughout this chapter. Appendix  D  provides detail 
explaining how to enter the data into SAS. The statement PROC REG tells the 
software that we wish to perform an ordinary least - squares linear regression analy-
sis. The  “ model ”  statement specifi es the specifi c model and tells the software which 
analyses to perform. The variable name to the left of the equal sign is the response. 
The variables to the right of the equal sign but before the solidus are the regressors. 
The information after the solidus specifi es additional analyses. By default, SAS 
prints the analysis - of - variance table and the tests on the individual coeffi cients. In 
this case, we have specifi ed three options:  “ p ”  asks SAS to print the predicted values, 
 “ clm ”  (which stands for confi dence limit, mean) asks SAS to print the confi dence 
band, and  “ cli ”  (which stands for confi dence limit, individual observations) asks SAS 
to print the prediction band.   
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 Table  2.8  gives the SAS output for this analysis. PROC REG always produces 
the analysis - of - variance table and the information on the parameter estimates. 
The  “ p clm cli ”  options on the model statement produced the remainder of the 
output fi le.   

 SAS also produces a log fi le that provides a brief summary of the SAS session. 
The log fi le is almost essential for debugging SAS code. Appendix  D  provides more 
details about this fi le. 

 R is a popular statistical software package, primarily because it is freely available 
at  www.r - project.org . An easier - to - use version of R is R Commander. R itself is a 
high - level programming language. Most of its commands are prewritten functions. 
It does have the ability to run loops and call other routines, for example, in C. Since 
it is primarily a programming language, it often presents challenges to novice users. 
The purpose of this section is to introduce the reader as to how to use R to analyze 
simple linear regression data sets. 

 The fi rst step is to create the data set. The easiest way is to input the data into a 
text fi le using spaces for delimiters. Each row of the data fi le is a record. The top 
row should give the names for each variable. All other rows are the actual data 
records. For example, consider the rocket propellant data from Example  2.1  given 
in Table  2.1 . Let propellant.txt be the name of the data fi le. The fi rst row of the text 
fi le gives the variable names: 

 

  TABLE 2.7     SAS  Code for Rocket Propellant Data 

   data rocket; 
 input shear age; 
 cards; 
 2158.70 15.50 
 1678.15 23.75 
 2316.00         8.00 
 2061.30 17.00 
 2207.50         5.50 
 1708.30 19.00 
 1784.70 24.00 
 2575.00         2.50 
 2357.90         7.50 
 2256.70 11.00 
 2165.20 13.00 
 2399.55         3.75 
 1779.80 25.99 
 2336.75         9.75 
 1765.30 22.00 
 2053.50 18.00 
 2414.40         6.00 
 2200.50 12.50 
 2654.20         2.00 
 1753.70 21.50 
 proc reg; 
 model shear = age/p clm cli; 
 run;   



  TABLE 2.8     SAS  Output for Analysis of Rocket Propellant Data. 

   SAS system 1   

   The REG Procedure   
   Model: MODEL1   

   Dependent Variable: shear   

   Number of Observations Read      20   
   Number of Observations Used      20   

   Analysis of Variance   

   Source      DF   
   Sum of 
Squares   

   Mean 
Square      F Value      Pr      >      F   

   Model      1      1527483      1527483      165.38       < .0001   
   Error      18      166255      9236.38100           
   Corrected Total      19      1693738               

   Root MSE      96.10609      R -  square      0.9018           
   Dependent Mean      2131.35750      Adj R -  Sq      0.8964           
   Coeff Var      4.50915                   

   Parameter Estimates   

   Variable      DF   
   Parameter 
Estimate   

   Standard
 Error      t value      Pr      >      |t|   

   Intercept      1      2627.82236      44.18391      59.47       < .0001   
   age      1       − 37.15359      2.88911       − 12.86       < .0001   

   The SAS System 2   

   The REG Procedure   
   Model: MODEL1   

   Dependent Variable: shear   

   Output Statistics   

   Obs   
   Dependent 
Variable   

   Predicted 
Value   

   Std Error 
Mean Predict      95% CL      Mean      95% CL      Predict      Residual   

   1      2159      2052      22.3597      2005      2099      1845      2259      106.7583   
   2      1678      1745      36.9114      1668      1823      1529      1962       − 67.2746   
   3      2316      2331      26.4924      2275      2386      2121      2540       − 14.5936   
   4      2061      1996      23.9220      1946      2046      1788      2204      65.0887   
   5      2208      2423      31.2701      2358      2489      2211      2636       − 215.9776   
   6      1708      1922      26.9647      1865      1979      1712      2132       − 213.6041   
   7      1785      1736      37.5010      1657      1815      1519      1953      48.5638   
   8      2575      2535      38.0356      2455      2615      2318      2752      40.0616   
   9      2358      2349      27.3623      2292      2407      2139      2559      8.7296   

   10      2257      2219      22.5479      2172      2267      2012      2427      37.5671   
   11      2165      2145      21.5155      2100      2190      1938      2352      20.3743   
   12      2400      2488      35.1152      2415      2562      2274      2703       − 88.9464   
   13      1780      1699      39.9031      1615      1783      1480      1918      80.8174   
   14      2337      2266      23.8903      2215      2316      2058      2474      71.1752   
   15      1765      1810      32.9362      1741      1880      1597      2024       − 45.1434   
   16      2054      1959      25.3245      1906      2012      1750      2168      94.4423   
   17      2414      2405      30.2370      2341      2468      2193      2617      9.4992   
   18      2201      2163      21.6340      2118      2209      1956      2370      37.0975   
   19      2654      2554      39.2360      2471      2636      2335      2772      100.6848   
   20      1754      1829      31.8519      1762      1896      1616      2042       − 75.3202   

   Sum of Residuals      0           
   Sum of squared Residuals      166255           
   Predicted Residual SS (PRESS)      205944           
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 strength age  

 The next row is the fi rst data record, with spaces delimiting each data item: 

  2158.70 15.50  

 The R code to read the data into the package is: 

  prop  <  -  read.table( “ propellant.txt " ,header = TRUE, sep =  ”  ” )  

 The object prop is the R data set, and  “ propellant.txt ”  is the original data fi le. The 
phrase, header = TRUE tells R that the fi rst row is the variable names. The phrase 
sep =  ”  ”  tells R that the data are space delimited. 

 The commands 

  prop.model  <  -  lm(strength  ∼  age, data = prop) 
 summary(prop.model)  

 tell R 

   •      to estimate the model, and  

   •      to print the analysis of variance, the estimated coeffi cients, and their tests.    

 R Commander is an add - on package to R. It also is freely available. It provides 
an easy - to - use user interface, much like Minitab and JMP, to the parent R product. 
R Commander makes it much more convenient to use R; however, it does not 
provide much fl exibility in its analysis. R Commander is a good way for users to get 
familiar with R. Ultimately, however, we recommend the use of the parent R 
product.  

   2.9    SOME CONSIDERATIONS IN THE USE OF REGRESSION 

 Regression analysis is widely used and, unfortunately, frequently misused. There are 
several common abuses of regression that should be mentioned:

   1.     Regression models are intended as interpolation equations over the range of 
the regressor variable(s) used to fi t the model. As observed previously, we must 
be careful if we extrapolate outside of this range. Refer to Figure  1.5 .  

  2.     The disposition of the  x  values plays an important role in the least - squares fi t. 
While all points have equal weight in determining the height of the line, the 
slope is more strongly infl uenced by the remote values of  x . For example, con-
sider the data in Figure  2.8 . The slope in the least - squares fi t depends heavily 
on either or both of the points  A  and  B.  Furthermore, the remaining data would 
give a very different estimate of the slope if  A  and  B  were deleted. Situations 
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such as this often require corrective action, such as further analysis and possible 
deletion of the unusual points, estimation of the model parameters with some 
technique that is less seriously infl uenced by these points than least squares, or 
restructuring the model, possibly by introducing further regressors.   

 A somewhat different situation is illustrated in Figure  2.9 , wher one of the 
12 observations is very remote in  x  space. In this example the slope is largely 
determined by the extreme point. If this point is deleted, the slope estimate is 
probably zero. Because of the gap between the two clusters of points, we really 
have only two distinct information units with which to fi t the model. Thus, 
there are effectively far fewer than the apparent 10 degrees of freedom 
for error.   

 Situations such as these seem to occur fairly often in practice. In general 
we should be aware that in some data sets one point (or a small cluster of 
points) may control key model properties.  

  3.      Outliers  are observations that differ considerably from the rest of the data. 
They can seriously disturb the least - squares fi t. For example, consider the data 
in Figure  2.10 . Observation  A  seems to be an outlier because it falls far from 
the line implied by the rest of the data. If this point is really an outlier, then 
the estimate of the intercept may be incorrect and the residual mean square 
may be an infl ated estimate of   σ      2 . The outlier may be a  “ bad value ”  that has 
resulted from a data recording or some other error. On the other hand, the 
data point may not be a bad value and may be a highly useful piece of evidence 
concerning the process under investigation. Methods for detecting and dealing 
with outliers are discussed more completely in Chapter  4 .    

  4.     As mentioned in Chapter  1 , just because a regression analysis has indicated a 
strong relationship between two variables, this does not imply that the vari-
ables are related in any causal sense. Causality implies necessary correlation. 
Regression analysis can only address the issues on correlation. It cannot 
address the issue of necessity. Thus, our expectations of discovering cause - and -
 effect relationships from regression should be modest. 

     Figure 2.8     Two infl uential 
observations.  
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 As an example of a  “ nonsense ”  relationship between two variables, consider 
the data in Table  2.9 . This table presents the number of certifi ed mental defec-
tives in the United Kingdom per 10,000 of estimated population ( y ), the 
number of radio receiver licenses issued ( x  1 ), and the fi rst name of the Presi-
dent of the United States ( x  2 ) for the years 1924 – 1937. We can show that the 
regression equation relating  y  to  x  1  is

   ˆ . .y x= +4 582 2 204 1     

 The  t  statistic for testing  H  0 :   β   1     =    0 for this model is  t  0     =     27.312 (the  P  value 
is 3.58    ×    10  − 12 ), and the coeffi cient of determination is  R  2     =    0.9842. That is, 
98.42% of the variability in the data is explained by the number of radio 

     Figure 2.10     An outlier.  
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  TABLE 2.9    Data Illustrating Nonsense Relationships between Variables 

   Year  

   Number of Certifi ed Mental 
Defectives per 10,000 of Estimated 

 Population in the U.K (  y )  

   Number of Radio 
Receiver Licenses Issued 
(Millions) in the U.K ( x  1 )  

   First Name of 
President of 
the U.S. ( x  2 )  

  1924    8    1.350    Calvin  
  1925    8    1.960    Calvin  
  1926    9    2.270    Calvin  
  1927    10    2.483    Calvin  
  1928    11    2.730    Calvin  
  1929    11    3.091    Calvin  
  1930    12    3.647    Herbert  
  1931    16    4.620    Herbert  
  1932    18    5.497    Herbert  
  1933    19    6.260    Herbert  
  1934    20    7.012    Franklin  
  1935    21    7.618    Franklin  
  1936    22    8.131    Franklin  
  1937    23    8.593    Franklin  

    Source:    Kendall and Yule [ 1950 ] and Tufte [ 1974 ].   
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receiver licenses issued. Clearly this is a nonsense relationship, as it is highly 
unlikely that the number of mental defectives in the population is functionally 
related to the number of radio receiver licenses issued. The reason for this 
strong statistical relationship is that  y  and  x  1  are monotonically related (two 
sequences of numbers are monotonically related if as one sequence increases, 
the other always either increases or decreases). In this example  y  is increasing 
because diagnostic procedures for mental disorders are becoming more refi ned 
over the years represented in the study and x 1  is increasing because of the 
emergence and low - cost availability of radio technology over the years. 

 Any two sequences of numbers that are monotonically related will exhibit 
similar properties. To illustrate this further, suppose we regress  y  on the number 
of letters in the fi rst name of the U.S. president in the corresponding year. The 
model is

   ˆ . .y x= − +26 442 5 900 2  

  with  t  0     =    8.996 (the  P  value is 1.11    ×    10  − 6 ) and  R  2     =    0.8709. Clearly this is a 
nonsense relationship as well.  

  5.     In some applications of regression the value of the regressor variable  x  required 
to predict  y  is unknown. For example, consider predicting maximum daily load 
on an electric power generation system from a regression model relating the 
load to the maximum daily temperature. To predict tomorrow ’ s maximum 
load, we must fi rst predict tomorrow ’ s maximum temperature. Consequently, 
the prediction of maximum load is  conditional  on the temperature forecast. 
The accuracy of the maximum load forecast depends on the accuracy of 
the temperature forecast. This must be considered when evaluating model 
performance.    

 Other abuses of regression are discussed in subsequent chapters. For further 
reading on this subject, see the article by Box [ 1966 ].  

   2.10    REGRESSION THROUGH THE ORIGIN 

 Some regression situations seem to imply that a straight line passing through the 
origin should be fi t to the data. A  no - intercept regression model  often seems appro-
priate in analyzing data from chemical and other manufacturing processes. For 
example, the yield of a chemical process is zero when the process operating tem-
perature is zero. 

 The no - intercept model is

    y x= +β ε1     (2.48)   

 Given  n  observations ( y i  ,  x i  ),  i     =    1, 2,    . . .    ,  n , the least - squares function is
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 The only normal equation is
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  and the  least - squares estimator of the slope  is
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 The estimator of   β̂1 is unbiased for   β   1 , and the  fi tted regression model  is

    ˆ ˆy x= β1     (2.51)   

 The estimator of   σ      2  is
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  with  n     −    1 degrees of freedom. 
 Making the normality assumption on the errors, we may test hypotheses and 

construct confi dence and prediction intervals for the no - intercept model. The 
 100(1      −       α ) percent CI on    β    1   is
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 A  100(1      −       α ) percent CI on   E  (  y  |  x   0 ) , the mean response at  x     =     x  0 , is
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 The  100(1      −       α ) percent prediction interval on a future observation at   x      =      x   0  , say 
 y  0 , is
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 Both the CI  (2.54)  and the prediction interval  (2.55)  widen as  x  0  increases. Further-
more, the length of the CI  (2.54)  at  x     =    0 is zero because the model assumes that 
the mean  y  at  x     =    0 is known with certainty to be zero. This behavior is considerably 
different than observed in the intercept model. The prediction interval  (2.55)  has 
nonzero length at  x  0     =    0 because the random error in the future observation must 
be taken into account. 

 It is relatively easy to misuse the no - intercept model, particularly in situations 
where the data lie in a region of  x  space remote from the origin. For example, con-
sider the no - intercept fi t in the scatter diagram of chemical process yield ( y ) and 
operating temperature ( x ) in Figure  2.11  a . Although over the range of the regressor 
variable 100 ° F    ≤     x     ≤    200 ° F, yield and temperature seem to be linearly related, 
forcing the model to go through the origin provides a visibly poor fi t. A model 
containing an intercept, such as illustrated in Figure  2.11  b , provides a much better 
fi t in the region of  x  space where the data were collected.   

 Frequently the relationship between  y  and  x  is quite different near the origin 
than it is in the region of  x  space containing the data. This is illustrated in Figure 
 2.12  for the chemical process data. Here it would seem that either a quadratic or a 
more complex nonlinear regression model would be required to adequately express 
the relationship between  y  and  x  over the entire range of  x.  Such a model should 
only be entertained if the range of  x  in the data is suffi ciently close to the origin.   

 The scatter diagram sometimes provides guidance in deciding whether or not to 
fi t the no - intercept model. Alternatively we may fi t both models and choose between 
them based on the quality of the fi t. If the hypothesis   β   0     =    0 cannot be rejected in 
the intercept model, this is an indication that the fi t may be improved by using the 

     Figure 2.11     Scatter diagrams and regression lines for chemical process yield and operating 
temperature: ( a ) no - intercept model; ( b ) intercept model.  
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no - intercept model. The residual mean square is a useful way to compare the quality 
of fi t. The model having the smaller residual mean square is the best fi t in the sense 
that it minimizes the estimate of the variance of  y  about the regression line. 

 Generally  R  2  is not a good comparative statistic for the two models. For the 
intercept model we have
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 Note that  R  2  indicates the proportion of variability around   y  explained by regres-
sion. In the no - intercept case the fundamental analysis - of - variance identity  (2.32)  
becomes
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  so that the no - intercept model analogue for  R  2  would be
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 The statistic   R0
2 indicates the proportion of variability around the  origin  (zero) 

accounted for by regression. We occasionally fi nd that   R0
2 is larger than  R  2  even 

though the residual mean square (which is a reasonable measure of the overall 
quality of the fi t) for the intercept model is smaller than the residual mean square 

     Figure 2.12     True relationship between yield and temperature.  

 Y
ie

ld
, 
y

    Temperature, x (˚F)

500 100 150 200



REGRESSION THROUGH THE ORIGIN  49

for the no - intercept model. This arises because   R0
2 is computed using uncorrected 

sums of squares. 
 There are alternative ways to defi ne  R  2  for the no - intercept model. One 

possibility is
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 However, in cases where   ∑ −( )=i
n

i iy y1
2ˆ  is large,   R ′0

2  can be negative. We prefer to use 
 MS  Res  as a basis of comparison between intercept and no - intercept regression 
models. A nice article on regression models with no intercept term is Hahn [ 1979 ].   

 Example 2.8   The Shelf - Stocking Data 

    The time required for a merchandiser to stock a grocery store shelf with a soft drink 
product as well as the number of cases of product stocked is shown in Table  2.10 . 
The scatter diagram shown in Figure  2.13  suggests that a straight line passing 
through the origin could be used to express the relationship between time and the 
number of cases stocked. Furthermore, since if the number of cases  x     =    0, then shelf 
stocking time  y     =    0, this model seems intuitively reasonable. Note also that the range 
of  x  is close to the origin.     

 The slope in the no - intercept model is computed from Eq.  (2.50)  as
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 Therefore, the fi tted equation is

   ˆ .y x= 0 4026   

 This regression line is shown in Figure  2.14 . The residual mean square for this 
model is  MS  Res     =    0.0893 and   R0

2 0 9883= . . Furthermore, the  t  statistic for testing  H  0 : 
  β   1     =    0 is  t  0     =    91.13, for which the  P  value is 8.02    ×    10  − 21 . These summary statistics do 
not reveal any startling inadequacy in the no - intercept model.        ■     

 We may also fi t the intercept model to the data for comparative purposes. This 
results in

   ˆ . .y x= − +0 0938 0 4071   

 The  t  statistic for testing  H  0 :   β   0     =    0 is  t  0     =     − 0.65, which is not signifi cant, implying 
that the no - intercept model may provide a superior fi t. The residual mean square 



50  SIMPLE LINEAR REGRESSION

for the intercept model is  MS  Res     =    0.0931 and  R  2     =    0.9997. Since  MS  Res  for the no -
 intercept model is smaller than  MS  Res  for the intercept model, we conclude that the 
no - intercept model is superior. As noted previously, the  R  2  statistics are not directly 
comparable. 

 Figure  2.14  also shows the 95% confi dence interval or  E ( y | x  0 ) computed from 
Eq.  (2.54)  and the 95% prediction interval on a single future observation  y  0  at  x     =     x  0  
computed from Eq.  (2.55) . Notice that the length of the confi dence interval at  x  0     =    0 
is zero. 

 SAS handles the no - intercept case. For this situation, the model statement follows: 

  model time  =  cases/noint   

  TABLE 2.10    Shelf - Stocking Data for Example  2.8  

   Times,  y  (minutes)     Cases Stocked,  x   

  10.15    25  
  2.96    6  
  3.00    8  
  6.88    17  
  0.28    2  
  5.06    13  
  9.14    23  

  11.86    30  
  11.69    28  
  6.04    14  
  7.57    19  
  1.74    4  
  9.38    24  
  0.16    1  
  1.84    5  

     Figure 2.13     Scatter diagram 
of shelf - stocking data.  
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     Figure 2.14     The confi dence and prediction bands for 
the shelf - stocing data.  
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   2.11    ESTIMATION BY MAXIMUM LIKELIHOOD 

 The method of least squares can be used to estimate the parameters in a linear 
regression model regardless of the form of the distribution of the errors  ε . Least 
squares produces best linear unbiased estimators of   β   0  and   β   1 . Other statistical pro-
cedures, such as hypothesis testing and CI construction, assume that the errors 
are normally distributed. If the form of the distribution of the errors is known, an 
alternative method of parameter estimation, the  method of maximum likelihood , 
can be used. 

 Consider the data ( y i  ,  x i  ),  i     =    1, 2,    . . .    ,  n . If we assume that the errors in the regres-
sion model are NID(0,   σ      2 ), then the observations  y i   in this sample are normally and 
independently distributed random variables with mean   β   0     +      β   1  x i   and variance   σ      2 . 
The likelihood function is found from the joint distribution of the observations. If 
we consider this joint distribution with the observations given and the parameters 
  β   0 ,   β   1 , and   σ      2  unknown constants, we have the likelihood function. For the simple 
linear regression model with normal errors, the  likelihood function  is
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 The maximum - likelihood estimators are the parameter values, say   �β0,   �β1, and   �σ 2, 
that maximize  L , or equivalently, ln  L.  Thus,
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  and the maximum - likelihood estimators   �β0,   �β1, and   �σ 2  must satisfy
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 The solution to Eq.  (2.58)  gives the  maximum - likelihood estimators: 

    � �β β0 1= −y x     (2.59a)  
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 Notice that the maximum - likelihood estimators of the intercept and slope,   �β0 and 
  �β1, are identical to the least - squares estimators of these parameters. Also,   �σ 2  is a 
biased estimator of   σ      2 . The biased estimator is related to the unbiased estimator   σ̂ 2 
[Eq.  (2.19) ] by   �σ σ2 21= −( )[ ]n n ˆ . The bias is small if  n  is moderately large. Generally 
the unbiased estimator   σ̂ 2  is used. 

 In general, maximum - likelihood estimators have better  statistical properties  than 
least - squares estimators. The maximum - likelihood estimators are  unbiased  (includ-
ing   �σ 2, which is  asymptotically unbiased , or unbiased as  n  becomes large) and have 
 minimum variance  when compared to  all  other unbiased estimators. They are also 
 consistent estimators  (consistency is a large - sample property indicating that the 
estimators differ from the true parameter value by a very small amount as  n  
becomes large), and they are a set of  suffi cient statistics  (this implies that the esti-
mators contain all of the  “ information ”  in the original sample of size  n ). On the 
other hand, maximum - likelihood estimation requires more stringent statistical 
assumptions than the least - squares estimators. The least - squares estimators require 
only second - moment assumptions (assumptions about the expected value, the vari-
ances, and the covariances among the random errors). The maximum - likelihood 
estimators require a full distributional assumption, in this case that the random 
errors follow a normal distribution with the same second moments as required for 
the least - squares estimates. For more information on maximum - likelihood estima-
tion in regression models, see Graybill [ 1961, 1976 ], Myers [ 1990 ], Searle [ 1971 ], and 
Seber [ 1977 ].  

   2.12    CASE WHERE THE REGRESSOR  x  IS RANDOM 

 The linear regression model that we have presented in this chapter assumes that 
the values of the regressor variable  x  are known constants. This assumption makes 
the confi dence coeffi cients and type I (or type II) errors refer to repeated sampling 
on  y  at the same  x  levels. There are many situations in which assuming that the  x  ’ s 
are fi xed constants is inappropriate. For example, consider the soft drink delivery 
time data from Chapter  1  (Figure  1.1 ). Since the outlets visited by the delivery 
person are selected at random, it is unrealistic to believe that we can control the 
delivery volume  x.  It is more reasonable to assume that both  y  and  x  are random 
variables. 

 Fortunately, under certain circumstances, all of our earlier results on parameter 
estimation, testing, and prediction are valid. We now discuss these situations. 
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   2.12.1     x  and  y  Jointly Distributed 

 Suppose that  x  and  y  are jointly distributed random variables but the form of this 
joint distribution is unknown. It can be shown that all of our previous regression 
results hold if the following conditions are satisfi ed:

   1.     The conditional distribution of  y  given  x  is normal with conditional mean 
  β   0     +      β   1  x  and conditional variance   σ      2  . 

  2.     The  x  ’ s are independent random variables whose probability distribution does 
not involve   β   0 ,   β   1 , and   σ      2 .    

 While all of the regression procedures are unchanged when these conditions hold, 
the confi dence coeffi cients and statistical errors have a different interpretation. 
When the regressor is a random variable, these quantities apply to repeated sam-
pling of ( x i  ,  y i  ) values and not to repeated sampling of  y i   at fi xed levels of  x i  .  

   2.12.2     x  and  y  Jointly Normally Distributed: Correlation Model 

 Now suppose that  y  and  x  are jointly distributed according to the  bivariate normal 
distribution . That is,
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  where   μ   1  and   σ1
2  the mean and variance of  y ,   μ   2  and   σ 2

2 the mean and variance 
of  x , and
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  is the  correlation coeffi cient  between  y  and  x . The term   σ   12  is the  covariance  of  y  
and  x.  

 The  conditional distribntion  of  y  for a given value of  x  is
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  and

    σ σ ρ1 2
2

1
2 21. = −( )     (2.62c)   

 That is, the conditional distribution of  y  given  x  is normal with conditional mean

    E y x x( ) = +β β0 1     (2.63)  

  and conditional variance   σ1 2
2
. . Note that the mean of the conditional distribution of 

 y  given  x  is a straight - line regression model. Furthermore, there is a relationship 
between the correlation coeffi cient   ρ   and the slope   β   1 . From Eq.  (2.62b)  we see that 
if   ρ      =    0, then   β   1  =  0, which implies that there is no linear regression of  y  on  x.  That 
is, knowledge of  x  does not assist us in predicting  y . 

 The method of maximum likelihood may be used to estimate the parameters   β   0  
and   β   1 . It may be shown that the maximum - likelihood estimators of these param-
eters are

    ˆ ˆβ β0 1= −y x     (2.64a)  
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 The estimators of the intercept and slope in Eq.  (2.64)  are identical to those given 
by the method of least squares in the case where  x  was assumed to be a controllable 
variable. In general, the regression model with  y  and  x  jointly normally distributed 
may be analyzed by the methods presented previously for the model with  x  a con-
trollable variable. This follows because the random variable  y  given  x  is indepen-
dently and normally distributed with mean   β   0     +      β   1  x  and constant variance   σ1 2

2
. . As 

noted in Section  2.12.1 , these results will also hold for  any  joint distribution of  y  
and  x  such that the conditional distribution of  y  given  x  is normal. 

 It is possible to draw inferences about the correlation coeffi cient   ρ   in this model. 
The estimator of   ρ   is the  sample correlation coeffi cient 
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  so that the slope   β̂  is just the sample correlation coeffi cient  r  multiplied by a scale 
factor that is the square root of the spread of the  y  ’ s divided by the spread of the 
 x  ’ s. Thus,   β̂1 and  r  are closely related, although they provide somewhat different 
information. The sample correlation coeffi cient  r  is a measure of the  linear associa-
tion  between  y  and  x,  while   β̂1 measures the change in the mean of  y  for a unit 
change in  x.  In the case of a controllable variable  x, r  has no meaning because 
the magnitude of  r  depends on the choice of spacing for  x.  We may also write, from 
Eq.  (2.66) , 
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 which we recognize from Eq.  (2.47)  as the coeffi cient of determination. That is, the 
coeffi cient of determination  R  2  is just the square of the correlation coeffi cient 
between  y  and  x . 

 While regression and correlation are closely related, regression is a more power-
ful tool in many situations. Correlation is only a measure of association and is of 
little use in prediction. However, regression methods are useful in developing quan-
titative relationships between variables, which can be used in prediction. 

 It is often useful to test the hypothesis that the correlation coeffi cient equals zero, 
that is,

    H H0 10 0: , :ρ ρ= ≠     (2.67)   

 The appropriate test statistic for this hypothesis is

    t
r n

r
0

2

2

1
=

−
−

    (2.68)  

  which follows the  t  distribution with  n     −    2 degrees of freedom if  H  0 :   ρ      =    0 is true. 
Therefore, we would reject the null hypothesis if | t  0 |    >     t  α    /2,    n    − 2 . This test is equivalent 
to the  t  test for  H  0 :   β   1     =    0 given in Section  2.3 . This equivalence follows directly from 
Eq.  (2.66) . 

 The test procedure for the hypotheses

    H H0 0 1 0: , :ρ ρ ρ ρ= ≠     (2.69)  

  where   ρ   0     ≠    0 is somewhat more complicated. For moderately large samples (e.g., 
 n     ≥    25) the statistic
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  and variance

   σZ n2 13= −( )−   

 Therefore, to test the hypothesis  H  0 :   ρ      =      ρ   0 , we may compute the statistic

    Z r n0 0
1 23= −( ) −( )arctanh arctanhρ     (2.71)  

  and reject  H  0 :   ρ      =      ρ   0  if | Z  0 |    >     Z  α    /2 . 
 It is also possible to construct a 100(1    −      α  ) percent CI for   ρ   using the transforma-

tion  (2.70) . The 100(1    −      α  ) percent CI is
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  where tanh  u     =    ( e u      −     e   −    u  )/( e u      +     e   −    u  ). 

 Example 2.9   The Delivery Time Data 

    Consider the soft drink delivery time data introduced in Chapter  1 . The 25 observa-
tions on delivery time  y  and delivery volume  x  are listed in Table  2.11 . The scatter 
diagram shown in Figure  1.1  indicates a strong linear relationship between delivery 
time and delivery volume. The Minitab output for the simple linear regression model 
is in Table  2.12 .     

 The sample correlation coeffi cient between delivery time  y  and delivery volume 
 x  is
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  TABLE 2.11    Data Example  2.9  

   Observation  
   Delivery 
Time,  y   

   Number of 
Cases,  x      Observation  

   Delivery 
Time,  y   

   Number 
of Cases,  x   

  1    16.68    7    14    19.75    6  
  2    11.50    3    15    24.00    9  
  3    12.03    3    16    29.00    10  
  4    14.88    4    17    15.35    6  
  5    13.75    6    18    19.00    7  
  6    18.11    7    19    9.50    3  
  7    8.00    2    20    35.10    17  
  8    17.83    7    21    17.90    10  
  9    79.24    30    22    52.32    26  

  10    21.50    5    23    18.75    9  
  11    40.33    16    24    19.83    8  
  12    21.00    10    25    10.75    4  
  13    13.50    4              
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 If we assume that delivery time and delivery volume are jointly normally distributed, 
we may test the hypotheses

   H H0 10 0: , :ρ ρ= ≠  

  using the test statistic
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 Since  t  0.025,23     =    2.069, we reject  H  0  and conclude that the correlation coeffi cient   ρ      ≠    0. 
Note from the Minitab output in Table  2.12  that this is identical to the  t  - test statistic 
for  H  0 :   β   1     =    0. Finally, we may construct an approximate 95% CI on   ρ   from  (2.72) . 
Since arctanh  r     =    arctanh 0.9646    =    2.0082, Eq.  (2.72)  becomes
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  which reduces to

    0 9202 0 9845. .≤ ≤ρ          ■   

  TABLE 2.12     MlNITAB  Output for Soft Drink Delivery Time Data 

    Regression Analysis: Time versus Cases    

   The regression equation is   
   Time  =  3.32  +  2.18 Cases   

   Predictor      Coef      SE Coef      T      P       
   Constant      3.321      1.371      2.42      0.024       
   Cases      2.1762      0.1240      17.55      0.000       

   S  =  4.18140      R -  Sq =  93.0%      R -  Sq(adj)  =  92.7%           

   Analysis of Variance                   

   Source      DF      SS      MS      F      P   
   Regression      1      5382.4      5382.4      307.85      0.000   
   Residual Error      23      402.1      17.5           
   Total      24      5784.5               

 Although we know that delivery time and delivery volume are highly correlated, 
this information is of little use in predicting, for example, delivery time as a function 
of the number of cases of product delivered. This would require a regression model. 
The straight - line fi t (shown graphically in Figure  1.1  b ) relating delivery time to 
delivery volume is

   ˆ . .y x= +3 321 2 1762   
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 Further analysis would be required to determine if this equation is an adequate fi t 
to the data and if it is likely to be a successful predictor. 

  PROBLEMS 

       2.1    Table  B.1  gives data concerning the performance of the 26 National Football 
League teams in 1976. It is suspected that the number of yards gained rushing 
by opponents ( x  8 ) has an effect on the number of games won by a team ( y ).
   a.     Fit a simple linear regression model relating games won  y  to yards gained 

rushing by opponents  x  8 .  
  b.     Construct the analysis - of - variance table and test for signifi cance of regression.  
  c.     Find a 95% CI on the slope.  
  d.     What percent of the total variability in  y  is explained by this model?  
  e.     Find a 95% CI on the mean number of games won if opponents ’  yards 

rushing is limited to 2000 yards.      

    2.2    Suppose we would like to use the model developed in Problem 2.1 to predict 
the number of games a team will win if it can limit opponents ’  yards rushing 
to 1800 yards. Find a point estimate of the number of games won when 
 x  8     =    1800. Find a 90% prediction interval on the number of games won.   

    2.3    Table  B.2  presents data collected during a solar energy project at Georgia 
Tech.
   a.     Fit a simple linear regression model relating total heat fl ux  y  (kilowatts) 

to the radial defl ection of the defl ected rays  x  4  (milliradians).  
  b.     Construct the analysis - of - variance table and test for signifi cance of 

regression.  
  c.     Find a 99% CI on the slope.  
  d.     Calculate  R  2 .  
  e.     Find a 95% CI on the mean heat fl ux when the radial defl ection is 16.5 

milliradians.      

    2.4    Table  B.3  presents data on the gasoline mileage performance of 32 different 
automobiles.
   a.     Fit a simple linear regression model relating gasoline mileage  y  (miles per 

gallon) to engine displacement  x  l  (cubic inches).  
  b.     Construct the analysis - of - variance table and test for signifi cance of regression.  
  c.     What percent of the total variability in gasoline mileage is accounted for 

by the linear relationship with engine displacement?  
  d.     Find a 95% CI on the mean gasoline mileage if the engine displacement 

is 275 in. 3   
  e.     Suppose that we wish to predict the gasoline mileage obtained from a car 

with a 275 - in. 3  engine. Give a point estimate of mileage. Find a 95% predic-
tion interval on the mileage.  

  f.     Compare the two intervals obtained in parts d and e. Explain the difference 
between them. Which one is wider, and why?      
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    2.5    Consider the gasoline mileage data in Table  B.3 . Repeat Problem 2.4 (parts 
a, b, and c) using vehicle weight  x  10  as the regressor variable. Based on a 
comparison of the two models, can you conclude that  x  1  is a better choice of 
regressor than  x  10 ?   

    2.6    Table  B.4  presents data for 27 houses sold in Erie, Pennsylvania.
   a.     Fit a simple linear regression model relating selling price of the house to 

the current taxes ( x  1 ).  
  b.     Test for signifi cance of regression.  
  c.     What percent of the total variability in selling price is explained by this 

model?  
  d.     Find a 95% CI on   β   1 .  
  e.     Find a 95% CI on the mean selling price of a house for which the current 

taxes are $750.      

    2.7    The purity of oxygen produced by a fractional distillation process is thought 
to be related to the percentage of hydrocarbons in the main condensor of the 
processing unit. Twenty samples are shown below. 

   Purily (%)  
   Hydrocarbon 

(%)     Purily (%)     Hydrocarbon (%)  

  86.91    1.02    96.73    1.46  

  89.85    1.11    99.42    1.55  
  90.28    1.43    98.66    1.55  
  86.34    1.11    96.07    1.55  
  92.58    1.01    93.65    1.40  
  87.33    0.95    87.31    1.15  
  86.29    1.11    95.00    1.01  
  91.86    0.87    96.85    0.99  
  95.61    1.43    85.20    0.95  
  89.86    1.02    90.56    0.98  

    a.     Fit a simple linear regression model to the data.  
  b.     Test the hypothesis  H  0 :   β   1     =    0.  
  c.     Calculate  R  2 .  
  d.     Find a 95% CI on the slope.  
  e.     Find a 95% CI on the mean purity when the hydrocarbon percentage is 

1.00.      

    2.8    Consider the oxygen plant data in Problem 2.7 and assume that purity and 
hydrocarbon percentage are jointly normally distributed random variables.
   a.     What is the correlation between oxygen purity and hydrocarbon 

percentage?  
  b.     Test the hypothesis that   ρ      =    0.  
  c.     Construct a 95% CI for   ρ .       

    2.9    Consider the soft drink delivery time data in Table  2.9 . After examining the 
original regression model (Example  2.9 ), one analyst claimed that the model 
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was invalid because the intercept was not zero. He argued that if zero cases 
were delivered, the time to stock and service the machine would be zero, and 
the straight - line model should go through the origin. What would you say in 
response to his comments? Fit a no - intercept model to these data and deter-
mine which model is superior.   

    2.10    The weight and systolic blood pressure of 26 randomly selected males in the 
age group 25 – 30 are shown below. Assume that weight and blood pressure 
(BP) are jointly normally distributed.
   a.     Find a regression line relating systolic blood pressure to weight.  
  b.     Estimate the correlatiou coeffi cient.  
  c.     Test the hypothesis that   ρ      =    0.  
  d.     Test the hypothesis that   ρ      =    0.6.  
  e.     Find a 95% CI for   ρ .     

   Subject     Weight  
   Symbolic 

BP     Subject     Weight     Systolic BP  

  1    165    130    14    172    153  
  2    167    133    15    159    128  
  3    180    150    16    168    132  
  4    155    128    17    174    149  
  5    212    151    18    183    158  
  6    175    146    19    215    150  
  7    190    150    20    195    163  
  8    210    140    21    180    156  
  9    200    148    22    143    124  

  10    149    125    23    240    170  
  11    158    133    24    235    165  
  12    169    135    25    192    160  
  13    170    150    26    187    159  

    2.11    Consider the weight and blood pressure data in Problem 2.10. Fit a no -
 intercept model to the data and compare it to the model obtained in Problem 
2.10. Which model would you conclude is superior?   

    2.12    The number of pounds of steam used per month at a plant is thought to be 
related to the average monthly ambient temperature. The past year ’ s usages 
and temperatures follow. 

   
   Month     Temperature     Usage/l000     Month     Temperature     Usage/l000  

  Jan.    21    185.79    Jul.    68    621.55  
  Feb.    24    214.47    Aug.    74    675.06  
  Mar.    32    288.03    Sep.    62    562.03  
  Apr.    47    424.84    Oct.    50    452.93  
  May    50    454.68    Nov.    41    369.95  
  Jun.    59    539.03    Dec.    30    273.98  
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    a.     Fit a simple linear regression model to the data.  
  b.     Test for signifi cance of regression.  
  c.     Plant management believes that an increase in average ambient tempera-

ture of 1 degree will increase average monthly steam consumption by 
10,000   lb. Do the data support this statement?  

  d.     Construct a 99% prediction interval on steam usage in a month with 
average ambient temperature of 58 ° .      

    2.13    Davidson ( “ Update on Ozone Trends in California ’ s South Coast Air 
Basin, ”   Air and Waste ,  43 , 226, 1993) studied the ozone levels in the South 
Coast Air Basin of California for the years 1976 – 1991. He believes that 
the number of days the ozone levels exceeded 0.20   ppm (the response) 
depends on the seasonal meteorological index, which is the seasonal 
average 850 - millibar temperature (the regressor). The following table gives 
the data. 

   Year     Days     Index  

  1976    91    16.7  
  1977    105    17.1  
  1978    106    18.2  
  1979    108    18.1  
  1980    88    17.2  
  1981    91    18.2  
  1982    58    16.0  
  1983    82    17.2  
  1984    81    18.0  
  1985    65    17.2  
  1986    61    16.9  
  1987    48    17.1  
  1988    61    18.2  
  1989    43    17.3  
  1990    33    17.5  
  1991    36    16.6  

    a.     Make a scatterplot of the data.  
  b.     Estimate the prediction equation.  
  c.     Test for signifi cance of regression.  
  d.     Calculate and plot the 95% confi dence and prediction bands.      

    2.14    Hsuie, Ma, and Tsai ( “ Separation and Characterizations of Thermotropic 
Copolyesters of  p  - Hydroxybenzoic Acid, Sebacic Acid, and Hydroquinone, ”  
 Journal of Applied Polymer Science ,  56 , 471 – 476, 1995) study the effect of the 
molar ratio of sebacic acid (the regressor) on the intrinsic viscosity of copoly-
esters (the response). The following table gives the data. 
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   Ratio     Viscosity  

  1.0    0.45  
  0.9    0.20  
  0.8    0.34  
  0.7    0.58  
  0.6    0.70  
  0.5    0.57  
  0.4    0.55  
  0.3    0.44  

    a.     Make a scatterplot of the data.  
  b.     Estimate the prediction equation.  
  c.     Perform a complete, appropriate analysis (statistical tests, calculation of 

 R  2 , and so forth).  
  d.     Calculate and plot the 95% confi dence and prediction bands.      

    2.15    Byers and Williams ( “ Viscosities of Binary and Ternary Mixtures of 
Polynomatic Hydrocarbons, ”   Journal of Chemical and Engineering Data ,  32 , 
349 – 354, 1987) studied the impact of temperature on the viscosity of toluene –
 tetralin blends. The following table gives the data for blends with a 0.4 molar 
fraction of toluene. 

   Temperature 
( ° C)  

   Viscosity 
(mPa  ·  s)  

  24.9    1.1330  
  35.0    0.9772  
  44.9    0.8532  
  55.1    0.7550  
  65.2    0.6723  
  75.2    0.6021  
  85.2    0.5420  
  95.2    0.5074  

    a.     Estimate the prediction equation.  
  b.     Perform a complete analysis of the model.  
  c.     Calculate and plot the 95% confi dence and prediction bands.      

    2.16    Carroll and Spiegelman ( “ The Effects of Ignoring Small Measurement Errors 
in Precision Instrument Calibration, ”   Journal of Quality Technology ,  18 , 170 –
 173, 1986) look at the relationship between the pressure in a tank and the 
volume of liquid. The following table gives the data. Use an appropriate sta-
tistical software package to perform an analysis of these data. Comment on 
the output produced by the software routine. 
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   Volume     Pressure     Volume     Pressure     Volume     Pressure  

  2084    4599    2842    6380    3789    8599  
  2084    4600    3030    6818    3789    8600  
  2273    5044    3031    6817    3979    9048  
  2273    5043    3031    6818    3979    9048  
  2273    5044    3221    7266    4167    9484  
  2463    5488    3221    7268    4168    9487  
  2463    5487    3409    7709    4168    9487  
  2651    5931    3410    7710    4358    9936  
  2652    5932    3600    8156    4358    9938  
  2652    5932    3600    8158    4546    10377  
  2842    6380    3788    8597    4547    10379  

    2.17    Atkinson ( Plots, Transformations, and Regression , Clarendon Press, Oxford, 
 1985 ) presents the following data on the boiling point of water ( ° F) and 
barometric pressure (inches of mercury). Construct a scatterplot of the data 
and propose a model that relates a model that relates boiling point to baro-
metric pressure. Fit the model to the data and perform a complete analysis 
of the model using the techniques we have discussed in this chapter. 

   Boiling 
Point  

   Barometric 
Pressure  

   Boiling 
Point  

   Barometric 
Pressure  

  199.5    20.79    201.9    24.02  
  199.3    20.79    201.3    24.01  
  197.9    22.40    203.6    25.14  
  198.4    22.67    204.6    26.57  
  199.4    23.15    209.5    28.49  
  199.9    23.35    208.6    27.76  
  200.9    23.89    210.7    29.64  
  201.1    23.99    211.9    29.88  
          212.2    30.06  

    2.18    On March 1, 1984, the  Wall Street Journal  published a survey of television 
advertisements conducted by Video Board Tests, Inc., a New York ad - testing 
company that interviewed 4000 adults. These people were regular product 
users who were asked to cite a commercial they had seen for that product 
category in the past week. In this case, the response is the number of millions 
of retained impressions per week. The regressor is the amount of money spent 
by the fi rm on advertising. The data follow. 

   Firm  
   Amount Spent 

(millions)  
   Returned Impressions per week 

(millions)  

  Miller Lite    50.1    32.1  
  Pepsi    74.1    99.6  
  Stroh ’ s    19.3    11.7  

(Continued)
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   Firm  
   Amount Spent 

(millions)  
   Returned Impressions per week 

(millions)  

  Federal Express    22.9    21.9  
  Burger King    82.4    60.8  
  Coca - Cola    40.1    78.6  
  McDonald ’ s    185.9    92.4  
  MCI    26.9    50.7  
  Diet Cola    20.4    21.4  
  Ford    166.2    40.1  
  Levi ’ s    27    40.8  
  Bud Lite    45.6    10.4  
  ATT Bell    154.9    88.9  
  Calvin Klein    5    12  
  Wendy ’ s    49.7    29.2  
  Polaroid    26.9    38  
  Shasta    5.7    10  
  Meow Mix    7.6    12.3  
  Oscar Meyer    9.2    23.4  
  Crest    32.4    71.1  
  Kibbles N Bits    6.1    4.4  

    a.     Fit the simple linear regression model to these data.  
  b.     Is there a signifi cant relationship between the amount a company spends 

on advertising and retained impressions? Justify your answer statistically.  
  c.     Construct the 95% confi dence and prediction bands for these data.  
  d.     Give the 95% confi dence and prediction intervals for the number of 

retained impressions for MCI.      

    2.19    Table  B.17  Contains the Patient Satisfaction data used in Section  2.7 .
   a.     Fit a simple linear regression model relating satisfaction to age.  
  b.     Compare this model to the fi t in Section  2.7  relating patient satisfaction 

to severity.      

    2.20    Consider the fuel consumption data given in Table  B.18 . The automotive 
engineer believes that the initial boiling point of the fuel controls the fuel 
consumption. Perform a thorough analysis of these data. Do the data support 
the engineer ’ s belief?   

    2.21    Consider the wine quality of young red wines data in Table  B.19 . The wine-
makers believe that the sulfur content has a negative impact on the taste (thus, 
the overall quality) of the wine. Perform a thorough analysis of these data. 
Do the data support the winemakers ’  belief?   

    2.22    Consider the methanol oxidation data in Table  B.20 . The chemist believes 
that ratio of inlet oxygen to the inlet methanol controls the conversion 
process. Perform a through analysis of these data. Do the data support the 
chemist ’ s belief?   

    2.23    Consider the simple linear regression model  y     =    50    +    10 x     +     ε  where  ε  is NID 
(0, 16). Suppose that  n     =    20 pairs of observations are used to fi t this model. 
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Generate 500 samples of 20 observations, drawing one observation for each 
level of  x     =    1, 1.5, 2,    . . .    , 10 for each sample.
   a.     For each sample compute the least - squares estimates of the slope and 

intercept. Construct histograms of the sample values of   β̂0 and   β̂1. Discuss 
the shape of these histograms.  

  b.     For each sample, compute an estimate of  E ( y | x     =    5). Construct a histogram 
of the estimates you obtained. Discuss the shape of the histogram.  

  c.     For each sample, compute a 95% CI on the slope. How many of these 
intervals contain the true value   β   1     =    10? Is this what you would expect?  

  d.     For each estimate of  E ( y | x     =    5) in part b, compute the 95% CI. How many 
of these intervals contain the true value of  E ( y | x     =    5)    =    100? Is this what 
you would expect?      

    2.24    Repeat Problem 2.20 using only 10 observations in each samle, drawing one 
observation from each level  x     =    1, 2, 3,    . . .    , 10. What impact does using  n     =    10 
have on the questions asked in Problem 2.17? Compare the lengths of the 
CIs and the appearance of the histograms.   

    2.25    Consider the simple linear regression model  y     =      β   0     +      β   1  x     +     ε , with  E ( ε )    =    0, 
Var( ε )    =      σ      2 , and  ε  uncorrelated.
   a.     Show that   Cov ˆ , ˆβ β σ0 1

2( ) = −x Sxx .  

  b.     Show that   Cov y, β1 0( ) = .      

    2.26    Consider the simple linear regression model  y     =      β   0     +      β   1  x     +     ε , with  E ( ε )    =    0, 
Var( ε )    =      σ   2 , and  ε  uncorrelated.
   a.     Show that   E MS SxxR( ) = +σ β2

1
2 .  

  b.     Show that  E ( MS  Res )    =      σ      2 .      

    2.27    Suppose that we have fi t the straight - line regression model   ̂ ˆ ˆy x= +β β0 1 1 but 
the response is affected by a second variable  x  2  such that the true regression 
function is

   E y x x( ) = + +β β β0 1 1 2 2  

   a.     Is the least - squares estimator of the slope in the original simple linear 
regression model unbiased?  

  b.     Show the bias in   β̂1.      

    2.28    Consider the maximum - likelihood estimator   �σ 2 of   σ      2  in the simple linear 
regression model. We know that   �σ 2 is a biased estimator for   σ      2 .
   a.     Show the amount of bias in   �σ 2.  
  b.     What happens to the bias as the sample size  n  becomes large?      

    2.29    Suppose that we are fi tting a straight line and wish to make the standard error 
of the slope as small as possible. Suppose that the  “ region of interest ”  for  x  
is  − 1    ≤     x     ≤    1. Where should the observations  x  1 ,  x  2 ,    . . .    ,  x n   be taken? Discuss 
the practical aspects of this data collection plan.   
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    2.30    Consider the data in Problem 2.12 and assume that steam usage and average 
temperature are jointly normally distributed.
   a.     Find the correlation between steam usage and monthly average ambient 

temperature.  
  b.     Test the hypothesis that   ρ      =    0.  
  c.     Test the hypothesis that   ρ      =    0.5.  
  d.     Find a 99% CI for   ρ .       

    2.31    Prove that the maximum value of  R  2  is less than 1 if the data contain repeated 
(different) observations on  y  at the same value of  x.    

    2.32    Consider the simple linear regression model

   y x= + +β β ε0 1  

   where     the intercept   β   0  is known.  
  a.     Find the least - squares estimator of   β   1  for this model. Does this answer 

seem reasonable?  
  b.     What is the variance of the slope   β̂1( ) for the least - squares estimator found 

in part a?  
  c.     Find a 100(1    −      α )  percent CI for   β   1 . Is this interval narrower than the 

estimator for the case where both slope and intercept are unknown?      

    2.33    Consider the least - squares residuals   e y yi i i= − ˆ ,  i     =    1, 2,    . . .    ,  n , from the simple 
linear regression model. Find the variance of the residuals Var( e i  ). Is the vari-
ance of the residuals a constant? Discuss.         
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  CHAPTER 3 

MULTIPLE LINEAR REGRESSION     

     A regression model that involves more than one regressor variable is called a  mul-
tiple regression model . Fitting and analyzing these models is discussed in this chapter. 
The results are extensions of those in Chapter  2  for simple linear regression.  

   3.1    MULTIPLE REGRESSION MODELS 

 Suppose that the yield in pounds of conversion in a chemical process depends on 
temperature and the catalyst concentration. A multiple regression model that might 
describe this relationship is

    y x x= + + +β β β ε0 1 1 2 2     (3.1)  

  where  y  denotes the yield,  x  1  denotes the temperature, and  x  2  denotes the catalyst 
concentration. This is a  multiple linear regression model  with two regressor vari-
ables. The term  linear  is used because Eq.  (3.1)  is a linear function of the unknown 
parameters   β   0 ,   β   1  and   β   2 . 

 The regression model in Eq.  (3.1)  describes a plane in the three - dimensional 
space of  y ,  x  1  and  x  2 . Figure  3.1  a  shows this regression plane for the model

   E y x x( ) = + +50 10 71 2  

  where we have assumed that the expected value of the error term  ε  in Eq.  (3.1)  is 
zero. The parameter   β   0  is the intercept of the regression plane. If the range of the 
data includes  x  1     =     x  2     =    0, then   β   0  is the mean of  y  when  x  1     =     x  2     =    0. Otherwise   β   0  has 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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no physical interpretation. The parameter   β   1  indicates the expected change in 
response ( y ) per unit change in  x  1  when  x  2  is held constant. Similarly   β   2  measures 
the expected change in  y  per unit change in  x  1  when  x  2  is held constant. Figure  3.1  b  
shows a  contour plot  of the regression model, that is, lines of constant expected 
response  E ( y ) as a function of  x  1  and  x  2 . Notice that the contour lines in this plot 
are parallel straight lines. 

 In general, the  response   y  may be related to  k   regressor  or  predictor variables . 
The model

    y x x xk k= + + + + +β β β β ε0 1 1 2 2 …     (3.2)  

  is called a  mnltiple linear regression model  with  k  regressors. The parameters   β  j  , 
 j     =    0, 1,    . . .    ,  k , are called the  regression coeffi cients . This model describes a hyper-
plane in the  k  - dimensional space of the regressor variables  x j  . The parameter   β  j   
represents the expected change in the response  y  per unit change in  x j    when all of 
the remaining regressor variables   x i  ( i     ≠     j )  are held constant . For this reason the 
parameters   β  j  ,  j     =    1, 2,    . . .    ,  k , are often called  partial regression coeffi cients . 

 Multiple linear regression models are often used as  empirical models  or approxi-
mating functions. That is, the true functional relationship between  y  and  x  1 ,  x  2 ,    . . .    , 
 x k   is unknown, but over certain ranges of the regressor variables the linear regres-
sion model is an adequate approximation to the true unknown function. 

 Models that are more complex in structure than Eq.  (3.2)  may often still be 
analyzed by multiple linear regression techniques. For example, consider the cubic 
polynomial model

    y x x x= + + + +β β β β ε0 1 2
2

3
3     (3.3)   

 If we let  x  1     =     x ,  x  2     =     x  2 , and  x  3     =     x  3 , then Eq.  (3.3)  can be written as

    y x x x= + + + +β β β β ε0 1 1 2 2 3 3     (3.4)  

  which is a multiple linear regression model with three regressor variables. Polyno-
mial models are discussed in more detail in Chapter  7 . 

       Figure 3.1     ( a ) The regression plane for the model  E ( y )    =    50    +    10 x  1     +    7 x  2 . ( b ) The 
contour plot.  

0
0

2

4

6

8

10

0
0

2 4

E(y)

6 8 10

10
8

6
4

2
0

40

80

120

160

200

240

x2

x2 x1x1
2

67 84 101 118 135 152

169

186

203

220

4 6

(b)(a)
8 10



MULTIPLE REGRESSION MODELS  69

 Models that include  interaction effects  may also be analyzed by multiple linear 
regression methods. For example, suppose that the model is

    y x x x x= + + + +β β β β ε0 1 1 2 2 12 1 2     (3.5)   

 If we let  x  3     =     x  1  x  2  and   β   3     =      β   12 , then Eq.  (3.5)  can be written as

    y x x x= + + + +β β β β ε0 1 1 2 2 3 3     (3.6)  

  which is a linear regression model. 
 Figure  3.2  a  shows the three - dimensional plot of the regression model

   y x x x x= + + +50 10 7 51 2 1 2  

  and Figure  3.2  b  the corresponding two - dimensional contour plot. Notice that, 
although this model is a linear regression model, the shape of the surface that is 
generated by the model is not linear. In general,  any regression model that is linear 
in the parameters  (the   β   ’ s)  is a linear regression model, regardless of the shape of 
the surface that it generates . 

 Figure  3.2  provides a nice graphical interpretation of an interaction. Generally, 
interaction implies that the effect produced by changing one variable ( x  1 , say) 
depends on the level of the other variable ( x  2 ). For example, Figure  3.2  shows that 
changing  x  1  from 2 to 8 produces a much smaller change in  E ( y ) when  x  2     =    2 than 
when  x  2     =    10. Interaction effects occur frequently in the study and analysis of real -
 world systems, and regression methods are one of the techniques that we can use 
to describe them. 

 As a fi nal example, consider the  second - order model with interaction 

    y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 11 1
2

22 2
2

12 1 2     (3.7)   

 If we let   x x3 1
2= ,   x x4 2

2= ,  x  5     =     x  1  x  2,    β   3     =      β   11 ,   β   4     =      β   22 , and   β   5     =      β   12 , then Eq.  (3.7)  can 
be written as a multiple linear regression model as follows:

   y x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 3 3 4 4 5 5   

       Figure 3.2     ( a ) Three - dimensional plot of regression model  E ( y )    =    50    +    10 x  1     +    7 x  2     +    5 x  1  x  2 . 
( b ) The contour plot.  
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  TABLE 3.1    Data for Multiple Linear Regression 

   Observation,  i      Response,  y   

   Regressors  

    x  1       x  2       . . .       x k    

  1     y  1      x  11      x  12      . . .      x  1   k    
  2     y  2      x  21      x  22      . . .      x  2   k    

    �       �       �       �           �   
   n      y n       x n   1      x n   2      . . .      x nk    

 Figure  3.3  shows the three - dimensional plot and the corresponding contour 
plot for

   E y x x x x x x( ) = + + − − +800 10 7 8 5 5 41 2 1
2

2
2

1 2.     

 These plots indicate that the expected change in  y  when  x  1  is changed by one unit 
(say) is a function of  both   x  1  and  x  2 . The quadratic and interaction terms in this 
model produce a mound - shaped function. Depending on the values of the regres-
sion coeffi cients, the second - order model with interaction is capable of assuming a 
wide variety of shapes; thus, it is a very fl exible regression model. 

 In most real - world problems, the values of the parameters (the regression coef-
fi cients   β  i  ) and the error variance   σ      2  are not known, and they must be estimated 
from sample data. The fi tted regression equation or model is typically used in pre-
diction of future observations of the response variable  y  or for estimating the mean 
response at particular levels of the  y  ’ s.  

   3.2    ESTIMATION OF THE MODEL PARAMETERS 

   3.2.1    Least - Squares Estimation of the Regression Coeffi cients 

 The  method of least squares  can be used to estimate the regression coeffi cients in 
Eq.  (3.2) . Suppose that  n     >     k  observations are available, and let  y i   denote the  i th 
observed response and  x ij   denote the  i th observation or level of regressor  x j  . The 
data will appear as in Table  3.1 . We assume that the error term  ε  in the model has 
 E ( ε )    =    0, Var( ε )    =      σ      2 , and that the errors are uncorrelated.   

       Figure 3.3     ( a ) Three - dimensional plot of the regression model   E y x x( ) = + + −800 10 71 2

x x x x− +8 5 5 41
2

2
2

1 2. , ( b ) The contour plot.  
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 Throughout this chapter we assume that the regressor variables  x  1 ,  x  2 ,    . . .    ,  x k   are 
fi xed (i.e., mathematical or nonrandom) variables, measured without error. However, 
just as was discussed in Section 2.12 for the simple linear regression model, all of 
our results are still valid for the case where the regressors are random variables. 
This is certainly important, because when regression data arise from an  observa-
tional study , some or most of the regressors will be random variables. When the data 
result from a  designed experiment , it is more likely that the  x  ’ s will be fi xed variables. 
When the  x  ’ s are random variables, it is only necessary that the observations 
on each regressor be independent and that the distribution not depend on the 
regression coeffi cients (the   β   ’ s) or on   σ      2 . When testing hypotheses or constructing 
CIs, we will have to assume that the conditional distribution of  y  given  x  1 ,  x  2 ,    . . .    ,
 x k   be normal with mean   β   0     +      β   1  x  1     +      β   2  x  2     +     . . .     +      β  k x k   and variance   σ      2 . 

 We may write the sample regression model corresponding to Eq.  (3.2)  as

    

y x x x

x i n

i i i k ik i

j ij

j

k

i

= + + + + +

= + + =
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∑
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 The least - squares function is
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 The function  S  must be minimized with respect to   β   0 ,   β   1 ,    . . .    ,   β  k  . The least - squares 
estimators of   β   0 ,   β   1 ,    . . .    ,   β  k   must satisfy
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 Simplifying Eq.  (3.10) , we obtain the  least - squares normal equations 
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 Note that there are  p     =     k     +    1 normal equations, one for each of the unknown regres-
sion coeffi cients. The solution to the normal equations will be the  least - squares 
estimators    ˆ , ˆ , , ˆβ β β0 1 … k. 

 It is more convenient to deal with multiple regression models if they are expressed 
in matrix notation. This allows a very compact display of the model, data, and results. 
In matrix notation, the model given by Eq.  (3.8)  is

   y X= +b e  

  where
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 In general,  y  is an  n     ×    1 vector of the observations,  X  is an  n     ×     p  matrix of the levels 
of the regressor variables,   β   is a  p     ×    1 vector of the regression coeffi cients, and   ε   is 
an  n     ×    1 vector of random errors. 

 We wish to fi nd the vector of least - squares estimators,   b̂ , that minimizes

   
S i

i

n

b e e b b( ) = = ′ = −( )′ −( )
=
∑ε 2

1

y X y X
  

 Note that  S (  β  ) may be expressed as

   

S b b b b b
b b b

( ) = ′ − ′ ′ − ′ + ′ ′
= ′ − ′ ′ + ′ ′

y y X y y X X X

y y X y X X2  

  since   β  ′    X   ′   y  is a 1    ×    1 matrix, or a scalar, and its transpose(  β  ′    X   ′   y ) ′      =     y ′ X   β   is the 
same scalar. The least - squares estimators must satisfy

   

∂
∂

= − ′ + ′ =S
b

b
b̂

ˆ2 2X y X X 0

 

  which simplifi es to

    ′ = ′X X X yb̂     (3.12)   

 Equations  (3.12)  are the  least - squares normal equations . They are the matrix ana-
logue of the scalar presentation in (3.11). 
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 To solve the normal equations, multiply both sides of (3.12) by the inverse of 
 X ′ X . Thus, the  least - squares estimator  of   β   is

    b̂ = ′( ) ′−X X X y1     (3.13)  

  provided that the inverse matrix ( X ′ X )  − 1  exists. The ( X ′ X )  − 1  matrix will always exist 
if the regressors are  linearly independent , that is, if no column of the  X  matrix is a 
linear combination of the other columns. 

 It is easy to see that the matrix form of the normal equations  (3.12)  is identical 
to the scalar form (3.11). Writing out (3.12) in detail, we obtain
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 If the indicated matrix multiplication is performed, the scalar form of the normal 
equations  (3.11)  is obtained. In this display we see that  X ′ X  is a  p     ×     p  symmetric 
matrix and  X ′ y  is a  p     ×    1 column vector. Note the special structure of the  X ′ X  matrix. 
The diagonal elements of  X ′ X  are the sums of squares of the elements in the 
columns of  X , and the off - diagonal elements are the sums of cross products of 
the elements in the columns of  X . Furthermore, note that the elements of  X ′ y  are 
the sums of cross products of the columns of  X  and the observations  y i  . 

 The fi tted regression model corresponding to the levels of the regressor variables 
 x  ′     =    [1,  x  1 ,  x  2 ,    . . .    ,  x k  ] is

   

ˆ ˆ ˆ ˆy xj j

j

k

= ′ = +
=

∑x b β β0

1   

 The vector of fi tted values   ̂yi corresponding to the observed values  y i   is

    ˆ ˆy X X X X X y Hy= = ′( ) ′ =−b 1     (3.14)   

 The  n     ×     n  matrix  H     =     X ( X ′ X )  − 1  X ′   is usually called the  hat matrix . It maps the vector 
of observed values into a vector of fi tted values. The hat matrix and its properties 
play a central role in regression analysis. 

 The difference between the observed value  y i   and the corresponding fi tted value 
  ̂yi is the  residual    e y yi i i= − ˆ . The  n  residuals may be conveniently written in matrix 
notation as

    e y y= − ˆ     (3.15a)   
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 There are several other ways to express the vector of residuals  e  that will prove 
useful, including

    e y X y Hy I H y= − = − = −( )b̂     (3.15b)   

 Example 3.1   The Delivery Time Data 

    A soft drink bottler is analyzing the vending machine service routes in his distribu-
tion system. He is interested in predicting the amount of time required by the route 
driver to service the vending machines in an outlet. This service activity includes 
stocking the machine with beverage products and minor maintenance or house-
keeping. The industrial engineer responsible for the study has suggested that the 
two most important variables affecting the delivery time ( y ) are the number of cases 
of product stocked ( x  1 ) and the distance walked by the route driver ( x  2 ). The engi-
neer has collected 25 observations on delivery time, which are shown in Table  3.2 . 
(Note that this is an expansion of the data set used in Example 2.9.) We will fi t the 
multiple linear regression model

   y x x= + + +β β β ε0 1 1 2 2  

  to the delivery time data in Table  3.2 . 

  TABLE 3.2    Delivery Time Data for Example  3.1  

   Observation Number  
   Delivery Time, 

  y  (min)     Number of Cases,  x  1      Distance,  x  2  (ft)  

  1    16.68    7    560  
  2    11.50    3    220  
  3    12.03    3    340  
  4    14.88    4    80  
  5    13.75    6    150  
  6    18.11    7    330  
  7    8.00    2    110  
  8    17.83    7    210  
  9    79.24    30    1460  

  10    21.50    5    605  
  11    40.33    16    688  
  12    21.00    10    215  
  13    13.50    4    255  
  14    19.75    6    462  
  15    24.00    9    448  
  16    29.00    10    776  
  17    15.35    6    200  
  18    19.00    7    132  
  19    9.50    3    36  
  20    35.10    17    770  
  21    17.90    10    140  
  22    52.32    26    810  
  23    18.75    9    450  
  24    19.83    8    635  
  25    10.75    4    150  
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 Graphics can be very useful in fi tting multiple regression models. Figure  3.4  is 
a  scatterplot matrix  of the delivery time data. This is just a two - dimensional array 
of two - dimensional plots, where (except for the diagonal) each frame contains a 
scatter diagram. Thus, each plot is an attempt to shed light on the relationship 
between a pair of variables. This is often a better summary of the relationships 
than a numerical summary (such as displaying the correlation coeffi cients between 
each pair of variables) because it gives a sense of linearity or nonlinearity of the 
relationship and some awareness of how the individual data points are arranged 
over the region.   

 When there are only two regressors, sometimes a three - dimensional scatter 
diagram is useful in visualizing the relationship between the response and the 
regressors. Figure  3.5  presents this plot for the delivery time data. By spinning these 
plots, some software packages permit different views of the point cloud. This view 
provides an indication that a multiple linear regression model may provide a reason-
able fi t to the data.   

 To fi t the multiple regression model we fi rst form the  X  matrix and  y  vector:

   

X =

1 7 560

1 3 220

1 3 340

1 4 80

1 6 150

1 7 330

1 2 110

1 7 210

1 30 1460

1 5 605

1 16 6888

1 10 215

1 4 255

1 6 462

1 9 448

1 10 776

1 6 200

1 7 132

1 3 36

1 17 770

1 10 140

1 26 8810

1 9 450

1 8 635

1 4 150

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=,

.

.

.

y

16 68

11 50

12 03

114 88

13 75

18 11

8 00

17 83

79 24

21 50

40 33

21 00

13 50

19 75

24

.

.

.

.

.

.

.

.

.

.

.

.000

29 00

15 35

19 00

9 50

35 10

17 90

52 32

18 75

19 83

10 75

.

.

.

.

.

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥   



76  MULTIPLE LINEAR REGRESSION

       Figure 3.4     Scatterplot matrix for the delivery time data from Example  3.1 .  
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       Figure 3.5     Three - dimensional scatterplot of the delivery time data from Example  3.1 .  
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  and the  X  ′  y  vector is
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 The least - squares estimator of   β   is
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 The least - squares fi t (with the regression coeffi cients reported to fi ve decimals) is

   ˆ . . .y x x= + +2 34123 1 61591 0 014381 2   

 Table  3.3  shows the observations  y i   along with the corresponding fi tted values   ̂yi  
and the residuals  e i   from this model.        ■   

  Computer Output     Table  3.4  presents a portion of the Minitab output for the soft 
drink delivery time data in Example  3.1 . While the output format differs from one 
computer program to another, this display contains the information typically gener-
ated. Most of the output in Table  3.4  is a straightforward extension to the multiple 
regression case of the computer output for simple linear regression. In the next few 
sections we will provide explanations of this output information.       

   3.2.2    A Geometrical Interpretation of Least Squares 

 An intuitive geometrical interpretation of least squares is sometimes helpful. We 
may think of the vector of observations  y  ′     =    [ y  1 ,  y  2 ,    . . .    ,  y n  ] as defi ning a vector 
from the origin to the point  A  in Figure  3.6 . Note that  y  1 ,  y  2 ,    . . .    ,  y n   form the coordi-
nates of an  n  - dimensional sample space. The sample space in Figure  3.6  is 
three - dimensional.   

 The  X  matrix consists of  p  ( n     ×    1) column vectors, for example,  1  (a column vector 
of 1 ’ s),  x  1 ,  x  2 ,    . . .    ,  x   k  . Each of these columns defi nes a vector from the origin in the 
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  TABLE 3.3    Observations, Fitted Values, and Residuals for 
Example  3.1  

   Observation 
Number      y i         ŷi       e y yi i i= −   

  1    16.68    21.7081     − 5.0281  
  2    11.50    10.3536    1.1464  
  3    12.03    12.0798     − 0.0498  
  4    14.88    9.9556    4.9244  
  5    13.75    14.1944     − 0.4444  
  6    18.11    18.3996     − 0.2896  
  7    8.00    7.1554    0.8446  
  8    17.83    16.6734    1.1566  
  9    79.24    71.8203    7.4197  

  10    21.50    19.1236    2.3764  
  11    40.33    38.0925    2.2375  
  12    21.00    21.5930     − 0.5930  
  13    13.50    12.4730    1.0270  
  14    19.75    18.6825    1.0675  
  15    24.00    23.3288    0.6712  
  16    29.00    29.6629     − 0.6629  
  17    15.35    14.9136    0.4364  
  18    19.00    15.5514    3.4486  
  19    9.50    7.7068    1.7932  
  20    35.10    40.8880     − 5.7880  
  21    17.90    20.5142     − 2.6142  
  22    52.32    56.0065     − 3.6865  
  23    18.75    23.3576     − 4.6076  
  24    19.83    24.4028     − 4.5728  
  25    10.75    10.9626     − 0.2126  

  TABLE 3.4    Minitab Output for Soft Drink Time Data 

   Regression Analysis: Time versus Cases, Distance   

   The regression equation is   
   Time  =  2.34  +  1.62 cases  +  0.0144 Distance   

   Predictor      Coef      SE Coef      T      P       
   Constant      2.341      1.097      2.13      0.044       
   Cases      1.6159      0.1707      9.46      0.000       
   Distance      0.014385      0.003613      3.98      0.001       

   S  =  3.25947      R    −    Sq  =  96.0%      R    −    Sq (adj)  =  95.6%       

   Analysis of Variance   

   Source      DF      SS      MS      F      P   
   Regression      2      5550.8      2775.4      261.24      0.000   
   Residual Error      22      233.7      10.6           
   Total      24      5784.5               

   Source      DF      Seq SS               
   Cases      1      5382.4               
   Distance      1      168.4               
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sample space. These  p  vectors form a  p  - dimensional subspace called the  estimation 
space . The estimation space for  p     =    2 is shown in Figure  3.6 . We may represent any 
point in this subspace by a linear combination of the vectors  1 ,  x  1 ,    . . .    ,  x   k  . Thus, 
any point in the estimation space is of the form  X   β  . Let the vector  X   β   determine 
the point  B  in Figure  3.6 . The squared distance from  B  to  A  is just

   S b b b( ) = −( )′ −( )y X y X   

 Therefore, minimizing the squared distance of point  A  defi ned by the observation 
vector  y  to the estimation space requires fi nding the point in the estimation space 
that is closest to  A.  The squared distance is a minimum when the point in the esti-
mation space is the foot of the line from  A  normal (or perpendicular) to the estima-
tion space. This is point  C  in Figure  3.6 . This point is defi ned by the vector   ̂ ˆy X= b . 
Therefore, since   y y y X− = −ˆ b̂  is perpendicular to the estimation space, we 
may write

   
′ −( ) = ′ = ′X y X 0 X X X yˆ ˆb bor

 

  which we recognize as the least - squares normal equations.  

   3.2.3    Properties of the Least - Squares Estimators 

 The statistical properties of the least - squares estimator   b̂  may be easily demon-
strated. Consider fi rst bias, assuming that the model is correct:

   

E E E

E

b̂ b e

b

( ) = ′( ) ′⎡⎣ ⎤⎦ = ′( ) ′ +( )⎡⎣ ⎤⎦

= ′( ) ′ + ′

− −

−

X X X y X X X X

X X X X X

1 1

1 XX X( ) ′⎡⎣ ⎤⎦ =−1 e b
 

  since  E (  ε  )    =     0  and ( X  ′  X )  − 1  X  ′  X     =     I . Thus,   b̂  is an  unbiased estimator  of   β   if the model 
is correct. 

       Figure 3.6     A geometrical interpretation of least squares.  
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 The variance property of   b̂  is expressed by the  covariance matrix 

   
Cov ˆ ˆ ˆ ˆ ˆb b b b b( ) = − ( )⎡⎣ ⎤⎦ − ( )⎡⎣ ⎤⎦

′⎧
⎨
⎩

⎫
⎬
⎭

E E E
 

  which is a  p     ×     p  symmetric matrix whose  j th diagonal element is the variance of   β̂ j  
and whose ( ij )th off - diagonal element is the covariance between   β̂i and   β̂ j . The 

covariance matrix of   b̂  is found by applying a variance operator to   b̂ :

   
Cov Var Varˆ ˆb b( ) = ( ) = ′( ) ′⎡⎣ ⎤⎦

−X X X y1

  

 Now ( X  ′  X )  − 1  X  ′  is a matrix of constants, and the variance of  y  is   σ   2  I , so

   

Var Var Varb̂( ) = ′( ) ′⎡⎣ ⎤⎦ = ′( ) ′ ( ) ′( ) ′⎡⎣ ⎤⎦
′

=

− − −X X X y X X X y X X X1 1 1

2σ ′′( ) ′ ′( ) = ′( )− − −X X X X X X X X1 1 2 1σ   

 Therefore, if we let  C     =    ( X  ′  X )  − 1 , the variance of   β̂ j is   σ      2  C jj   and the covariance 
between   β̂i and   ̂β j  is   σ      2  C ij  . 

 Appendix  C .4 establishes that the least - squares estimator   b̂ is the best linear 
unbiased estimator of   β   (the Gauss - Markov theorem). If we further assume that 
the errors  ε   i   are normally distributed, then as we see in Section  3.2.6 ,   b̂ is also 
the maximum - likelihood estimator of   β  . The maximum - likelihood estimator is the 
minimum variance unbiased estimator of   β  .  

   3.2.4    Estimation of   σ      2  

 As in simple linear regression, we may develop an estimator of   σ      2  from the residual 
sum of squares   

   
SS y y ei i

i

n

i

i

n

Res = −( ) = = ′
= =
∑ ∑ˆ 2

1

2

1

e e
  

 Substituting   e y X= − b̂ , we have

   

SSRes = −( )′ −( )
= ′ − ′ ′ − ′ + ′ ′

= ′ − ′ ′

y X y X

y y X y y X X X

y y X

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ

b b

b b b b

b2 yy X X+ ′ ′ˆ ˆb b   

 Since   ′ = ′X X X yb̂ , this last equation becomes

    SSRes = ′ − ′ ′y y X yb̂     (3.16)   

 Appendix  C .3 shows that the residual sum of squares has  n     −     p  degrees of freedom 
associated with it since  p  parameters are estimated in the regression model. The 
 residual mean square  is
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    MS
SS
n p

Res
Res=
−

    (3.17)   

 Appendix  C .3 also shows that the expected value of  MS  Res  is   σ      2 , so an  unbiased 
estimator  of   σ      2  is given by

    σ̂ 2 = MSRes     (3.18)   

 As noted in the simple linear regression case, this estimator of   σ   2  is  model 
dependent .   

 Example 3.2   The Delivery Time Data 

    We now estimate the error variance   σ      2  for the multiple regression model fi t to the 
soft drink delivery time data in Example  3.1 . Since

   
′ = =

=
∑y y yi

i

2

1
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18 310 6290, .
 

  and
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,
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  the residual sum of squares is

   

SSRes = ′ − ′ ′
= − =

y y X yˆ

, . , . .

b
18 310 6290 18 076 9030 233 7260   

 Therefore, the estimate of   σ      2  is the residual mean square

   
ˆ .

.σ 2 233 7260
25 3

10 6239=
−

=
−

=SS
n p

Res

  

 The Minitab output in Table  3.4  reports the residual mean square as 10.6      ■   

 The model - dependent nature of this estimate   σ   2  may be easily demonstrated. 
Table  2.12  displays the computer output from a least - squares fi t to the delivery time 
data using only one regressor, cases ( x  l ). The residual mean square for this model 
is 17.5, which is considerably larger than the result obtained above for the two -
 regressor model. Which estimate is  “ correct ” ? Both estimates are in a sense correct, 
but they depend heavily on the choice of model. Perhaps a better question is which 
 model  is correct? Since   σ   2  is the variance of the errors (the unexplained noise about 
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the regression line), we would usually prefer a model with a small residual mean 
square to a model with a large one.  

   3.2.5    Inadequacy of Scatter Diagrams in Multiple Regression 

 We saw in Chapter  2  that the scatter diagram is an important tool in analyzing the 
relationship between  y  and  x  in simple linear regression. We also saw in Example 
 3.1  that  a matrix of scatterplots  was useful in visualizing the relationship between 
 y  and two regressors. It is tempting to conclude that this is a general concept; that 
is, examinjng scatter diagrams of  y  versus  x  l ,  y  versus  x  2 ,    . . .    ,  y  versus  x k   is always 
useful in assessing the relationships between  y  and each of the regressors  x  l ,  x  2 ,    . . .    , 
 x k  . Unfortunately, this is not true in general. 

 Following Daniel and Wood [ 1980 ], we illustrate the inadequacy of scatter dia-
grams for a problem with two regressors. Consider the data shown in Figure  3.7 . 
These data were generated from the equation

   y x x= − +8 5 121 2     

 The matrix of scatterplots is shown in Figure  3.7 . The  y  - versus -  x  1 , plot does not 
exhibit any apparent relationship between the two variables. The  y  - versus -  x  2  plot 
indicates that a linear relationship exists, with a slope of approximately 8. Note that 
both scatter diagrams convey erroneous information. Since in this data set there are 
two pairs of points that have the same  x  2  values ( x  2     =    2 and  x  2     =    4), we could measure 
the  x  1  effect at fi xed  x  2  from both pairs. This gives,   β̂1 17 27 3 1 5= −( ) −( ) = −  for  x  2     =    2 

and   β̂1 26 16 6 8 5= −( ) −( ) = −  for  x  2     =    4 the correct results. Knowing   β̂1, we could 

       Figure 3.7     A matrix of scatterplots.  
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now estimate the  x  2  effect. This procedure is not generally useful, however, because 
many data sets do not have duplicate points. 

 This example illustrates that constructing scatter diagrams of  y  versus  x j   ( j     =    1, 
2,    . . .    ,  k ) can be misleading, even in the case of only two regressors operating in a 
perfectly additive fashion with no noise. A more realistic regression situation with 
several regressors and error in the  y  ’ s would confuse the situation even further. If 
there is only one (or a few) dominant regressor, or if the regressors operate nearly 
independently, the matrix of scatterplots is most useful. However, when several 
important regressors are themselves interrelated, then these scatter diagrams can 
be very misleading. Analytical methods for sorting out the relationships between 
several regressors and a response are discussed in Chapter  10 .  

   3.2.6    Maximum - Likelihood Estimation 

 Just as in the simple linear regression case, we can show that the maximum - likeli-
hood estimators for the model parameters in multiple linear regression when the 
model errors are normally and independently distributed are also least - squares 
estimators. The model is

   y X= +b e  

  and the errors are normally and independently distributed with constant variance 
  σ   2 , or   ε   is distributed as  N ( 0 ,   σ      2  I ). The normal density function for the errors is

   
f i iε

σ π σ
ε( ) = −⎛⎝⎜
⎞
⎠⎟

1

2

1
2 2

2exp
  

 The likelihood function is the joint density of   ε   1 ,   ε   2 ,    . . .    ,   ε    n   or   ∏ ( )=i
n

if1 ε . Therefore, 
the likelihood function is

   
L f i

i

n

n n
e b e e, , expσ ε

π σ σ
2

1
2 2

1
2

1
2

( ) = ( ) =
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 Now since we can write   ε      =     y     −     X   β  , the likelihood function becomes

    
L n n

y X y X y X, , , expb b bσ
π σ σ

2
2 2

1
2

1
2

( ) =
( )

− −( )′ −( )⎛
⎝⎜

⎞
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(3.19)

   

 As in the simple linear regression case, it is convenient to work with the log of the 
likelihood,

   
ln , , , ln lnL

n
ny X y X y Xb b bσ π σ

σ
2

22
2

1
2

( ) = − ( ) − ( ) − −( )′ −( )
  

 It is clear that for a fi xed value of   σ   the log - likelihood is maximized when the term

   y X y X−( )′ −( )b b  
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  is minimized. Therefore, the maximum - likelihood estimator of   β   under normal 
errors is equivalent to the least - squares estimator   b̂ = ′( ) ′−X X X y1 . The maximum -
 likelihood estimator of   σ      2  is

    
�σ 2 =

−( )′ −( )y X y Xˆ ˆb b

n    
 (3.20)   

 These are multiple linear regression generalizations of the results given for simple 
linear regression in Section 2.11. The statistical properties of the maximum - likeli-
hood estimators are summarized in Section 2.11.   

   3.3    HYPOTHESIS TESTING IN MULTIPLE LINEAR REGRESSION 

 Once we have estimated the parameters in the model, we face two immediate 
questions:

   1.     What is the overall adequacy of the model?  
  2.     Which specifi c regressors seem important?    

 Several hypothesis testing procedures prove useful for addressing these questions. 
The formal tests require that our random errors be independent and follow a normal 
distribution with mean  E ( ε   i  )    =    0 and variance Var( ε   i  )    =      σ      2 . 

   3.3.1    Test for Signifi cance of Regression 

 The test for  signifi cance of regression  is a test to determine if there is a  linear rela-
tionship  between the response  y  and any of the regressor variables  x  1 ,  x  2 ,    . . .    ,  x k  . 
This procedure is often thought of as an overall or global test of model adequacy. 
The appropriate hypotheses are

   H k0 1 1 0: β β β= = = =�  

   H jj1 0: β ≠ for at least one   

 Rejection of this null hypothesis implies that at least one of the regressors  x  1 ,  x  2 ,    . . .    , 
 x k   contributes signifi cantly to the model. 

 The test procedure is a generalization of the  analysis of variance  used in simple 
linear regression. The  total sum of squares   SS  T  is partitioned into a  sum of squares 
due to regression ,  SS  R , and a  residual sum of squares ,  SS  Res . Thus,

   SS SS SST R Res= +   

 Appendix  C .3 shows that if the null hypothesis is true, then  SS  R /  σ      2  follows a   χk
2
 

distribution, which has the same number of degrees of freedom as number of regres-
sor variables in the model. Appendix  C .3 also shows that   SS n kRes σ χ2

1
2~ − −  and 

that  SS  Res  and  SS  R  are independent. By the defi nition of an  F  statistic given in 
Appendix  C .1,
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  follows the  F k  ,   n − k    − 1  distribution. Appendix  C .3 shows that
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  where   β   *     =     (  β   1 ,   β   2 ,    . . .    ,   β  k  ) ′  and  X  c  is the  “ centered ”  model matrix given by
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 These expected mean squares indicate that if the observed value of  F  0  is large, then 
it is likely that at least one   β  j      ≠    0. Appendix  C .3 also shows that if at least one   β  j      ≠    0, 
then  F  0  follows a noncentral  F  distribution with  k  and  n     −     k     −    1 degrees of freedom 
and a noncentrality parameter of

   
λ

σ
= ′ ′b b* *X Xc c

2
  

 This noncentrality parameter also indicates that the observed value of  F  0  should be 
large if at least one   β  j      ≠    0. Therefore, to test the hypothesis  H  0 :   β   1     =      β   2     =     . . .     =      β  k      =    0, 
compute the test statistic  F  0  and reject  H  0  if

   F F k n k0 1> − −α , ,   

 The test procedure is usually summarized in an  analysis - or - variance table  such as 
Table  3.5 .   

 A computational formula for  SS  R  is found by starting with

    SSRes = ′ − ′y y X yb̂     (3.21)  

  TABLE 3.5    Analysis of Variance for Signifi cance of Regression in Multiple Regression 

   Source of Variation     Sum of Squares     Degrees of Freedom     Mean Square      F  0   

  Regression     SS  R      k      MS  R      MS  R / MS  Res   
  Residual     SS  Res      n     −     k     −    1     MS  Res       
  Total     SS  T      n     −    1          
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  we may rewrite the above equation as
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  or

    SS SS SSRes T R= −     (3.23)   

 Therefore, the  regression sum of squares  is

    SS
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i

n

R = ′ ′ −

⎛
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⎞
⎠⎟=

2

∑
b̂ X y 1     (3.24)  

  the  residual sum of squares  is

    SSRes = ′ − ′ ′y y X yb̂     (3.25)  

  and the  total sum of squares  is

    SS
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n
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i

n
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⎛
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⎞
⎠⎟=

2

∑
y y 1     (3.26)   

 Example 3.3   The Delivery Time Data 

    We now test for signifi cance of regression using the delivery time data from Example 
 3.1 . Some of the numerical quantities required are calculated in Example 3.2. 
Note that
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  and

   

SS SS SSRes T R= −

= ′ − ′ ′ =y y X yˆ .b 233 7260   

 The analysis of variance is shown in Table  3.6 . To test  H  0 :   β   1     =      β   2     =    0, we calculate 
the statistic

   
F

MS
MS

0
2775 4083
10 6239

261 24= = =R

Res

.
.

.
    

 Since the  P  value is very small, we conclude that delivery time is related to delivery 
volume and/or distance. However, this does not necessarily imply that the relation-
ship found is an appropriate one for predicting delivery time as a function of volume 
and distance. Further tests of model adequacy are required.        ■   

  TABLE 3.6    Test for Signifi cance of Regression for Example  3.3  

   Source 
Variation     Sum of Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    5550.8166    2    2775.4083    261.24    4.7    ×    10  − 16   
  Residual    233.7260    22    10.6239          
  Total    5784.5426    24              

      Minitab Output     The MlNITAB output in Table  3.4  also presents the analysis of 
variance for testing signifi cance of regression. Apart from rounding, the results are 
in agreement with those reported in Table  3.6 .  

  R    2  and Adjusted  R     2      Two other ways to assess the overall adequacy of the model 
are  R  2  and the adjusted  R  2 , denoted   RAdj

2 . The MlNITAB output in Table  3.4  reports 
the  R  2  for the multiple regression model for the delivery time data as  R  2     =    0.96, or 
96.0%. In Example 2.9, where only the single regressor  x  1  (cases) was used, the value 
of  R  2  was smaller, namely  R  2     =    0.93, or 93.0% (see Table  2.12 ). In general,  R  2  never 
decreases when a regressor is added to the model, regardless of the value of the 
contribution of that variable. Therefore, it is diffi cult to judge whether an increase 
in  R  2  is really telling us anything important. 

 Some regression model builders prefer to use an  adjusted   R   2   statistic, defi ned as

    R
SS n p
SS n

Adj
Res

T

2 1
1

= − −( )
−( )

    (3.27)   
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 Since  SS  Res /( n     −     p ) is the residual mean square and  SS  T /( n     −    1) is constant regardless 
of how many variables are in the model,   RAdj

2  will only increase on adding a variable 
to the model if the addition of the variable reduces the residual mean square. 
Minitab (Table  3.4 ) reports   RAdj

2 0 956= .  (95.6%) for the two - variable model, while 
for the simple linear regression model with only  x  1  (cases),   RAdj

2 0 927= . , or 92.7% 
(see Table  2.12 ). Therefore, we would conclude that adding  x  2  (distance) to the 
model did result in a meaningful reduction of total variability. 

 In subsequent chapters, when we discuss  model building  and  variable selection , 
it is frequently helpful to have a procedure that can guard against  overfi tting the 
model , that is, adding terms that are unnecessary. The adjusted  R  2  penalizes us for 
adding terms that are not helpful, so it is very useful in evaluating and comparing 
candidate regression models.   

   3.3.2    Tests on Individual Regression Coeffi cients 
and Subsets of Coeffi cients 

 Once we have determined that at least one of the regressors is important, a logical 
question becomes which one(s). Adding a variable to a regression model always 
causes the sum of squares for regression to increase and the residual sum of squares 
to decrease. We must decide whether the increase in the regression sum of squares 
is suffi cient to warrant using the additional regressor in the model. The addition of 
a regressor also increases the variance of the fi tted value   ̂y, so we must be careful 
to include only regressors that are of real value in explaining the response. Further-
more, adding an unimportant regressor may increase the residual mean square, 
which may decrease the usefulness of the model. 

 The hypotheses for testing the signifi cance of any individual regression coeffi -
cient, such as   β  j  , are

    H Hj j0 10 0: , :β β= ≠     (3.28)   

 If  H  0 :   β  j      =    0 is not rejected, then this indicates that the regressor  x j   can be deleted 
from the model. The  test statistic  for this hypothesis is

    t
C
j

jj

j

j

0
2

= = ( )
ˆ

ˆ

ˆ

ˆ
β
σ

β
βse

    (3.29)  

  where  C jj   is the diagonal element of ( X  ′  X )  − 1  corresponding to   β̂ j. The null hypothesis 
 H  0 :   β  j      =    0 is rejected if | t  0 |    >     t  α    /2,   n    −    k    − 1 . Note that this is really a  partial  or  marginal test  
because the regression coeffi cient   β̂ j  depends on all of the other regressor variables 
 x i  ( i     ≠     j ) that are in the model. Thus, this is a test of the  contribution  of  x j    given the 
other regressors in the model .   

 Example 3.4   The Delivery Time Data 

    To illustrate the procedure, consider the delivery time data in Example  3.1 . Suppose 
we wish to assess the value of the regressor variable  x  2  (distance) given that the 
regressor  x  1  (cases) is in the model. The hypotheses are

   H H0 2 1 20 0: , :β β= ≠   
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 The main diagonal element of ( X  ′  X )  − 1  corresponding to   β   2  is  C  22     =    0.00000123, so 
the  t  statistic (3.29) becomes

   
t

C
0

2

2
22

0 01438

10 6239 0 00000123
3 98= =

( )( )
=

ˆ

ˆ
.

. .
.

β
σ   

 Since  t  0.025,22     =    2.074, we reject  H  0 :   β   2     =    0 and conclude that the regressor  x  2  (distance) 
contributes signifi cantly to the model given that  x  1  (cases) is also in the model. This 
 t  test is also provided in the Minitab output (Table  3.4 ), and the  P  value reported 
is 0.001.        ■   

 We may also directly determine the contribution to the regression sum of squares 
of a regressor, for example,  x j  , given that other regressors  x  1 ( i     ≠     j ) are included in 
the model by using the  extra - sum - of - squares method . This procedure can also be 
used to investigate the contribution of a  subset  of the regressor variables to the 
model. 

 Consider the regression model with  k  regressors

   y X= +b e  

  where  y  is  n     ×    1,  X  is  n     ×     p ,   β   is  p     ×    1,   ε   is  n     ×    1, and  p     =     k     +    1. We would like to 
determine if some subset of  r     <     k  regressors contributes signifi cantly to the regres-
sion model. Let the vector of regression coeffi cients be partitioned as follows:

   
b b

b
= ⎡
⎣⎢

⎤
⎦⎥

1

2  

  where   β   1  is ( p     −     r )    ×    1 and   β   2  is  r     ×    1. We wish to test the hypotheses

    H H0 2 1 2: , :b b= ≠0 0     (3.30)   

 The model may be written as

    y X X X= + = + +b e b b e1 1 2 2     (3.31)  

  where the  n     ×    ( p     −     r ) matrix  X  l  represents the columns of  X  associated with   β   1  and 
the  n     ×     r  matrix  X  2  represents the columns of  X  associated with   β   2 . This is called 
the  full model . 

 For the full model, we know that   b̂ = ′( ) ′−X X X y1 . The regression sum of squares 
for this model is

   SS pR degrees of freedomb b( ) = ′ ′ ( )ˆ X y  

  and

   
MS

n p
Res =

′ − ′ ′
−

y y X yb̂
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 To fi nd the contribution of the terms in   β   2  to the regression, fi t the model assuming 
that the null hypothesis  H  0 :   β   2     =     0  is true. This  reduced model  is

    y X= +1 1b e     (3.32)   

 The least - squares estimator of   β   1  in the reduced model is   b̂1 1 1
1

1= ′( ) ′−X X X y . The 
regression sum of squares is

    SS p rR degrees of freedomb b1 1 1( ) = ′ ′ −( )ˆ X y     (3.33)   

 The regression sum of squares due to   β   2  given that   β   1  is already in the model is

    SS SS SSR R Rb b b b2 1 1( ) = ( ) − ( )     (3.34)  

  with  p     −    ( p     −     r )    =     r  degrees of freedom. This sum of squares is called the  extra sum 
of squares due to    β   2  because it measures the increase in the regression sum of 
squares that results from adding the regressors  x k    −    r    + 1 ,  x k    −    r    + 2 ,    . . .    ,  x k   to a model that 
already contains  x  1 ,  x  2 ,    . . .    ,  x k    −    r  . Now  SS  R (  β   2 |  β   1 ) is independent of  MS  Res , and the null 
hypothesis   β   2     =     0  may be tested by the statistic

    F
SS r

MS
0

2 1= ( )R

Res

b b
    (3.35)   

 If   β   2     ≠     0 , then  F  0  follows a noncentral  F  distribution with a noncentrality parameter 
of

   
λ

σ
= ′ ′ − ′( ) ′⎡⎣ ⎤⎦

−1
2 2 2 1 1 1

1
1 2 2b bX I X X X X X

  

 This result is quite important. If there is multicollinearity in the data, there are situ-
ations where   β   2  is markedly nonzero, but this test actually has almost no power 
(ability to indicate this difference) because of a near - collinear relationship between 
 X  1  and  X  2 . In this situation,   λ   is nearly zero even though   β   2  is truly important. This 
relationship also points out that the maximal power for this test occurs when  X  1  and 
 X  2 , are orthogonal to one another. By orthogonal we mean that   ′ =X X 02 1 . 

 If  F  0     >     F  α    ,   r   ,   n    −    p  , we reject  H  0 , concluding that at least one of the parameters in   β   2  
is not zero, and consequently at least one of the regressors  x k    −    r    + 1 ,  x k    −    r    + 2 ,    . . .    ,  x k   in  X  2  
contribute signifi cantly to the regression model. Some authors call the test in (3.35) 
a  partial   F   test  because it measures the contribution of the regressors in  X  2  given 
that the other regressors in  X  1  are in the model. To illustrate the usefulness of this 
procedure, consider the model

   y x x x= + + + +β β β β ε0 1 1 2 2 3 3   

 The sums of squares

   SS SS SSR R Rβ β β β β β β β β β β β1 0 2 3 2 0 1 3 3 0 1 2, , , , , , , ,( ) ( ) ( )  
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  are single - degree - of - freedom sums of squares that measure the contribution of each 
regressor  x j  ,  j     =    1, 2, 3, to the model given that all of the other regressors were 
already in the model. That is, we are assessing the value of adding  x j   to a model that 
did not include this regressor. In general, we could fi nd

   SS j kj j j kR β β β β β β0 1 1 1 1, , , , , , ,… …− +( ) ≤ ≤  

  which is the increase in the regression sum of squares due to adding  x j   to a model 
that already contains  x  1 ,    . . .    ,  x j    − 1  x j    + 1 ,    . . .    ,  x k  . Some fi nd it helpful to think of this as 
measuring the  contribution of   x j    as if it were the last variable added to the model . 

 Appendix  C 3.35 formally shows the equivalence of the partial  F  test on a single 
variable  x j   and the  t  test in (3.29). However, the partial  F  test is a more general 
procedure in that we can measure the effect of  sets  of variables. In Chaper 10 we 
will show how the partial  F  test plays a major role in  model building , that is, in 
searching for the best set of regressors to use in the model. 

 The extra - sum - of - squares method can be used to test hypotheses about any 
 subset  of regressor variables that seems reasonable for the particular problem under 
analysis. Sometimes we fi nd that there is a natural hierarchy or ordering in the 
regressors, and this forms the basis of a test. For example, consider the quadratic 
polynomial

   y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 12 1 2 11 1
2

22 2
2

  

 Here we might be interested in fi nding

   SSR β β β1 2 0,( )  

  which would measure the contribution of the fi rst - order terms to the model, and

   SSR β β β β β β12 11 22 0 1 2, , , ,( )  

  which would measure the contribution of adding second - order terms to a model 
that already contained fi rst - order terms. 

 When we think of adding regressors one at a time to a model and examining the 
contribution of the regressor added at each step given all regressors added previ-
ously, we can partition the regression sum of squares into marginal single - degree -
 of - freedom components. For example, consider the model

   y x x x= + + + +β β β β ε0 1 1 2 2 3 3  

  with the corresponding analysis - of - variance identity

   SS SS SST R Res= ( ) +β β β β1 2 3 0, ,   

 We may decompose the three - degree - of - freedom regression sum of squares as 
follows:

   SS SS SS SSR R R Rβ β β β β β β β β β β β β1 2 3 0 1 0 2 1 1 3 1 2 0, , , , ,( ) = ( ) + ( ) + ( )  
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  where each sum of squares on the right - hand side has one degree of freedom. Note 
that the order of the regressors in these marginal components is arbitrary. An alter-
nate partitioning of  SS  R (  β   1 ,   β   2 ,   β   3 |  β   0 ) is

   SS SS SS SSR R R Rβ β β β β β β β β β β β β1 2 3 0 2 0 1 2 0 3 1 2 0, , , , ,( ) = ( ) + ( ) + ( )   

 However, the extra - sum - of - squares method does not always produce a partitioning 
of the regression sum of squares, since, in general,

   SS SS SS SSR R R Rβ β β β β β β β β β β β β β β1 2 3 0 1 2 3 0 2 1 3 0 3 1 2, , , , , , ,( ) ≠ ( ) + ( ) + ,, β0( )   

  Minitab Output     The Minitab output in Table  3.4  provides a sequential partition-
ing of the regression sum of squares for  x  1     =    cases and  x  2     =    distance. The reported 
quantities are

   SS SS SSR R Rβ β β β β β β β1 2 0 1 0 1 2 0, ,( ) = ( ) + ( )  

    5550 8 5382 4 168 4. . .= +   

 Example 3.5   The Delivery Time Data 

    Consider the soft drink delivery time data in Example  3.1 . Suppose that we wish to 
investigate the contribution of the variable distance ( x  2 ) to the model. The appropri-
ate hypotheses are

   H H0 2 1 20 0: , :β β= ≠   

 To test these hypotheses, we need the extra sum of squares due to   β   2 , or

   

SS SS SS

SS SS
R R R

R R

β β β β β β β β
β β β β β

2 1 0 1 2 0 1 0

1 2 0 1 0

, , , ,

,

( ) = ( ) − ( )
= ( ) − (( )   

 From Example  3.3  we know that

   
SS

y

n

i

i

n

R 1 2 0
1

2

, 5550.8166 2 degrees of freβ β β( ) = ′ ′ −

⎛
⎝⎜

⎞
⎠⎟

==
∑

b̂ X y eedom( )
  

 The reduced model  y     =      β   0     +      β   1  x  1     +      ε   was fi t in Example 2.9, resulting in 
  ̂ . .y x= +3 3208 2 1762 1 . The regression sum of squares for this model is

   

SS SxyR

degree of fre

β β β1 0 1 2 1762 2473 3440

5382 4077 1

( ) = = ( )( )
=

ˆ . .

. eedom( )   

 Therefore, we have

   

SSR

degree of freedom

β β β2 1 0 5550 8166 5382 4088

168 4078 1

, . .

.

( ) = −
= ( ))   
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         3.3.3    Special Case of Orthogonal Columns in  X  

 Consider the model (3.31)

   

y X

X X

= +
= + +

b e
b b e1 1 2 2   

 The extra - sum - of - squares method allows us to measure the effect of the regressors 
in  X  2  conditional on those in  X  1  by computing  SS  R (  β   2 |  β   1 ). In general, we cannot talk 
about fi nding the sum of squares due to   β   2 ,  SS  R (  β   2 ), without accounting for the 
dependence of this quantity on the regressors in  X  1 . However, if the columns in  X  1  
are  orthogonal  to the columns in  X  2 , we can determine a sum of squares due to   β   2  
that is free of any dependence on the regressors in  X  1 . 

 To demonstrate this, form the normal equations   ′( ) = ′X X X yb̂  for the model 
(3.31). The normal equations are

   

′ ′
′ ′

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

′
′

⎡

⎣
⎢

⎤

⎦
⎥

X X X X

X X X X

X y

X y
1 1 1 2

2 1 2 2

1

2

1

2

ˆ

ˆ
b

b
  

 Now if the columns of  X  1  are orthogonal to the columns in  X  2 ,   ′ =X X 01 2  and 
  ′ =X X 02 1 . Then the normal equations become

   ′ = ′ ′ = ′X X X y X X X y1 1 1 1 2 2 2 2
ˆ , ˆb b  

  with solution

   
ˆ , ˆb b1 1 1

1
1 2 2 2

1
2= ′( ) ′ = ′( ) ′− −X X X y X X X y   

 Note that the least - squares estimator of   β   1  is   b̂1 regardless of whether or not  X  2  is 
in the model, and the least - squares estimator of   β   2  is   b̂2 regardless of whether or 
not  X  1  is in the model. 

 This is the increase in the regression sum of squares that results from adding  x  2  to 
a model already containing  x  1 . To test  H  0 :   β   2     =    0, form the test statistic

   
F

SS
MS

0
2 1 0 1 168 4078 1

10 6239
15 85= ( ) = =R

Res

β β β, .
.

.
  

 Note that the  MS  Res  from the  full  model using both  x  1  and  x  2  is used in the denomi-
nator of the test statistic. Since  F  0.05,1,22     =    4.30, we reject  H  0 :   β   2     =    0 and conclude that 
distance ( x  2 ) contributes signifi cantly to the model. 

 Since this partial  F  test involves a single variable, it is equivalent to the  t  test. To 
see this, recall that the  t  test on  H  0 :   β   2     =    0 resulted in the test statistic  t  0     =    3.98. From 
Section C.1, the square of a  t  random variable with  v  degrees of freedom is an  F  
random variable with one numerator and  v  denominator degrees of freedom, and 
we have   t F0

2 2
03 98 15 84= ( ) =. . � .        ■   
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 The regression sum of squares for the full model is

    

SSR b b

b b

b b

( ) = ′ ′

= ′ ′⎡⎣ ⎤⎦
′
′

⎡
⎣⎢

⎤
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ˆ
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ˆ
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1 2
1

2

1 2 2

′′ ′( ) ′ + ′ ′( ) ′− −y X X X X y y X X X X y1 1 1
1

1 2 2 2
1

2     (3.36)   

 However, the normal equations form two sets, and for each set we note that

    

SS

SS

R

R

b b

b b
1 1 1 1 1 1

1
1

2 2 2 2 2

( ) = ′ ′ = ′ ′( ) ′

( ) = ′ ′ = ′ ′

−ˆ

ˆ
X y y X X X X y

X y y X X XX X y2
1

2( ) ′−     (3.37)   

 Comparing Eq.  (3.37)  with Eq.  (3.36) , we see that

    SS SS SSR R Rb b b( ) = ( ) + ( )1 2     (3.38)   

 Therefore,

   SS SS SS SSR R R Rb b b b b1 2 2 1( ) = ( ) − ( ) ≡ ( )  

  and

   SS SS SS SSR R R Rb b b b b2 1 1 2( ) = ( ) − ( ) ≡ ( )   

 Consequently,  SS  R (  β   1 ) measures the contribution of the regressors in  X  1  to the 
model  unconditionally , and  SS  R (  β   2 ) measures the contribution of the regressors in 
 X  2  to the model  unconditionally . Because we can unambiguously determine the 
effect of each regressor when the regressors are orthogonal, data collection experi-
ments are often designed to have orthogonal variables. 

 As an example of a regression model with orthogonal regressors, consider the 
model  y     =      β   0     +      β   1  x  1     +      β   2  x  2     +      β   3  x  3     +      ε  , where the  X  matrix is

   

β β β β0 1 2 3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
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⎥
⎥
⎥
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 The levels of the regressors correspond to the 2 3  factorial design. It is easy to see 
that the columns of  X  are orthogonal. Thus,  SS  R (  β  j  ),  j     =    1, 2, 3, measures the contri-
bution of the regressor  x j   to the model regardless of whether any of the other 
regressors are included in the fi t.  

   3.3.4    Testing the General Linear Hypothesis 

 Many hypotheses about regression coeffi cients can be tested using a unifi ed 
approach. The extra - sum - of - squares method is a special case of this procedure. In 
the more general procedure the sum of squares used to test the hypothesis is usually 
calculated as the difference between two residual sums of squares. We will now 
outline the procedure. For proofs and further discussion, refer to Graybill [ 1976 ], 
Searle [ 1971 ], or Seber [ 1977 ]. 

 Suppose that the null hypothesis of interest can be expressed as  H  0 :  T   β      =     0 , where 
 T  is an  m     ×     p  matrix of constants, such that only  r  of the  m  equations in  T   β      =     0  are 
independent. The  full model  is  y     =     X   β      +      ε  , with   b̂ = ′( ) ′−X X X y1 , and the residual 
sum of squares for the full model is

   SS FM n pRes degrees of freedom( ) = ′ − ′ ′ −( )y y X yb̂   

 To obtain the  reduced model , the  r  independent equations in  T   β      =     0  are used to 
solve for  r  of the regression coeffi cients in the full model in terms of the remaining 
 p     −     r  regression coeffi cients. This leads to the reduced model  y     =     Z   γ      +      ε  , for example, 
where  Z  is an  n     ×    ( p     −     r ) matrix and   γ   is a ( p     −     r )    ×    1 vector of unknown regression 
coeffi cients. The estimate of   γ   is

   ĝ = ′( ) ′−Z Z Z y1

 

  and the residual sum of squares for the reduced model is

   SS RM n p rRes degrees of freedom( ) = ′ − ′ ′ − +( )y y Z yĝ   

 The reduced model contains fewer parameters than the full model, so conse-
quently  SS  Res ( RM )    ≥     SS  Res ( FM ). To test the hypothesis  H  0 :  T   β      =     0 , we use the dif-
ference in residual sums of squares

    SS SS RM SS FMH Res Res= ( ) − ( )     (3.39)  

  with  n     −     p     +     r     −    ( n     −     p )    =     r  degrees of freedom. Here  SS  H  is called the sum of 
squares due to the  hypothesis   H  0 :  T   β      =     0 . The test statistic for this hypothesis is

    F
SS r

SS FM n p
0 = ( ) −( )

H

Res

    (3.40)   

 We reject  H  0 :  T   β      =     0  if  F  0     >     F  α    ,   r   ,   n    −    p  .   
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 Example 3.6   Testing Equality of Regression Coeffi cients 

    The general linear hypothesis approach can be used to test the equality of regression 
coeffi cients. Consider the model

   y x x x= + + + +β β β β ε0 1 1 2 2 3 3   

 For the full model,  SS  Res ( RM ) has  n     −     p     =     n     −    4 degrees of freedom. We wish to test 
 H  0 :   β   1     =      β   3 . This hypothesis may be stated as  H  0 :  T   β      =     0 , where

   T = −[ ]0 1 0 1, , ,  

  is a 1    ×    4 row vector. There is only one equation in  T   β      =     0 , namely,   β   1     −      β   3     =    0. Sub-
stituting this equation into the full model gives the reduced model

   

y x x x

x x x

z z

= + + + +
= + +( ) + +
= + + +

β β β β ε
β β β ε
γ γ γ ε

0 1 1 2 2 1 3

0 1 1 3 2 2

0 1 1 2 2  

  where   γ   0     =      β   0 ,   γ   1     =      β   1 ( =      β   3 ),  z  1     =     x  1     +     x  3 ,   γ   2     =      β   2 , and  z  2     =     x  2 . We would fi nd  SS  Res ( RM ) 
with  n     −    4    +    1    =     n     −    3 degrees of freedom by fi tting the reduced model. The sum of 
squares due to hypothesis  SS  H     =     SS  Res ( RM )    −     SS  Res ( FM ) has  n     −    3    −    ( n     −    4)    =    1 
degree of freedom. The  F  ratio (3.40) is  F  0     =    ( SS  H /1)[ SS  Res ( RM )/( n     −    4)]. Note that 
this hypothesis could also be tested by using the  t  statistic

   

t
C C C

0
1 3

1 3

1 3

2
11 33 132

= −
−( ) =

−
+ −( )

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ
β β
β β

β β
σse

 

  with  n     −    4 degrees of freedom. This is equivalent to the  F  test.        ■   

 Example 3.7 

    Suppose that the model is

   y x x x= + + + +β β β β ε0 1 1 2 2 3 3  

  and we wish to test  H  0 :   β   1     =      β   3 ,   β   2     =    0. To state this in the form of the general linear 
hypothesis, let

   
T =

−⎡
⎣⎢

⎤
⎦⎥

0 1 0 1

0 0 1 0   

 There are now two equations in  T   β      =     0 ,   β   1     −      β   3     =    0 and   β   2     =    0. These equations give 
the reduced model

   

y x x

x x

z

= + + +
= + +( ) +
= + +

β β β ε
β β ε
γ γ ε

0 1 1 1 3

0 1 1 3

0 1 1   
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 The test statistic (3.40) for the general linear hypothesis may be written in 
another form, namely,

    F
r

SS FM n p
0

1 1

=
′ ′ ′( ) ′⎡⎣ ⎤⎦

( ) −( )

− −ˆ ˆb bT T X X T T

Res

    (3.41)   

 This form of the statistic could have been used to develop the test procedures illus-
trated in Examples 3.6 and 3.7. 

 There is a slight extension of the general linear hypothesis that is occasionally 
useful. This is

    H H0 1: , :T c T cb b= ≠     (3.42)  

  for which the test statistic is

    F
r

SS FM n p
0

1 1

=
−( )′ ′( ) ′⎡⎣ ⎤⎦ −( )

( ) −( )

− −
T c T X X T T cˆ ˆb b

Res

    (3.43)   

 Since under the null hypothesis  T   β      =     c , the distribution of  F  0  in Eq.  (3.43)  is  F r   ,   n    −    p  , 
we would reject  H  0 :  T   β      =     c  if  F  0     >     F  α    ,   r   ,   n    −    p  . That is, the test procedure is an upper one -
 tailed  F  test. Notice that the numerator of Eq.  (3.43)  expresses a measure of squared 
distance between  T   β   and  c  standardized by the covariance matrix of   Tb̂ . 

 To illustrate how this extended procedure can be used, consider the situation 
described in Example  3.6 , and suppose that we wish to test

   H0 1 3 2: β β− =   

 Clearly  T     =    [0, 1, 0,  − 1] and  c      =    [2]. For other uses of this procedure, refer to Prob-
lems 3.21 and 3.22. 

 Finally, if the hypothesis  H  0 :  T   β      =     0  (or  H  0 :  T   β      =     c ) cannot be rejected, then it 
may be reasonable to estimate   β   subject to the constraint imposed by the null 
hypothesis. It is unlikely that the usual least - squares estimator will automatically 
satisfy the constraint. In such cases a  constrained least - squares estimator  may be 
useful. Refer to Problem 3.34.   

   3.4    CONFIDENCE INTERVALS IN MULTIPLE REGRESSION 

 Confi dence intervals on individual regression coeffi cients and confi dence 
intervals on the mean response given specifi c levels of the regressors play the 
same important role in multiple regression that they do in simple linear regression. 
This section develops the one - at - a - time confi dence intervals for these cases. We 
also briefl y introduce simultaneous confi dence intervals on the regression 
coeffi cients. 

 In this example,  SS  Res ( RM ) has  n     −    2 degrees of freedom, so  SS  R  has  n     −    2    −    ( n     −    4)    =    2 
degrees of freedom. The  F  ratio (3.40) is  F  0     =    ( SS  H /2)/[ SS  Res ( FM )/( n     −    4)].        ■   
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   3.4.1    Confi dence Intervals on the Regression Coeffi cients 

 To construct  confi dence interval estimates  for the regression coeffi cients   β  j  , we 
will continue to assume that the errors   ε  i   are normally and independently distributed 
with mean zero and variance   σ      2 . Therefore, the observations  y i   are normally 
and independently distributed with mean   β β0 1+∑ =j

k
j ijx  and variance   σ      2 . Since the 

least - squares estimator   b̂  is a linear combination of the observations, it follows that 
  b̂  is normally distributed with mean vector   β   and covariance matrix   σ      2 ( X  ′  X )  − 1 . This 
implies that the marginal distribution of any regression coeffi cient   ̂β j is normal with 
mean   β  j   and variance   σ      2  C jj  , where  C jj   is the  j th diagonal element of the ( X  ′  X )  − 1  
matrix. Consequently, each of the statistics

    
ˆ

ˆ
, , , ,

β β
σ
j j

jjC
j k

−
=

2
0 1…     (3.44)  

  is distributed as  t  with  n     −     p  degrees of freedom, where   σ̂ 2  is the estimate of the 
error variance obtained from Eq.  (3.18) . 

 Based on the result given in Eq.  (3.44) , we may defme  a 100(l    −       α   ) percent con-
fi dence interval for the regression coeffi cient    β  j  ,  j     =    0, 1,    . . .    ,  k , as

    ˆ ˆ ˆ ˆ, ,β σ β β σα αj n p jj j j n p jjt C t C− ≤ ≤ +− −2
2

2
2     (3.45)   

 Remember that we call the quantity

    se ˆ ˆβ σj jjC( ) = 2     (3.46)  

  the standard error of the regression coeffi cient   β̂ j.    

 Example 3.8   The Delivery Time Data 

    We now fi nd a 95% CI for the parameter   β   1  in Example  3.1 . The point estimate 
of   β   1  is   ˆ .β1 1 61591= , the diagonal element of ( X  ′  X )  − 1  corresponding to   β   1  is 
 C  11     =    0.00274378, and   ˆ .σ 2 10 6239=  (from Example 3.2). Using Eq.  (3.45) , we 
fi nd that

   
ˆ ˆ ˆ ˆ. , . ,β σ β β σ1 0 025 22

2
11 1 1 0 025 22

2
11− ≤ ≤ +t C t C  

   

1 61591 2 074 10 6239 0 00274378

1 61591 2 074 101

. . . .

. . .

− ( ) ( )( )
≤ ≤ + ( )β 66239 0 00274378( )( ).  

   1 61591 2 074 0 17073 1 61591 2 074 0 170731. . . . . .− ( )( ) ≤ ≤ + ( )( )β  

  and the 95% CI on   β   1  is

   1 26181 1 970011. .≤ ≤β   
 Notice that the Minitab output in Table  3.4  gives the standard error of each regres-
sion coeffi cient. This makes the construction of these intervals very easy 
in practice.        ■   
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   3.4.2    CI Estimation of the Mean Response 

 We may construct a CI on the mean response at a particular point, such as  x  01 , 
 x  02 ,    . . .    ,  x  0   k  . Defi ne the vector  x  0  as

   

x0
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0

1

=
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⎢
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⎥
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x

x

x k

�

  

 The fi tted value at this point is

    ˆ ˆy0 0= ′x b     (3.47)   

 This is an unbiased estimator of  E ( y | x  0 ), since   E y E yˆ0 0 0( ) = ′ = ( )x xb , and the vari-
ance of   ŷ0 is

    Var ŷ0
2

0
1

0( ) = ′ ′( )−σ x X X x     (3.48)   

 Therefore, a  100(l    −       α   ) percent confi dence interval on the mean response  at the 
point  x  01 ,  x  02 ,    . . .    ,  x  0   k   is

    ˆ ˆ ˆ ˆ, ,y t E y x y tn p n p0 2
2

0
1

0 0 0 2
2

0
1− ′ ′( ) ≤ ( ) ≤ + ′ ′( )−

−
−

−
α ασ σx X X x x X X xx0     (3.49)   

 This is the multiple regression generalization of Eq.  (2.43) . 

 Example 3.9   The Delivery Time Data 

    The soft drink bottler in Example  3.1  would like to construct a 95% CI on the mean 
delivery time for an outlet requiring  x  1     =    8 cases and where the distance  x  2     =    275 
feet. Therefore,
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=
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⎥
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 The fi tted value at this point is found from Eq.  (3.47)  as

   

ˆ ˆ
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 The variance of   ̂y0 is estimated by
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 The length of the CI or the mean response is a useful measure of the quality of 
the regression model. It can also be used to compare competing models. To illustrate, 
consider the 95% CI on the the mean delivery time when  x  1     =    8 cases and  x  2     =    275 
feet. In Example  3.9  this CI is found to be (17.66, 20.78), and the length of this 
interval is 20.78    −    17.16    =    3.12 minutes. If we consider the simple linear regression 
model with  x  1     =    cases as the only regressor, the 95% CI on the mean delivery time 
with  x  1     =    8 cases is (18.99, 22.97). The length of this interval is 22.47    −    18.99    =    3.45 
minutes. Clearly, adding cases to the model has improved the precision of estima-
tion. However, the change in the length of the interval depends on the location of 
the point in the  x  space. Consider the point  x  1     =    16 cases and  x  2     =    688 feet. The 95% 
CI for the multiple regression model is (36.11, 40.08) with length 3.97 minutes, and 
for the simple linear regression model the 95% CI at  x  1     =    16 cases is (35.60, 40.68) 
with length 5.08 minutes. The improvement from the multiple regression model is 
even better at this point. Generally, the further the point is from the centroid of the 
 x  space, the greater the difference will be in the lengths of the two CIs.    

   3.4.3    Simultaneous Confi dence Intervals on Regression Coeffi cients 

 We have discussed procedures for constructing several types of confi dence and 
prediction intervals for the linear regression model. We have noted that these are 
one - at - a - time intervals, that is, they are the usual type of confi dence or prediction 
interval where the confi dence coeffi cient 1    −      α   indicates the proportion of correct 
statements that results when repeated random samples are selected and the appro-
priate interval estimate is constructed for each sample. Some problems require that 
several confi dence or prediction intervals be constructed using the same sample 
data. In these cases, the analyst is usually interested in specifying a confi dence coef-
fi cient that applies  simultaneously  to the entire  set  of interval estimates. A set of 
confi dence or prediction intervals that are all true simultaneously with probability 
1    −      α   are called  simultaneous  or  joint confi dence  or joint prediction intervals. 

   

ˆ .

. . .

σ 2
0

1
0 10 6239 1 8 275

0 11321518 0 00444859 0 000
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×
− −
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⎡

⎣

⎢
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⎤

⎦

⎥
⎥
⎥

= ( ) = 556794   

 Therefore, a 95% CI on the mean delivery time at this point is found from 
Eq.  (3.49)  as

   19 22 2 074 0 56794 19 22 2 074 0 567940. . . . . .− ≤ ( ) ≤ +E y x  

  which reduces to

   17 66 20 780. .≤ ( ) ≤E y x   

 Ninety - fi ve percent of such intervals will contain the true delivery time.        ■   
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 As an example, consider a simple linear regression model. Suppose that the 
analyst wants to draw inferences about the intercept   β   0  and the slope   β   1 . One pos-
sibility would be to construct 95% (say) CIs about both parameters. However, if 
these interval estimates are independent, the probability that both statements are 
correct is (0.95) 2     =    0.9025. Thus, we do not have a confi dence level of 95% associated 
with both statements. Furthermore, since the intervals are constructed using the 
same set of sample data, they are not independent. This introduces a further com-
plication into determining the confi dence level for the set of statements. 

 It is relatively easy to defi ne a  joint confi dence region  for the multiple regression 
model parameters   β  . We may show that

   

ˆ ˆ
~ ,

b b b b−( )′ ′ −( )
−

X X

pMS
Fp n p

Res  

  and this implies that
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X X
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 Consequently, a 100(1    −      α  ) percent  joint confi dence region  for all of the parameters 
in   β   is

    
ˆ ˆ

, ,

b b b b−( )′ ′ −( )
≤ −

X X

pMS
F p n p

Res
α     (3.50)   

 This inequality describes an elliptically shaped region. Construction of this joint 
confi dence region is relatively straightforward for simple linear regression ( p     =    2). 
It is more diffi cult for  p     =    3 and would require special three - dimensional graphics 
software.   

 Example 3.10   The Rocket Propellant Data 

    For the case of simple linear regression, we can show that Eq.  (3.50)  reduces to
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 To illustrate the construction of this confi dence region, consider the rocket propel-
lant data in Example 2.1. We will fi nd a 95% confi dence region for   β   0  and   β   1 . 
  ˆ .β0 2627 82= ,   ˆ .β1 37 15= − ,   ∑ ==i ix1

20 2 4677 69. ,  MS  Res     =    9244.59, and  F  0.05,2,18     =    3.55, we 
may substitute into the above equation, yielding

   

20 2627 82 2 267 25 2627 82 37 15

4677 69

0
2

0 1. . . .

.

−( ) + ( ) −( ) − −( )⎡⎣
+

β β β

(( ) − −( ) ⎤⎦ ( )[ ] =37 15 2 9244 59 3 551
2. . .β

 

  as the boundary of the ellipse. 
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 There is another general approach for obtaining simultaneous interval estimates 
of the parameters in a linear regression model. These CIs may be constructed 
by using

    ˆ ˆ , , , ,β βj j j k± ( ) =Δ se 0 1…     (3.51)  

  where the constant  Δ  is chosen so that a specifi ed probability that all intervals are 
correct is obtained. 

 Several methods may be used to choose  Δ  in (3.51). One procedure is the  Bonfer-
roni method . In this approach, we set  Δ     =     t  α    /2   p   ,   n    −    p   so that (3.51) becomes

    ˆ ˆ , , , ,,β βαj p n p jt j k± ( ) =−2 0 1se …     (3.52)   

 The probability is at least 1    −      α   that all intervals are correct. Notice that the  Bonfer-
roni confi dence intervals  look somewhat like the ordinary one - at - a - time CIs based 
on the  t  distribution, except that each Bonferroni interval has a confi dence coeffi -
cient 1    −      α  / p  instead of 1    −      α  .   

 The joint confi dence region is shown in Figure  3.8 . Note that this ellipse is not 
parallel to the   β   1  axis. The tilt of the ellipse is a function of the covariance between 
  β̂0 and   β̂1, which is   −x Sxxσ 2 . A positive covariance implies that errors in the point 
estimates of   β   0  and   β   1  are likely to be in the same direction, while a negative covari-
ance indicates that these errors are likely to be in opposite directions. In our example 

  x  is positive so   Cov ˆ , ˆβ β0 1( ) is negative. Thus, if the estimate of the slope is too steep 

(  β   1  is overestimated), the estimate of the intercept is likely to be too small (  β   0  is 
underestimated). The elongation of the region depends on the relative sizes of the 
variances of   β   0  and   β   1 . Generally, if the ellipse is elongated in the   β   0  direction (for 
example), this implies that   β   0  is not estimated as precisely as   β   1 . This is the case in 
our example.        ■     

       Figure 3.8     Joint 95% confi dence region for   β   0  and   β   1  for the rocket propellant data.  
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 The confi dence ellipse is always a more effi cient procedure than the Bonferroni 
method because the volume of the ellipse is always less than the volume of the space 
covered by the Bonferroni intervals. However, the Bonferroni intervals are easier 
to construct. 

 Constructing Bonferroni CIs often requires signifi cance levels not listed in the 
usual  t  tables. Many modern calculators and software packages have values of  t  α    ,   v   
on call as a library function. 

 The Bonferroni method is not the only approach to choosing  Δ  in (3.51). Other 
approaches include the  Scheff é    S   - method  (see Scheff é  [ 1953, 1959 ]), for which

   Δ = ( )−2 1 2F p n pα , ,  

  and the  maximum modulus   t   procedure  (see Hahn [ 1972 ] and Hahn and Hendrick-
son [ 1971 ]), for which

   Δ = −u p n pα , ,  

  where  u  α    ,   p   ,   n    −    p   is the upper   α   - tail point of the distnbution of the maximum absolute 
value of two independent student  t  random variables each based on  n     −    2 degrees 
of freedom. An obvious way to compare these three techniques is in terms of the 
lengths of the CIs they generate. Generally the Bonferroni intervals are shorter than 
the Scheff é  intervals and the maximum modulus  t  intervals are shorter than the 
Bonferroni intervals.   

 Example 3.11   The Rocket Propellant Data 

    We may fi nd 90% joint CIs for   β   0  and   β   1  for the rocket propellant data in Example 
2.1 by constructing a 95% CI for each parameter. Since
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  and  t  0.05/2,18     =     t  0.025,18     =    2.101, the joint CIs are
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 We conclude with 90% confi dence that this procedure leads to correct interval 
estimates for both parameters.        ■   
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   3.5    PREDICTION OF NEW OBSERVATIONS 

 The regression model can be used to predict future observations on  y  corresponding 
to particular values of the regressor variables, for example,  x  01 ,  x  02 ,    . . .    ,  x  0   k  . If 
  ′ = [ ]x0 01 02 01, , , ,x x x k… , then a  point estimate of the future observation   y  0  at the point 
 x  01 ,  x  02 ,    . . .    ,  x  0   k   is

    ˆ ˆy0 0= ′x b     (3.53)   

  A 100(1    −     α ) percent prediction interval  for this future observation is

    ˆ ˆ ˆ ˆ, ,y t y y tn p n p0 2
2

0
1

0 0 0 2
2

01 1− + ′ ′( )( ) ≤ ≤ + + ′ ′( )−
−

−α ασ σx X X x x X X −−( )1
0x     (3.54)   

 This is a generalization of the prediction interval for a future observation in simple 
linear regression, (2.45).    

 Example 3.12   The Delivery Time Data 

    Suppose that the soft drink bottler in Example  3.1  wishes to construct a 95% predic-
tion interval on the delivery time at an outlet where  x  1     =    8 cases are delivered and 
the distance walked by the deliveryman is  x  2     =    275 feet. Note that   ′ = [ ]x0 1 8 275, , , 
and the point estimate of the delivery time is   ̂ .y0 0 19 22= ′ =x  minutes. Also, in 
Example  3.9  we calculated   ′ ′( ) =−x X X x0

1
0 0 05346. . Therefore, from (3.54) we have

   19 22 2 074 10 6239 1 0 05346 19 22 2 074 10 6239 1 0 0530. . . . . . . .− +( ) ≤ ≤ + +y 446( )  

  and the 95% prediction interval is

    12 28 26 160. .≤ ≤y          ■   

   3.6    A MULTIPLE REGRESSION MODEL FOR THE PATIENT 
SATISFACTION DATA 

 In Section 2.7 we introduced the hospital patient satisfaction data and built a simple 
linear regression model relating patient satisfaction to a severity measure of the 
patient ’ s illness. The data used in this example is in Table B17. In the simple linear 
regression model the regressor severity was signifi cant, but the model fi t to the data 
wasn ’ t entirely satisfactory. Specifi cally, the value of  R  2  was relatively low, approxi-
mately 0.43, We noted that there could be several reasons for a low value of  R  2 , 
including missing regressors. Figure  3.9  is the JMP output that results when we fi t 
a multiple linear regression model to the satisfaction response using severity and 
patient age as the predictor variables.   

 In the multiple linear regression model we notice that the plot of actual versus 
predicted response is much improved when compared to the plot for the simple 
linear regression model (compare Figure  3.9  to Figure  2.7 ). Furthermore, the model 
is signifi cant and both variables, age and severity, contribute signifi cantly to the 
model. The  R  2  has increased from 0.43 to 0.81. The mean square error in the multiple 
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Response Satisfaction 
Whole Model 
Actual by Predicted Plot 

Summary of Fit 

RSquare 0.809595
RSquare Adj 0.792285
Root Mean Square Error 9.681956
Mean of Response 66.72
Observations (or Sum Wgts) 25

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 2 8768.754 4384.38 46.7715 
Error 22 2062.286 93.74 Prob > F 
C. Total 24 10831.040 <.0001* 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t|

Intercept 139.92335 8.100194 17.27 <.0001*
Age -1.046154 0.157263 -6.65 <.0001*
Severity -0.435907 0.178754 -2.44 0.0233*
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       Figure 3.9     JMP output for the multiple linear regression model for the patient 
satisfaction data.  

linear regression model is 90.74, considerably smaller than the mean square error 
in the simple linear regression model, which was 270.02. The large reduction in mean 
square error indicates that the two - variable model is much more effective in explain-
ing the variability in the data than the original simple linear regression model. This 
reduction in the mean square error is a quantitative measure of the improvement 
we qualitatively observed in the plot of actual response versus the predicted response 
when the predictor age was added to the model. Finally, the response is predicted 
with better precision in the multiple linear model. For example, the standard devia-
tion of the predicted response for a patient that is 42 year old with a severity index 
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of 30 is 3.10 for the multiple linear regression model while it is 5.25 for the simple 
linear regression model that includes only severity as the predictor. Consequently 
the prediction interval would be considerably wider for the simple linear regression 
model. Adding an important predictor to a regression model (age in this example) 
can often result in a much better fi tting model with a smaller standard error and as 
a consequence narrow confi dence intervals on the mean response and narrower 
prediction intervals.  

   3.7    USING SAS AND R FOR BASIC MULTIPLE LINEAR REGRESSION 

 SAS is an important statistical software package. Table  3.7  gives the source code to 
analyze the delivery time data that we have been analyzing throughout this chapter. 
The statement PROC REG tells the software that we wish to perform an ordinary 
least - squares linear regression analysis. The  “ model ”  statement gives the specifi c 
model and tells the software which analyses to perform. The commands for the 

  TABLE 3.7     SAS  Code for Delivery Time Data 

   date delivery;   
   input time cases distance;   
   cards;   
   16.68      7      560   
   11.50      3      220   
   12.03      3      340   
   14.88      4      80   
   13.75      6      150   
   18.11      7      330   

   8.00      2      110   
   17.83      7      210   
   79.24      30      1460   
   21.50      5      605   
   40.33      16      688   
   21.00      10      215   
   13.50      4      255   
   19.75      6      462   
   24.00      9      448   
   29.00      10      776   
   15.35      6      200   
   19.00      7      132   

   9.50      3      36   
   35.10      17      770   
   17.90      10      140   
   52.32      26      810   
   18.75      9      450   
   19.83      8      635   
   10.75      4      150   
   proc reg;   
   model time    =    cases distance/p clm cli;   
   run;   
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optional analyses appear after the solidus. PROC REG always produces the anal-
ysis - of - variance table and the information on the parameter estimates. The  “ p clm 
cli ”  options on the model statement produced the information on the predicted 
values. Specifi cally,  “ p ”  asks SAS to print the predicted values,  “ clm ”  (which stands 
for confi dence limit, mean) asks SAS to print the confi dence band, and  “ cli ”  (which 
stands for confi dence limit, individual observations) asks to print the prediction 
band. Table  3.8  gives the resulting output, which is consistent with the Minitab 
analysis.   

 We next illustrate the R code required to do the same analysis. The fi rst step 
is to create the data set. The easiest way is to input the data into a text fi le using 
spaces for delimiters. Each row of the data fi le is a record. The top row should 
give the names for each variable. All other rows are the actual data records. Let 
delivery.txt be the name of the data fi le. The fi rst row of the text fi le gives the vari-
able names:

 time cases distance  

 The next row is the fi rst data record, with spaces delimiting each data item:

 16.68 7 560  

 The R code to read the data into the package is:

 deliver  <  -  read.table( “ delivery.txt ” ,header = TRUE, sep =  “  ” )  

 The object deliver is the R data set, and  “ delivery.txt ”  is the original data fi le. The 
phrase, hearder = TRUE tells R that the fi rst row is the variable names. The phrase 
sep =  “  ”  tells R that the data are space delimited. 

 The commands

 deliver.model  <  -  lm(time ∼ cases + distance, data = deliver) 
 summary(deliver.model) 

tell R 

   •      to estimate the model, and  
   •      to print the analysis of variance, the estimated coeffi cients, and their tests.     

   3.8    HIDDEN EXTRAPOLATION IN MULTIPLE REGRESSION 

 In predicting new responses and in estimating the mean response at a given point 
 x  01 ,  x  02 ,    . . .    ,  x  0   k   one must be careful about  extrapolating  beyond the region contain-
ing the original observations. It is very possible that a model that fi ts well in the 
region of the original data will perform poorly outside that region. In multiple 
regression it is easy to inadvertently extrapolate, since the levels of the regressors 
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110  MULTIPLE LINEAR REGRESSION

( x i   1 ,  x i   2 ,    . . .    ,  x ik  ),  i     =    1, 2,    . . .    ,  n , jointly defi ne the region containing the data. As an 
example, consider Figure  3.10 , which illustrates the region containing the original 
data for a two - regressor model. Note that the point ( x  01 ,  x  02 ) lies within the ranges 
of both regressors  x  1  and  x  2  but outside the region of the original data. Thus, either 
predicting the value of a new observation or estimating the mean response at this 
point is an extrapolation of the original regression model.   

 Since simply comparing the levels of the  x  ’ s for a new data point with the ranges 
of the original  x  ’ s will not always detect a hidden extrapolation, it would be helpful 
to have a formal procedure to do so. We will defi ne the smallest convex set contain-
ing all of the original  n  data points ( x i   1 ,  x i   2 ,    . . .    ,  x ik  ),  i     =    1, 2,    . . .    ,  n , as the regressor 
variable hull (RVH). If a point  x  01 ,  x  02 ,    . . .    ,  x  0   k   lies inside or on the boundary of the 
RVH, then prediction or estimation involves interpolation, while if this point lies 
outside the RVH, extrapolation is required. 

 The diagonal elements  h ii   of the hat matrix  H     =     X ( X  ′  X )  − 1  X  ′  are useful in detect-
ing  hidden extrapolation . The values of  h ii   depend both on the Euclidean distance 
of the point  x   i   from the centroid and on the density of the points in the RVH. In 
general, the point that has the largest value of  h ii  , say  h  max , will lie on the boundary 
of the RVH in a region of the  x  space where the density of the observations is rela-
tively low. The set of points  x  (not necessarily data points used to fi t the model) that 
satisfy

   ′ ′( ) ≤−x X X x1 hmax  

  is an ellipsoid enclosing all points inside the RVH (see Cook [ 1979 ] and Weisberg 
[ 1985 ]). Thus, if we are interested in prediction or estimation at the point 
  ′ = [ ]x0 01 02 01, , , ,x x x k… , the location of that point relative to the RVH is refl ected by

   h00 0
1

0= ′ ′( )−x X X x   

       Figure 3.10     An example of extrapolation in multiple regression.  

Joint
region of 
original 

data

Original
range for

x2

Original
range for

x1

x02

x2

x01 x1



STANDARDIZED REGRESSION COEFFLCIENTS  111

 Points for which  h  00     >     h  max  are outside the ellipsoid enclosing the RVH and are 
extrapolation points. However, if  h  00     <     h  max , then the point is inside the ellipsoid and 
possibly inside the RVH and would be considered an interpolation point because 
it is close to the cloud of points used to fi t the model. Generally the smaller the 
value of h 00 , the closer the point  x  0  lies to the centroid of the  x  space.  †   

 Weisberg [ 1985 ] notes that this procedure does not produce the smallest volume 
ellipsoid containing the RVH. This is called the minimum covering ellipsoid (MCE). 
He gives an iterative algorithm for generating the MCE. However, the test for 
extrapolation based on the MCE is still only an approximation, as there may still 
be regions inside the MCE where there are no sample points.    

 Example 3.13   Hidden Extrapolation — The Delivery Time Data 

    We illustrate detecting hidden extrapolation using the soft drink delivery time data 
in Example  3.1 . The values of  h ii   for the 25 data points are shown in Table  3.9 . Note 
that observation 9, represented by  ♦  in Figure  3.11 , has the largest value of  h ii  . Figure 
 3.11  confi rms that observation 9 is on the boundary of the RVH.     

 Now suppose that we wish to consider prediction or estimation at the following 
four points: 

   Point  
   Symbols in 
Figure  3.10       x  10       x  20       h  00   

   a      �     8    275    0.05346  
   b   

   �   

  20    250    0.58917  
   c      +     28    500    0.89874  
   d      ×     8    1200    0.86736  

 All of these points lie within the ranges of the regressors  x  1  and  x  2 . In Figure  3.11  
point  a  (used in Examples 3.9 and 3.12 for estimation and prediction), for which 
 h  00     =    0.05346, is an interpolation point since  h  00     =    0.05346    <     h  max     =    0.49829. The 
remaining points  b ,  c , and  d  are all extrapolation points, since their values of  h  00  
exceed  h  max . This is readily confi rmed by inspection of Figure  3.11 .        ■   

   3.9    STANDARDIZED REGRESSION COEFFLCIENTS 

 It is usually diffi cult to directly compare regression coeffi cients because the magui-
tude of   ̂β j refl ects the units of measurement of the regressor  x j  . For example, suppose 
that the regression model is

   †       If  h  max  is much larger than the next largest value, the point is a severe outlier in  x  space. The presence 
of such an outlier may make the ellipse much larger than desirable. In these cases one could use the 
second largest value of  h ii   as  h  max . This approach may be useful when the most remote point has been 
severely downweighted, say by the robust fi tting techniques discussed in Chapter  15 . 
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  TABLE 3.9    Values of  h ii   for the Delivery Time Data 

   Observation,  i      Cases,  x i   1      Distance,  x i   2       h ii    

  1    7    560    0.10180  
  2    3    220    0.07070  
  3    3    340    0.09874  
  4    4    80    0.08538  
  5    6    150    0.07501  
  6    7    330    0.04287  
  7    2    110    0.08180  
  8    7    210    0.06373  
  9    30    1460    0.49829    =     h  max   

  10    5    605    0.19630  
  11    16    688    0.08613  
  12    10    215    0.11366  
  13    4    255    0.06113  
  14    6    462    0.07824  
  15    9    448    0.04111  
  16    10    776    0.16594  
  17    6    200    0.05943  
  18    7    132    0.09626  
  19    3    36    0.09645  
  20    17    770    0.10169  
  21    10    140    0.16528  
  22    26    810    0.39158  
  23    9    450    0.04126  
  24    8    635    0.12061  
  25    4    150    0.06664  

       Figure 3.11     Scatterplot of cases and distance for the delivery time data.  
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   ŷ x x= + +5 10001 2  

  and  y  is measured in liters,  x  1  is measured in milliliters, and  x  2  is measured in liters. 
Note that although   β̂2 is considerably larger than   ̂β1, the effect of both regressors 
on   ̂y is identical, since a 1 - liter change in either  x  1  or  x  2  when the other variable is 
held constant produces the same change in   ̂y. Generally the units of the regression 
coeffi cient   β  j   are units of  y /units of  x j  . For this reason, it is sometimes helpful to work 
with scaled regressor and response variables that produce  dimensionless regression 
coeffi cients . These dimensionless coeffi cients are usually called  standardized regres-
sion coeffi cients . We now show how they are computed, using two popular scaling 
techniques. 

     Unit Normal Scaling     The fi rst approach employs  unit normal scaling  for the 
regressors and the response variable. That is,

    z
x x

s
i n j kij

ij j

j

=
−

= =, , , , , , , ,1 2 1 2… …     (3.55)  

  and

    y
y y

s
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y

* , , , ,= − = 1 2 …     (3.56)  
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  is the sample variance of the response. Note the similarity to standardizing a normal 
random variable. All of the scaled regressors and the scaled responses have sample 
mean equal to zero and sample variance equal to 1. 

 Using these new variables, the regression model becomes

    y b z b z b z i ni i i k ik i
* , , , ,= + + + + =1 1 2 2 1 2� …ε     (3.57)   

 Centering the regressor and response variables by subtracting   xj  and   y  removes the 
intercept from the model (actually the least - squares estimate of  b  0  is   ̂ *b y= = 0). The 
least - squares estimator of  b  is

    ˆ *b Z Z Z y= ′( ) ′−1     (3.58)    
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  Unit Length Scaling     The second popular scaling is  unit length scaling ,

    w
x x

s
i n j kij

ij j

jj

=
−

= =1 2 1 2 1 2, , , , , , , ,… …     (3.59)  

  and

    y
y y
SS
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i0

1 2 1 2= − =
T

, , , ,…     (3.60)  

  where
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=
∑ 2

1  

  is the corrected sum of squares for regressor  x j  . In this scaling, each new regressor 

 w j   has mean   wj = 0 and length   ∑ −( ) ==i
n

ij jw w1
2 1. In terms of these variables, the 

regression model is

    y b w b w b w i ni q i i k ik i
0

1 2 2 1 2= + + + + =� …ε , , , ,     (3.61)   

 The vector of least - squares regression coeffi cients is

    b̂ W W W y= ′( ) ′−1 0

    
(3.62)

   

 In the unit length scaling, the  W  ′  W  matrix is in the form of a  correlation matrix , 
that is,
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  is the simple correlation between regressors  x i   and  x j  . Similarly,
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  where
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  is the simple correlation  †   between the regressor  x j   and the response  y.  If unit normal 
scaling is used, the  Z ′ Z  matrix is closely related to  W ′ W ; in fact,

   ′ = −( ) ′Z Z W Wn 1   

 Consequently, the estimates of the regression coeffi cients in Eqs.  (3.58)  and (3.62) 
are identical. That is, it does not matter which scaling we use; they both produce the 
same set of dimensionless regression coeffi cients   ̂b. 

 The regression coeffi cients   ̂b are usually called  standardized regression coeffi -
cients . The relationship between the original and standardized regression coeffi -
cients is

    ˆ ˆ , , , ,β j j
jj

b
SS
S

j k=
⎛
⎝⎜

⎞
⎠⎟

=T
1 2

1 2 …     (3.63)  

  and

    ˆ ˆβ β0

1

= −
=

∑y xj j

j

k

    (3.64)   

 Many multiple regression computer programs use this scaling to reduce problems 
arising from round - off errors in the ( X ′ X )  − 1  matrix. These round - off errors may be 
very serious if the original variables differ considerably in magnitude. Most 
computer programs also display both the original regression coeffi cients and the 
standardized regression coeffi cients, which are often referred to as  “ beta coeffi -
cients. ”  In interpreting standardized regression coeffi cients, we must remember 
that they are still  partial regression coeffi cients  (i.e.,  b j   measures the effect of  x j   given 
that other regressors  x i  ,  i     ≠     j , are in the model). Furthermore, the  b j   are affected 
by the range of values for the regressor variables. Consequently, it may be 
dangerous to use the magnitude of the   ̂bj as a measure of the relative importance 
of regressor  x j  .    

   †       It is customary to refer to  r iy   and  r jj   as correlations even through the regressors are not necessarily 
random variables. 

 Example 3.14   The Delivery Time Data 

    We fi nd the standardized regression coeffi cients for the delivery time data in 
Example  3.1 . Since

   SS ST = =5784 5426 1136 560011. , .  

    S Sy1 222473 3440 2 537 935 0330= =. , , , .  
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   S Sy2 12108 038 6019 44 266 6800= =, . , , .  

  we fi nd (using the unit length scaling) that
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  and the correlation matrix for this problem is
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 The normal equations in terms of the standardized regression coeffi cients are
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 Consequently, the standardized regression coeffi cients are
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 The fi tted model is

   ˆ . .y w w0
1 20 716267 0 301311= +   

 Thus, increasing the standardized value of cases  w  1  by one unit increases the stan-
dardized value of time   ̂y0 by 0.716267. Furthermore, increasing the standardized 
value of distance  w  2  by one unit increases   ̂y0 by 0.301311 unit. Therefore, it seems 
that the volume of product delivered is more important than the distance in that it 
has a larger effect on delivery time in terms of the standardized variables. However, 
we should be somewhat cautious in reaching this conclusion, as   ̂b1 and   ̂b2 are still 
 partial  regression coeffi cients, and   ̂b1 and   ̂b2  are affected by the spread in the regres-
sors. That is, if we took another sample with a different range of values for cases 
and distance, we might draw different conclusions about the relative importance of 
these regressors.        ■   
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   3.10    MULTICOLLINEARITY 

 Regression models are used for a wide variety of applications. A serious problem 
that may dramatically impact the usefulness of a regression model is  multicollinear-
ity , or  near - linear dependence  among the regression variables. In this section we 
briefl y introduce the problem and point out some of the harmful effects of multicol-
linearity. A more extensive presentation, including more information on diagnostics 
and remedial measures, is in Chapter  9 . 

 Multicollinearity implies near - linear dependence among the regressors. The 
regressors are the columns of the  X  matrix, so clearly an  exact linear dependence  
would result in a  singular X ′ X . The presence of near - linear dependencies can dra-
matically impact the ability to estimate regression coeffi cients. For example, con-
sider the regression data shown in Figure  3.12 .   

 In Section  3.8  we introduced standardized regression coeffi cients. Suppose we 
use the  unit length  scaling [Eqs.  (3.59)  and  (3.60) ] for the data in Figure  3.12  so that 
the  X ′ X  matrix (called  W ′ W  in Section  3.8 ) will be in the form of a correlation 
matrix. This results in
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 For the soft drink delivery time data, we showed in Example  3.14  that
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    Now consider the variances of the standardized regression coeffi cients   ̂b1 and   ̂b2 
for the two data sets. For the hypothetical data set in Figure  3.12 .
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       Figure 3.12     Data on two regressors.  
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  while for the soft drink delivery time data

   

Var Varˆ ˆ
.
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2
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2
3 11841

( )
=

( )
=

σ σ   

 In the soft drink delivery time data the variances of the regression coeffi cients are 
 infl ated  because of the multicollinearity. This multicollinearity is evident from the 
nonzero off - diagonal elements in  W ′ W . These off - diagonal elements are usually 
called simple correlations between the regressors, although the term  correlation  
may not be appropriate unless the  x  ’ s are random variables. The off - diagonals do 
provide a measure of linear dependency between regressors. Thus, multicollinearity 
can seriously affect the precision with which regression coeffi cients are estimated. 

 The main diagonal elements of the inverse of the  X ′ X  matrix in correlation form 
[( W ′ W )  − 1  above] are often called  variance infl ation factors  (VIFs), and they are an 
important multicollinearity diagnostic. For the soft drink data,

   VIF VIF1 2 3 11841= = .  

  while for the hypothetical regressor data above,

   VIF VIF1 2 1= =  

  implying that the two regressors  x  1  and  x  2  are  orthogonal . We can show that, in 
general, the VIF for the  j th regression coeffi cient can be written as

   
VIFj

jR
=

−
1

1 2

 

  where   Rj
2 is the coeffi cient of multiple determination obtained from regressing  x j   on 

the other regressor variables. Clearly, if  x j   is nearly linearly dependent on some of 
the other regressors, then   Rj

2 will be near unity and VIF  j   will be large. VIFs larger 
than 10 imply serious problems with multicollinearity. Most regression software 
computes and displays the VIF  j  . 

 Regression models fi t to data by the method of least squares when strong mul-
ticollinearity is present are notoriously poor prediction equations, and the values of 
the regression coeffi cients are often very sensitive to the data in the particular 
sample collected. The illustration in Figure  3.13  a  will provide some insight regarding 
these effects of multicollinearity. Building a regression model to the ( x  1 ,  x  2 ,  y ) data 
in Figure  3.13  a  is analogous to placing a plane through the dots. Clearly this plane 
will be very unstable and is sensitive to relatively small changes in the data points. 
Furthermore, the model may predict  y  ’ s at points similar to those observed in the 
sample reasonably well, but any extrapolation away from this path is likely to 
produce poor prediction. By contrast, examine the of  orthogonal regressors  in 
Figure  3.13  b . The plane fi t to these points will be more stable.   

 The diagnosis and treatment of multicollinearity is an important aspect of regres-
sion modeling. For a more in - depth treatment of the subject, refer to Chapter  9 .  



WHY DO REGRESSION COEFFICIENTS HAVE THE WRONG SIGN?  119

   3.11    WHY DO REGRESSION COEFFICIENTS HAVE THE WRONG SIGN? 

 When using multiple regression, occasionally we fi nd an apparent contradiction of 
intuition or theory when one or more of the regression coeffi cients seem to have 
the  wrong sign . For example, the problem situation may imply that a particular 
regression coeffi cient should be positive, while the actual estimate of the parameter 
is negative. This  “ wrong ”  - sign problem can be disconcerting, as it is usually diffi cult 
to explain a negative estimate (say) of a parameter to the model user when that 
user believes that the coeffi cient should be positive. Mullet [ 1976 ] points out that 
regression coeffi cients may have the wrong sign for the following reasons:

   1.     The range of some of the regressors is too small.  
  2.     Important regressors have not been included in the model.  
  3.     Multicollinearity is present.  
  4.     Computational errors have been made.    

 It is easy to see how the range of the  x  ’ s can affect the sign of the regression coef-
fi cients. Consider the simple linear regression model. The variance of the regression 
coeffi cient   β̂1 is   Var β σ σ1

2 2
1( ) = = ∑ −( )=S x xxx i

n
i . Note that the variance of   β̂1 is 

inversely proportional to the  “ spread ”  of the regressor. Therefore, if the levels of  x  
are all close together, the variance of   ̂β1 will be relatively large. In some cases the 
variance of   ̂β1 could be so large that a negative estimate (for example) of a regres-
sion coeffi cient that is really positive results. The situation is illustrated in Figure 
 3.14 , which plots the sampling distribution of   β̂1. Examining this fi gure, we see that 
the probability of obtaining a negative estimate of   β̂1 depends on how close the true 
regression coeffi cient is to zero and the variance of   β̂1, which is greatly infl uenced 
by the spread of the  x  ’ s.   

 In some situations the analyst can control the levels of the regressors. Although 
it is possible in these cases to decrease the variance of the regression coeffi cients 
by increasing the range of the  x  ’ s, it may not be desirable to spread the levels of 
the regressors out too far. If the  x  ’ s cover too large a range and the true response 

       Figure 3.13     ( a ) A data set with multicollinearity. ( b ) Orthogonal regressors.  
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function is nonlinear, the analyst may have to develop a much more complex equa-
tion to adequately model the curvature in the system. Furthermore, many problems 
involve a region of  x  space of specifi c interest to the experimenter, and spreading 
the regressors out beyond this region of interest may be impractical or impossible. 
In general, we must trade off the precision of estimation, the likely complexity of 
the model, and the values of the regressors of practical interest when deciding how 
far to spread out the  x  ’ s. 

 Wrong signs can also occur when important regressors have been left out of 
the model. In these cases the sign is not really wrong. The partial nature of the 
regression coeffi cients cause the sign reversal. To illustrate, consider the data in 
Figure  3.15 .   

 Suppose we fi t a model involving only  y  and  x  1 . The equation is

   ˆ . .y x= +1 835 0 463 1  

  where   ˆ .β1 0 463=  is a  “ total ”  regression coeffi cient. That is, it measures the total effect 
of  x  1  ignoring the information content in  x  2 . The model involving both  x  1  and  x  2  is

   ˆ . . .y x x= − +1 036 1 222 3 6491 2   

       Figure 3.14     Sampling distribution of   β̂1 .  
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       Figure 3.15     Plot of  y  versus  x  1 .  
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 Note that now   ˆ .β1 1 222= − , and a sign reversal has occurred. The reason is that 
  ˆ .β1 1 222= −  in the multiple regression model is a partial regression coeffi cient; it 
measures the effect of  x  1   given  that  x  2  is also in the model. 

 The data from this example are plotted in Figure  3.15 . The reason for the differ-
ence in sign between the partial and total regression coeffi cients is obvious from 
inspection of this fi gure. If we ignore the  x  2  values, the apparent relationship between 
 y  and  x  1  has a positive slope. However, if we consider the relationship between  y  
and  x  1  for constant values of  x  2 , we note that this relationship really has a negative 
slope. Thus, a wrong sign in a regression model may indicate that important regres-
sors are missing. If the analyst can identify these regressors and include them in the 
model, then the wrong signs may disappear. 

 Multicollinearity can cause wrong signs for regression coeffi cients. In effect, 
severe multicollinearity infl ates the variances of the regression coeffi cients, and this 
increases the probability that one or more regression coeffi cients will have the 
wrong sign. Methods for diagnosing and dealing with multicollinearity are summa-
rized in Chapter  9 . 

 Computational error is also a source of wrong signs in regression models. Differ-
ent computer programs handle round - off or truncation problems in different ways, 
and some programs are more effective than others in this regard. Severe multicol-
linearity causes the  X ′ X  matrix to be ill - conditioned, which is also a source of 
computational error. Computational error can cause not only sign reversals but 
regression coeffi cients to differ by several orders of magnitude. The accuracy of the 
computer code should be investigated when wrong - sign problems are suspected.  

        PROBLEMS 

       3.1    Consider the National Football League data in Table B.1.
   a.     Fit a multiple linear regression model relating the number of games won 

to the team ’ s passing yardage ( x  2 ), the percentage of rushing plays ( x  7 ), and 
the opponents ’  yards rushing ( x  8 ).  

  b.     Construct the analysis - of - variance table and test for signifi cance of 
regression.  

  c.     Calculate  t  statistics for testing the hypotheses  H  0 :   β   2     =    0,  H  0 :   β   7     =    0, and 
 H  0 :   β   8     =    0. What conclusions can you draw about the roles the variables  x  2 , 
 x  7 , and  x  8  play in the model?  

  d.     Calculate  R  2  and   RAdj
2  for this model.  

  e.     Using the partial  F  test, determine the contribution of  x  7  to the model. How 
is this partial  F  statistic related to the  t  test for   β   7  calculated in part c above?      

    3.2    Using the results of Problem 3.1, show numerically that the square of the 
simple correlation coeffi cient between the observed values  y i   and the fi tted 
values   ̂yi equals  R  2 .   

    3.3    Refer to Problem 3.1.
   a.     Find a 95% CI on   β   7 .  
  b.     Find a 95% CI on the mean number of games won by a team when 

 x  2     =    2300,  x  7     =    56.0, and  x  8     =    2100.      
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    3.4    Reconsider the National Football League data from Problem 3.1. Fit a model 
to these data using only  x  7  and  x  8  as the regressors.
   a.     Test for signifi cance of regression.  
  b.     Calculate  R  2  and   RAdj

2 . How do these quantities compare to the values 
computed for the model in Problem 3.1, which included an additional 
regressor ( x  2 )?  

  c.     Calculate a 95% CI on   β   7 . Also fi nd a 95% CI on the mean number of 
games won by a team when  x  7     =    56.0 and  x  8     =    2100. Compare the lengths 
of these CIs to the lengths of the corresponding CIs from Problem 3.3.  

  d.     What conclusions can you draw from this problem about the consequences 
of omitting an important regressor from a model?      

    3.5    Consider the gasoline mileage data in Table B.3.
   a.     Fit a multiple linear regression model relatmg gasoline mileage  y  (miles per 

gallon) to engine displacement  x  1  and the number of carburetor barrels  x  6 .  
  b.     Construct the analysis - of - variance table and test for signifi cance of 

regression.  
  c.     Calculate  R  2  and   RAdj

2  for this model. Compare this to the  R  2  and the   RAdj
2  

for the simple linear regression model relating mileage to engine displace-
ment in Problem 2.4.  

  d.     Find a 95% CI for   β   1 .  
  e.     Compute the  t  statistics for testing  H  0 :   β   1     =    0 and  H  0 :   β   6     =    0. What conclu-

sions can you draw?  
  f.     Find a 95% CI on the mean gasoline mileage when  x  1     =    275   in. 3  and  x  6     =    2 

barrels.  
  g.     Find a 95% prediction interval for a new observation on gasoline mileage 

when  x  1     =    257   in. 3  and  x  6     =    2 barrels.      

    3.6    In Problem 2.4 you were asked to compute a 95% CI on mean gasoline pre-
diction interval on mileage when the engine displacement  x  1     =    275   in. 3  
Compare the lengths of these intervals to the lengths of the confi dence and 
prediction intervals from Problem 3.5 above. Does this tell you anything 
about the benefi ts of adding  x  6  to the model?   

    3.7    Consider the house price data in Table B.4.
   a.     Fit a multiple regression model relating selling price to all nine 

regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings.  
  d.     What is the contribution of lot size and living space to the model given 

that all of the other regressors are included?  
  e.     Is multicollinearity a potential problem in this model?      

    3.8    The data in Table B.5 present the performance of a chemical process as a 
function of sever controllable process variables.
   a.     Fit a multiple regression model relating CO 2  product ( y ) to total solvent 

( x  6 ) and hydrogen consumption ( x  7 ).  
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  b.     Test for signifi cance of regression. Calculate  R  2  and   RAdj
2 .  

  c.     Using  t  tests determine the contribution of  x  6  and  x  7  to the model.  
  d.     Construct 95% CIs on   β   6  and   β   7 .  
  e.     Refi t the model using only  x  6  as the regressor. Test for signifi cance of 

regression and calculate  R  2  and   RAdj
2 . Discuss your fi ndings. Based on these 

statistics, are you satisfi ed with this model?  
  f.     Construct a 95% CI on   β   6  using the model you fi t in part e. Compare the 

length of this CI to the length of the CI in part d. Does this tell you any-
thing important about the contribution of  x  7  to the model?  

  g.     Compare the values of  MS  Res  obtained for the two models you have fi t 
(parts a and e). How did the  MS  Res  change when you removed  x  7  from the 
model? Does this tell you anything importaut about the contributiou of  x  7  
to the model?      

    3.9    The concentration of NbOCl 3  in a tube - fl ow reactor as a function of several 
controllable variables is shown in Table B.6.
   a.     Fit a multiple regression model relating concentration of NbOCl 3  ( y ) to 

concentration of COCl 2 , ( x  1 ) and mole fraction ( x  4 ).  
  b.     Test for signifi cance of regression.  
  c.     Calculate  R  2  and   RAdj

2  for this model.  
  d.     Using  t  tests, determine the contribution of  x  1  and  x  4  to the model. Are 

both regressors  x  1  and  x  4  necessary?  
  e.     Is multicollinearity a potential concern in this model?      

    3.10    The quality of Pinot Noir wine is thought to be related to the properties 
of clarity, aroma, body, fl avor, and oakiness. Data for 38 wines are given in 
Table B.11.
   a.     Fit a multiple linear regression model relating wine quality to these regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings.  
  d.     Calculate  R  2  and   RAdj

2  for this model. Compare these values to the  R  2  and 
  RAdj

2  for the linear regression model relating wine quality to aroma and 
fl avor. Discuss your results.  

  e.     Find a 95 % CI for the regression coeffi cient for fl avor for both models in 
part d. Discuss any differences.      

    3.11    An engineer performed an experiment to determine the effect of CO 2  pres-
sure, CO 2  temperature, peanut moisture, CO 2  fl ow rate, and peanut particle 
size on the total yield of oil per batch of peanuts. Table B.7 summarizes the 
experimental results.
   a.     Fit a multiple linear regression model relating yield to these regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings  
  d.     Calculate  R  2  and   RAdj

2  for this model. Compare these values to the  R  2  and 
  RAdj

2  for the multiple linear regression model relating yield to temperature 
and particle size. Discuss your results.  
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  e.     Find a 95% CI for the regression coeffi cient for temperature for both 
models in part d. Discuss any differences.      

    3.12    A chemical engineer studied the effect of the amount of surfactant and time 
on clathrate formation. Clathrates are used as cool storage media. Table B.8 
summarizes the experimental results.
   a.     Fit a multiple linear regression model relating clathrate formation to these 

regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings.  
  d.     Calculate  R  2  and   RAdj

2  for this model. Compare these values to the  R  2  and 
  RAdj

2  for the simple linear regression model relating clathrate formation to 
time. Discuss your results.  

  e.     Find a 95% CI for the regression coeffi cient for time for both models in 
part d. Discuss any differences.      

    3.13    An engineer studied the effect of four variables on a dimensionless factor 
used to describe pressure drops in a screen - plate bubble column. Table B.9 
summarizes the experimental results.
   a.     Fit a multiple linear regression model relating this dimensionless number 

to these regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings.  
  d.     Calculate  R  2  and   RAdj

2  for this model. Compare these values to the  R  2  and 
  RAdj

2  for the multiple linear regression model relating the dimensionless 
number to  x  2  and  x  3 . Discuss your results.  

  e.     Find a 99% CI for the regression coeffi cient for  x  2  for both models in part 
d. Discuss any differences.      

    3.14    The kinematic viscosity of a certain solvent system depends on the ratio of 
the two solvents and the temperature. Table B.10 summarizes a set of experi-
mental results.
   a.     Fit a multiple linear regression model relating the viscosity to the two 

regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings.  
  d.     Calculate  R  2  and   RAdj

2  for this model. Compare these values to the  R  2  and 
  RAdj

2  for the simple linear regression model relating the viscosity to tem-
perature only. Discuss your results.  

  e.     Find a 99% CI for the regression coeffi cient for temperature for both 
models in part d. Discuss any differences.      

    3.15    McDonald and Ayers [ 1978 ] present data from an early study that examined 
the possible link between air pollution and mortality. Table B.15 summarizes 
the data. The response MORT is the total age - adjusted mortality from all 
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causes, in deaths per 100,000 population. The regressor PRECIP is the mean 
annual precipitation  · (in inches), EDUC is the median number of school years 
completed for persons of age 25 years or older, NONWHITE is the percent-
age of the 1960 population that is nonwhite, NOX is the relative pollution 
potential of oxides of nitrogen, and SO 2  is the relative pollution potential of 
sulfur dioxide.  “ Relative pollution potential ”  is the product of the tons emitted 
per day per square kilometer and a factor correcting the SMSA dimensions 
and exposure.
   a.     Fit a multiple linear regression model relating the mortality rate to these 

regressors.  
  b.     Test for signifi cance of regression. What conclusions can you draw?  
  c.     Use  t  tests to assess the contribution of each regressor to the model. 

Discuss your fi ndings.  
  d.     Calculate  R  2  and   RAdj

2  for this model.  
  e.     Find a 95% CI for the regression coeffi cient for SO 2 .      

    3.16    Rossman [ 1994 ] presents an interesting study of average life expectancy of 
40 countries. Table B.16 gives the data. The study has three responses: LifeExp 
is the overall average life expectancy. LifeExpMale is the average life expec-
tancy for males, and LifeExpFemale is the average life expectancy for females. 
The regressors are People - per - TV, which is the average number of people per 
television, and People - per - Dr, which is the average number of people per 
physician.
   a.     Fit different multiple linear regression models for each response.  
  b.     Test each model for signifi cance of regression. What conclusions can you 

draw?  
  c.     Use  t  tests to assess the contribution of each regressor to each model. 

Discuss your fi ndings.  
  d.     Calculate  R  2  and   RAdj

2  for each model.  
  e.     Find a 95% CI for the regression coeffi cient for People - per - Dr in each model.      

    3.17    Consider the patient satisfaction data in Table B.17. For the purposes of this 
exercise, ignore the regressor  “ Medical - Surgical. ”  Perform a thorough analy-
sis of these data. Please discuss any differences from the analyses outlined in 
Sections  2.7  and  3.6 .   

    3.18    Consider the fuel consumption data in Table B.18. For the purposes of this 
exercise, ignore regressor  x  1 . Perform a thorough analysis of these data. What 
conclusions do you draw from this analysis?   

    3.19    Consider the wine quality of young red wines data in Table B.19. For the 
purposes of this exercise, ignore regressor  x  1 . Perform a thorough analysis of 
these data. What conclusions do you draw from this analysis?   

    3.20    Consider the methanol oxidation data in Table B.20. Perform a thorough 
analysis of these data. What conclusions do you draw from this analysis?   

    3.21    A chemical engineer is investigating how the amount of conversion of a 
product from a raw material (   y ) depends on reaction temperature ( x  1 ) and 
reaction time ( x  2 ). He has developed the following regression models:
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   1.       ˆ .y x x= + +100 0 2 41 2   
  2.       ˆ .y x x x x= + + +95 0 15 3 11 2 1 2     

 Both ]models have been built over the range 20    ≤     x  1     ≤    50 ( ° C) and 0.5    ≤     x  2     ≤    10 
(hours).
   a.     Using both models, what is the predicted value of conversion when  x  2     =    2 

in terms of  x  1 ? Repeat this calculation for  x  2     =    8. Draw a graph of the 
predicted values as a function of temperature for both conversion models. 
Comment on the effect of the interaction term in model 2.  

  b.     Find the expected change in the mean conversion for a unit change in 
temperature  x  1  for model 1 when  x  2     =    5. Does this quantity depend on the 
specifi c value of reaction time selected? Why?  

  c.     Find the expected change in the mean conversion for a unit change in 
temperature  x  1  for model 2 when  x  2     =    5. Repeat this calculation for  x  2     =    2 
and  x  2     =    8. Does the result depend on the value selected for  x  2 ? Why?      

    3.22    Show that an equivalent way to perform the test for signifi cance of regression 
in multiple linear regression is to base the test on  R  2  as follows: To test  H  0 : 
  β   1     =      β   2     =     . . .     =      β  k   versus  H  1 : at least one   β  j      ≠    0, calculate

   
F

R n p
k R

0

2

21
= −( )

−( )  

  and to reject  H  0  if the computed value of  F  0  exceeds  F  α    ,   k   ,   n    −    p  , where  p     =     k     +    1.   

    3.23    Suppose that a linear regression model with  k     =    2 regressors has been fi t to 
 n     =    25 observations and  R  2     =    0.90.
   a.     Test for signifi cance of regression at   α      =    0.05. Use the results of the previ-

ous problem.  
  b.     What is the smallest value of  R  2  that would lead to the conclusion of a 

signifi cant regression if   α      =    0.05? Are you surprised at how small this value 
of  R  2  is?      

    3.24    Show that an alternate computing formula for the regression sum of squares 
in a linear regression model is

   
SS y nyi

i

n

R = −
=
∑ ˆ 2 2

1     

    3.25    Consider the multiple linear regression model

   y x x x x= + + + + +β β β β β ε0 1 1 2 2 3 3 4 4  

  Using the procedure for testing a general linear hypothesis, show how to test 

  a.      H  0 :   β   1     =      β   2     =      β   3     =      β   4     =      β    
  b.      H  0 :   β   1     =      β   2 ,   β   3     =      β   4   
  c.       H0 1 2 3

1 2

2 4

2 0

: β β β
β β

− =
+ =
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    3.26    Suppose that we have two independent samples, say
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 Two models can be fi t to these samples,

   y x i ni i i= + + =β β ε0 1 21 2, , , ,…  

   y x i n n n ni i i= + + = + + +γ γ ε0 1 1 1 1 21 2, , , ,…  

   a.     Show how these two separate models can be written as a single model.  
  b.     Using the result in part a, show how the general linear hypothesis can be 

used to test the equality of slopes   β   1  and   γ   1 .  
  c.     Using the result in part a, show how the general linear hypothesis can be 

used to test the equality of the two regression lines.  
  d.     Using the result in part a, show how the general linear hypothesis can be 

used to test that both slopes are equal to a constant  c .      

    3.27    Show that   Var ŷ H( ) = σ 2 .   

    3.28    Prove that the matrices  H  and  I     −     H  are idempotent, that is,  HH     =     H  and 
( I     −     H )( I     −     H )    =     I     −     H .   

    3.29    For the simple linear regression model, show that the elements of the hat 
matrix are

   
h

n
x x x x

S
h

n
x x

S
ij

i j

xx
ii
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xx

= +
−( ) −( ) = + −( )1 1 2

and
  

 Discuss the behavior of these quantities as  x i   moves farther from   x ,   

    3.30    Consider the multiple linear regression model  y     =     X   β      +      ε  . Show that the least -
 squares estimator can be written as

   b̂ b e= + = ′( ) ′−R R X X Xwhere 1

    

    3.31    Show that the residuals from a linear regression model can be expressed as 
 e     =    ( I     −     H )  ε  . [Hint: Refer to Eq.  (3.15b) .]   

    3.32    For the multiple linear regression model, show that  SS  R (  β  )    =     y ′ Hy .   

    3.33    Prove that  R  2  is the square of the correlation between  y  and   ̂y.   

    3.34     Constrained least squares . Suppose we wish to fi nd the least - squares estima-
tor of   β   in the model  y     =     X   β      +      ε   subject to a set of equality constraints on   β  , 
say  T   β      =     c . Show that the estimator is
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�b b b= + ′( ) ′ ′( )⎡⎣ ⎤⎦ −( )− − −ˆ ˆX X T T X X T c T1 1 1

 

  where   b̂ = ′( ) ′−X X X y1 . Discuss situations in which this constrained estimator 
might be appropriate. Find the residual sum of squares for the constrained 
estimator. Is it larger or smaller than the residual sum of squares in the 
unconstrained case?   

    3.35    Let  x   j   be the  j th row of  X , and  X   −    j   be the  X  matrix with the  j th row removed. 
Show that

   
Var β̂ σj j j j j j j j j⎡⎣ ⎤⎦ = ′ − ′ ′( ) ′⎡⎣ ⎤⎦− − −

−
−

2 1x x x X X X X x
    

    3.36    Consider the following two models where  E (  ε  )    =     0  and Var(  ε  )    =      σ   2  I :

  Model A:     y     =     X  1   β   1     +      ε    
  Model B:      y X X= ′ + +1 1 2 2b b e  
  Show that      R RA B

2 2≤   .

    3.37    Suppose we fi t the model  y     =     X  1   β   2     +      ε   when the true model is actually given 
by  y     =     X  1   β   2     +     X  2   β   2     +      ε  . For both models, assume  E (  ε  )    =     0  and Var(  ε  )    =      σ   2  I . 
Find the expected value and variance of the ordinary least - squares estimate, 
  b̂1. Under what conditions is this estimate unbiased?   

    3.38    Consider a correctly specifi ed regression model with  p  terms, including the 
intercept. Make the usual assumptions about   ε  . Prove that

   
Var ŷ pi

i

n

( ) =
=
∑

1

2σ
    

    3.39    Let   Rj
2 be the coeffi cient of determination when we regress the  j th regressor 

on the other  k     −    1 regressors. Show that the  j th variance infl ation factor may 
be expressed as

   

1
1 2− Rj     

    3.40    Consider the hypotheses for the general linear model, which are of the form

   H H0 1: , :T c T cb b= ≠  

  where  T  is a  q     ×     p  matrix of rank  q.  Derive the appropriate  F  statistic under 
both the null and alternative hypothesis.       
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  CHAPTER 4 

MODEL ADEQUACY CHECKING     

    4.1    INTRODUCTION 

 The major  assumptions  that we have made thus far in our study of regression analy-
sis are as follows:

   1.     The relationship between the response  y  and the regressors is linear, at least 
approximately.  

  2.     The error term   ε   has zero mean.  
  3.     The error term   ε   has constant variance   σ       2 .  
  4.     The errors are uncorrelated.  
  5.     The errors are normally distributed.    

 Taken together, assumptions 4 and 5 imply that the errors are independent random 
variables. Assumption 5 is required for hypothesis testing and interval estimation. 

 We should always consider the validity of these assumptions to be doubtful and 
conduct analyses to examine the adequacy of the model we have tentatively enter-
tained. The types of model inadequacies discussed here have potentially serious 
consequences. Gross violations of the assumptions may yield an unstable model 
in the sense that a different sample could lead to a totally different model with 
opposite conclusions. We usually cannot detect departures from the underlying 
assumptions by examination of the standard summary statistics, such as the  t  or  F  
statistics, or  R  2 . These are  “ global ”  model properties, and as such they do not ensure 
model adequacy. 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 In this chapter we present several methods useful for diagnosing violations of 
the basic regression assumptions. These diagnostic methods are primarily based on 
study of the model  residuals . Methods for dealing with model inadequacies, as well 
as additional, more sophisticated diagnostics, are discussed in Chapters  5  and  6 .  

   4.2    RESIDUAL ANALYSIS 

   4.2.1    Defi nition of Residuals 

 We have previously defi ned the residuals as

    e y y i ni i i= − =ˆ , , , ,1 2 …     (4.1)  

  where  y i   is an observation and   ̂yi is the corresponding fi tted value. Since a residual 
may be viewed as the  deviation  between the  data  and the  fi t , it is also a measure of 
the variability in the response variable not explained by the regression model. It is 
also convenient to think of the residuals as the realized or observed values of the 
model errors. Thus, any departures from the assumptions on the errors should show 
up in the residuals. Analysis of the residuals is an effective way to discover several 
types of model inadequacies. As we will see,  plotting residuals  is a very effective 
way to investigate how well the regression model fi ts the data and to check the 
assumptions listed in Section  4.1 . 

 The residuals have several important properties. They have zero mean, and their 
approximate average variance is estimated by
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 The residuals are not independent, however, as the  n  residuals have only  n     −     p  
degrees of freedom associated with them. This nonindependence of the residuals 
has little effect on their use for model adequacy checking as long as  n  is not small 
relative to the number of parameters  p.   

   4.2.2    Methods for Scaling Residuals 

 Sometimes it is useful to work with  scaled residuals . In this section we introduce 
four popular methods for scaling residuals. These scaled residuals are helpful in 
fi nding observations that are  outliers , or  extreme values , that is, observations that 
are separated in some fashion from the rest of the data. See Figures  2.6  –  2.8  for 
examples of outliers and extreme values. 

  Standardized Residuals     Since the approximate average variance of a residual 
is estimated by  MS  Res , a logical scaling for the residuals would be the  standardized 
residuals 

    d
e

MS
i ni

i= =
Res

, , , ,1 2 …     (4.2)   
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 The standardized residuals have mean zero and approximately unit variance. Con-
sequently, a large standardized residual ( d i      >    3, say) potentially indicates an outlier.  

  Studentized Residuals     Using  MS  Res  as the variance of the  i th residual,  e i   is only 
an approximation. We can improve the residual scaling by dividing  e i   by the exact 
standard deviation of the  i th residual. Recall from Eq.  (3.15b)  that we may write 
the vector of residuals as

    e I H y= −( )     (4.3)   

 where  H      =      X ( X  ′  X )  – l  X  ′  is the  hat matrix . The hat matrix has several useful properties. 
It is  symmetric  ( H  ′      =      H ) and  idempotent  ( HH      =      H ). Similarly the matrix  I      −      H  is 
symmetric and idempotent. Substituting  y      =      X   β     +   ε   into Eq.  (4.3)  yields

    

e I H X X HX I H

X X X X X X I H I H

= −( ) +( ) = − + −( )
= − ′( ) ′ + −( ) = −( )−

b e b b e

b b e e1     (4.4)   

 Thus, the residuals are the same linear transformation of the observations  y  and the 
errors   ε  . 

 The covariance matrix of the residuals is

    Var Var Vare I H I H I H I H( ) = −( )[ ] = −( ) ( ) −( )′ = −( )e e σ 2     (4.5)  

  since Var(  ε  )     =       σ       2  I  and  I      −      H  is symmetric and idempotent. The matrix  I      −      H  is 
generally not diagonal, so the residuals have different variances and they are 
correlated. 

 The variance of the  i th residual is

    Var e hi ii( ) = −( )σ 2 1     (4.6)   

 where  h ii   is the  i th diagonal element of the hat matrix  H . The covariance between 
residuals  e i   and  e j   is

    
Cov e e hi j ij,( ) = −σ 2

    (4.7)   

 where  h ij   is the  ij th element of the hat matrix. Now since 0    ≤     h ii      ≤    1, using the residual 
mean square  MS  Res  to estimate the variance of the residuals actually overestimates 
Var( e i  ). Furthermore, since  h ii   is a measure of the  location  of the  i th point in  x  
space (recall the discussion of hidden extrapolation in Section  3.7  ), the variance of 
 e i   depends on where the point  x   i   lies. Generally points near the center of the  x  
space have larger variance (poorer least - squares fi t) than residuals at more remote 
locations. Violations of model assumptions are more likely at remote points, 
and these violations may be hard to detect from inspection of the ordinary 
residuals  e i   (or the standardized residuals  d i  ) because their residuals will usually 
be smaller. 

 Most students fi nd it very counter - intuitive that the residuals for data points 
remote in terms of the  x s are small, and in fact go to 0 as the remote points get 
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further away from the center of the other points. Figures  4.1  and  4.2  help to illustrate 
this point. The only difference between these two plots occurs at  x     =    25. In Figure 
 4.1 , the value of the response is 25, and in Figure  4.2 , the value is 2. Figure  4.1  is a 
typical scatter plot for a pure  leverage  point. Such a point is remote in terms of the 
specifi c values of the regressors, but the observed value for the response is consistent 
with the prediction based on the other data values. The data point with  x     =    25 is an 
example of a pure leverage point. The line drawn on the fi gure is the actual ordinary 
least squares fi t to the entire data set. Figure  4.2  is a typical scatter plot for an  infl u-
ential  point. Such a data value is not only remote in terms of the specifi c values for 
the regressors, but the observed response is not consistent with the values that would 
be predicted based on only the other data points. Once again, the line drawn is the 
actual ordinary least squares fi t to the entire data set. One can clearly see that the 
infl uential point draws the prediction equation to itself.   

     Figure 4.1     Example of a pure leverage point.  

50

5

10

20

30

15

25

10

x

Scatterplot of y vs x

y

15 20 25

     Figure 4.2     Example of an infl uential point.  
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 A little mathematics provides more insight into this situation. Let  y n   be the 
observed response for the  n th   data point, let  x n   be the specifi c values for the regres-
sors for this data point, let   ̂ *yn be the predicted value for the response based on the 
other  n     −    1 data points, and let   δ = −y yn nˆ * be the difference between the actually 
observed value for this response compared to the predicted value based on the other 
values. Please note that   y yn n= +ˆ * δ . If a data point is remote in terms of the regressor 
values and |  δ  | is large, then we have an infl uential point. In Figures  4.1  and  4.2 , 
consider  x     =    25. Let  y n   be 2, the value from Figure  4.2 . The actual predicted value 
for the that response based on the other four data values is 25, which is the point 
illustrated in Figure  4.1 . In this case,   δ      =     – 23, and we see that it is a very infl uential 
point. Finally, let   ̂yn be the predicted value for the  n th   response using all the data. It 
can be shown that

   ˆ ˆ *y y hn n nn= + δ  

  where  h nn   is the  n th   diagonal element of the hat matrix. If the  n th   data point is remote 
in terms of the space defi ned by the data values for the regressors, then  h nn   approaches 
1, and   ̂yn approaches  y n  . The remote data value  “ drags ”  the prediction to itself. 

 This point is easier to see within a simple linear regression example. Let   x* be 
the average value for the other  n     −    1 regressors. It can be shown that
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 Clearly, for even a moderate sample size, as the data point becomes more remote 
in terms of the regressors (as  x n   moves further away from   x*, then the ordinary least 
squares estimate of  y n   appraoches the actually observed value for  y n  ). 

 The bottom line is two - fold. As we discussed in Sections  2.4  and  3.4 , the predic-
tion variance for data points that are remote in terms of the regressors is large. 
However, these data points do draw the prediction equation to themselves. As a 
result, the variance of the residuals for these points is small. This combination pres-
ents complications for doing proper residual analysis. 

 A logical procedure, then, is to examine the  studentized residuals 

    r
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1 2, , , ,…     (4.8)  

  instead of  e i   (or  d i  ). The studentized residuals have constant variance Var( r i  )    =    1 
regardless of the location of  x   i   when the form of the model is correct. In many situ-
ations the variance of the residuals stabilizes, particularly for large data sets. In these 
cases there may be little difference between the standardized and studentized 
residuals. Thus, standardized and studentized residuals often convey equivalent 
information. However, since any point with a large residual  and  a large  h ii   is poten-
tially highly infl uential on the least - squares fi t, examination of the studentized 
residuals is generally recommended. 

 Some of these points are very easy to see by examining the studentized residuals 
for a simple linear regression model. If there is only one regressor, it is easy to show 
that the studentized residuals are
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 Notice that when the observation  x i   is close to the midpoint of the  x  data,   x xi −  will 
be small, and the estimated standard deviation of  e i   [the denominator of Eq.  (4.9) ] 
will be large. Conversely, when  x i   is near the extreme ends of the range of the  x  data, 
  x xi −  will be large, and the estimated standard deviation of  e i   will be small. Also, 
when the sample size  n  is really large, the effect of   x xi −( )2 will be relatively small, 
so in big data sets, studentized residuals may not differ dramatically from standard-
ized residuals.  

   PRESS  Residuals     The standardized and studentized residuals are effective in 
detecting outliers. Another approach to making residuals useful in fi nding outliers 
is to examine the quantity that is computed from   y yi i− ( )ˆ , where   ̂y i( ) is the fi tted value 
of the  i th response based on all observations except the  i th one. The logic behind 
this is that if the  i th observation  y i   is really unusual, the regression model based on 
all observations may be overly infl uenced by this observation. This could produce 
a fi tted value   ̂yi that is very similar to the observed value  y i  , and consequently, the 
ordinary residual  e i   will be small. Therefore, it will be hard to detect the outlier. 
However, if the  i th observation is deleted, then   ̂y i( ) cannot be infl uenced by that 
observation, so the resulting residual should be likely to indicate the presence of 
the outlier. 

 If we delete the  i th observation, fi t the regression model to the remaining  n     −    1 
observations, and calculate the predicted value of  y i   corresponding to the deleted 
observation, the corresponding  prediction error  is

    e y yi i i( ) ( )= − ˆ     (4.10)   

 This prediction error calculation is repeated for each observation  i      =     1, 2,    . . .    ,  n.  
These prediction errors are usually called  PRESS residuals  (because of their use in 
computing the prediction error sum of squares, discussed in Section  4.3 ). Some 
authors call the  e  (   i   )   deleted residuals . 

 It would initially seem that calculating the PRESS residuals requires fi tting  n  
different regressions. However, it is possible to calculate PRESS residuals from the 
results of a single least - squares fi t to all  n  observations. We show in Appendix  C.7  
how this is accomplished. It turns out that the  i th PRESS residual is

    e
e

h
i ni

i

ii
( ) =

−
=

1
1 2, , , ,…     (4.11)   

 From Eq.  (4.11)  it is easy to see that the PRESS residual is just the ordinary residual 
weighted according to the diagonal elements of the hat matrix  h ii  . Residuals associ-
ated with points for which  h ii   is large will have large PRESS residuals. These points 
will generally be  high infl uence  points. Generally, a large difference between the 
ordinary residual and the PRESS residual will indicate a point where the model  fi ts  
the data well, but a model built without that point  predicts  poorly. In Chapter  6 , we 
discuss some other measures of infl uential observations. 
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 Finally, the variance of the  i th PRESS residual is

   Var Vare
e

h h
h

h
i

i

ii ii
ii

ii
( )[ ] =

−
⎡
⎣⎢

⎤
⎦⎥

=
−( )

−( )[ ] =
−1

1

1
1

12
2

2

σ σ
  

 so that a  standardized  PRESS residual is

   
e

e

e h

h

e

h

i

i

i ii

i ii

i

ii

( )

( )[ ]
= −( )

−( )
=

−( )Var

/ 1

1 12 2σ σ
  

 which, if we use  MS  Res  to estimate   σ      2 , is just the  studentized residual  discussed 
previously.  

  R - Student     The studentized residual  r i   discussed above is often considered an 
outlier diagnostic. It is customary to use  MS  Res  as an estimate of   σ      2  in computing  r i  . 
This is referred to as  internal scaling  of the residual because  MS  Res  is an internally 
generated estimate of   σ      2  obtained from fi tting the model to all  n  observations. 
Another approach would be to use an estimate of   σ      2  based on a data set with the 
 i th observation removed. Denote the estimate of   σ      2  so obtained by   S i( )

2 . We can show 
(see Appendix  C.8 ) that

    S
n p MS e h

n p
i

i ii
( ) = −( ) − −( )

− −
2

2 1
1

Res /
    (4.12)   

 The estimate of   σ      2  in Eq.  (4.12)  is used instead of  MS  Res  to produce an  externally 
studentized residual , usually called  R   - student , given by

    t
e

S h
i ni

i

i ii

=
−( )

=
( )
2 1

1 2, , , ,…     (4.13)   

 In many situations  t i   will differ little from the studentized residual  r i  . However, 
if the  i th observation is infl uential, then   S i( )

2  can differ signifi cantly from  MS  Res , and 
thus the  R  - student statistic will be more sensitive to this point. 

 It turns out that under the usual regression assumptions,  t i   will follow the  t n    –    p    – 1  
distribution. Appendix  C.9  establishes a formal hypothesis - testing procedure for 
outlier detection based on  R  - student. One could use a Bonferroni - type approach 
and compare all  n  values of | t i  | to  t  (    α    /2   n   ),   n    –    p    – 1  to provide guidance regarding outliers. 
However, it is our view that a formal approach is usually not necessary and that 
only relatively crude cutoff values need be considered. In general, a  diagnostic view  
as opposed to a strict statistical hypothesis - testing view is best. Furthermore, detec-
tion of outliers often needs to be considered simultaneously with detection of 
infl uential observations, as discussed in Chapter  6 .     

 Example 4.1   The Delivery Time Data 

    Table  4.1  presents the scaled residuals discussed in this section using the model 
for the soft drink delivery time data developed in Example  3.1 . Examining column 
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1 of Table  4.1  (the ordinary residuals, originally calculated in Table  3.3 ) we note 
that one residual,  e  9      =     7.4197, seems suspiciously large. Column 2 shows that 
the standardized residual is   d e MS9 9 7 4197 10 6239 2 2763= = =/ . / . .Res . All 
other standardized residuals are inside the  ± 2 limits. Column 3 of Table  4.1  
shows the studentized residuals. The studentized residual at point 9 is 

  r e MS h9 9 9 91 7 4197 10 6239 1 0 49829 3 2138= −( ) = −( ) =/ . / . . .,Res , which is substan-
tially larger than the standardized residual. As we noted in Example  3.13 , point 9 
has the largest value of  x  1  (30 cases) and  x  2  (1460 feet). If we take the remote loca-
tion of point 9 into account when scaling its residual, we conclude that the model 
does not fi t this point well. The diagonal elements of the hat matrix, which are used 
extensively in computing scaled residuals, are shown in column 4.   

 Column 5 of Table  4.1  contains the PRESS residuals. The PRESS residuals for 
points 9 and 22 are substantially larger than the corresponding ordinary residuals, 
indicating that these are likely to be points where the model fi ts reasonably well 
but does not provide good predictions of fresh data. As we have observed in 
Example  3.13 , these points are remote from the rest of the sample. 

 Column 6 displays the values of  R  - student. Only one value,  t  9 , is unusually large. 
Note that  t  9  is larger than the corresponding studentized residual  r  9 , indicating that 
when run 9 is set aside,   S 9

2
( ) is smaller than  MS  Res , so clearly this run is infl uential. 

Note that   S 9
2
( ) is calculated from Eq.  (4.12)  as follows:

    

S
n p MS e h

n p
9
2 9

2
9 9

2

1
1

22 10 6239 7 4197

( ) = −( ) − −( )
− −

= ( )( ) − ( )

Res /

. .

,

// .

.

1 0 49829
21

5 9046

−( )

=

         

■

   

   4.2.3    Residual Plots 

 As mentioned previously, graphical analysis of residuals is a very effective way to 
investigate the adequacy of the fi t of a regression model and to check the underlying 
assumptions. In this section, we introduce and illustrate the basic residual plots. 
These plots are typically generated by regression computer software packages. They 
should be examined routinely in all regression modeling problems. We often plot 
externally studentized residuals because they have constant variance. 

  Normal Probability Plot     Small departures from the normality assumption do not 
affect the model greatly, but gross nonnormality is potentially more serious as the 
 t  or  F  statistics and confi dence and prediction intervals depend on the normality 
assumption. Furthermore, if the errors come from a distribution with thicker or 
heavier tails than the normal, the least - squares fi t may be sensitive to a small subset 
of the data. Heavy - tailed error distributions often generate outlier that  “ pull ”  
the least - squares fi t too much in their direction. In these cases other estimation 
techniques (such as the  robust regression  methods in Section  15.1  should be 
considered. 

 A very simple method of checking the normality assumption is to construct a 
 normal probability  plot of the residuals. This is a graph designed so that the cumula-
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tive normal distribution will plot as a straight line. Let  t  [1]     <     t  [2]     <     . . .     <     t  [   n   ]  be the 
externally studentized residuals ranked in increasing order. If we plot  t  [   i   ]  against the 
cumulative probability   P i ni = −( )1

2 / ,  i     =    1, 2,  . . . ,  n , on the normal probability plot, 
the resulting points should lie approximately on a straight line. The straight line is 
usually determined visually, with emphasis on the central values (e.g., the 0.33 and 
0.67 cumulative probability points) rather than the extremes. Substantial departures 
from a straight line indicate that the distribution is not normal. Sometimes normal 
probability plots are constructed by plotting the ranked residual  t  [   i   ]  against the 
 “ expected normal value ”    Φ− −( )[ ]1 1

2i n/ , where  Φ  denotes the standard normal 
cumulative distribution. This follows from the fact that   E t i ni[ ]

−( ) −( )[ ]� Φ 1 1
2 / . 

 Figure  4.3  a  displays an  “ idealized ”  normal probability plot. Notice that the points 
lie approximately along a straight line. Panels  b – e  present other typical problems. 
Panel  b  shows a sharp upward and downward curve at both extremes, indicating 
that the tails of this distribution are too light for it to be considered normal. Con-
versely, panel  c  shows fl attening at the extremes, which is a pattern typical of samples 
from a distribution with heavier tails than the normal. Panels  d  and  e  exhibit pat-
terns associated with positive and negative skew, respectively.  †     

 Because samples taken from a normal distribution will not plot exactly as a 
straight line, some experience is required to interpret normal probability plots. 
Daniel and Wood [ 1980 ] present normal probability plots for sample sizes 8 – 384. 
Study of these plots is helpful in acquiring a feel for how much deviation from the 

   †       These interpretations assume that the ranked residuals are plotted on the horizontal axis. If the residuals 
are plotted on the vertical axis, as some computer systems do, the interpretation is reversed. 

     Figure 4.3     Normal probability plots: ( a ) ideal; ( b ) light - tailed distribution; ( c ) heavy - tailed 
distribution; ( d ) positive skew; ( e ) negative skew.  
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straight line is acceptable. Small sample sizes ( n     ≤    16) often produce normal prob-
ability plots that deviate substantially from linearity. For larger sample sizes ( n     ≥    32) 
the plots are much better behaved. Usually about 20 points are required to produce 
normal probability plots that are stable enough to be easily interpreted. 

 Andrews [ 1979 ] and Gnanadesikan [ 1977 ] note that normal probability plots 
often exhibit no unusual behavior even if the errors   ε    i   are not normally distributed. 
This problem occurs because the residuals are not a simple random sample; they 
are the remnants of a parameter estimation process. The residuals are actually linear 
combinations of the model errors (the  ε   i  ). Thus, fi tting the parameters tends to 
destroy the evidence of nonnormality in the residuals, and consequently we cannot 
always rely on the normal probability plot to detect departures from normality. 

 A common defect that shows up on the normal probability plot is the occurrence 
of one or two large residuals. Sometimes this is an indication that the corresponding 
observations are  outliers . For additional discussion of outliers, refer to Section  4.4 .    

 Example 4.2   The Delivery Time Data 

    Figure  4.4  presents a normal probability plot of the externally studentized residuals 
from the regression model for the delivery time data from Example  3.1 . The residu-
als are shown in columns 1 and 2 of Table  4.1 .   

 The residuals do not lie exactly along a straight line, indicating that there may 
be some problems with the normality assumption, or that there may be one or more 
outliers in the data. From Example  4.1 , we know that the studentized residual for 
observation 9 is moderately large ( r  9      =     3.2138), as is the  R  - student residual 
( t  9      =     4.3108). However, there is no indication of a severe problem in the delivery 
time data.        ■   

   †       The residuals should be plotted versus the fi tted values   ̂yi  and not the observed values  y i   because the  e i   
and the   ̂yi  are uncorrelated while the  e i   and the  y i   are usually correlated. The proof of this statement in 
Appendix  C.10 . 

  Plot of Residuals against the Fitted Values   ̂yi     A plot of the (preferrably the 
externally studentized residuals,  t i  ) versus the corresponding fi tted values   ̂yi is useful 
for detecting several common types of model inadequacies.  †   If this plot resembles 
Figure  4.5  a , which indicates that the residuals can be contained in a horizontal band, 
then there are no obvious model defects. Plots of  t i   versus   ̂yi that resemble any of 
the patterns in panels  b – d  are symptomatic of model defi ciencies.   

 The patterns in panels  b  and  c  indicate that the variance of the errors is not 
constant. The  outward - opening funnel pattern  in panel  b  implies that the variance 
is an increasing function of  y  [an inward - opening funnel is also possible, indicating 
that Var( ε ) increases as  y  decreases]. The double - bow pattern in panel  c  often occurs 
when  y  is a proportion between zero and 1. The variance of a binomial proportion 
near 0.5 is greater than one near zero or 1. The usual approach for dealing with 
inequality of variance is to apply a suitable  transformation  to either the regressor 
or the response variable (see Sections  5.2  and  5.3 ) or to use the method of weighted 
least squares (Section  5.5 ). In practice, transformations on the response are gener-
ally employed to stabilize variance. 

 A curved plot such as in panel  d  indicates  nonlinearity . This could mean that 
other regressor variables are needed in the model. For example, a squared term may 
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     Figure 4.5     Patterns for residual plots: ( a ) satisfactory; ( b ) funnel; ( c ) double bow; ( d ) 
nonlinear.  
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     Figure 4.4     Normal probability plot of the externally studentized residuals for the delivery 
time data.  
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be necessary. Transformations on the regressor and/or the response variable may 
also be helpful in these cases. 

 A plot of the residuals against   ̂yi may also reveal one or more unusually large 
residuals. These points are, of course, potential outliers. Large residuals that occur 
at the extreme   ̂yi  values could also indicate that either the variance is not constant 
or the true relationship between  y  and  x  is not linear. These possibilities should be 
investigated before the points are considered outliers.    
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 Example 4.3   The Delivery Time Data 

    Figure  4.6  presents the plot of the externally studentized residuals versus the fi tted 
values of delivery time. The plot does not exhibit any strong unusual pattern, 
although the large residual  t  9  shows up clearly. There does seem to be a slight ten-
dency for the model to underpredict short delivery times and overpredict long 
delivery times.        ■     

     Figure 4.6     Plot of externally studentized residuals versus predicted for the delivery time 
data.  
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  Plot of Residuals against the Regressor     Plotting the residuals against the cor-
responding values of each regressor variable can also be helpful. These plots often 
exhibit patterns such as those in Figure  4.5 , except that the horizontal scale is  x ij   for 
the  j th regressor rather than   ̂yi. Once again an impression of a horizontal band 
containing the residuals is desirable. The funnel and double - bow patterns in panels 
 b  and  c  indicate nonconstant variance. The curved band in panel  d  or a nonlinear 
pattern in general implies that the assumed relationship between  y  and the regressor 
 x j   is not correct. Thus, either higher order terms in  x j   (such as   xj

2) or a transformation 
should be considered. 

 In the simple linear regressor case, it is not necessary to plot residuals versus both 
  ŷi  and the regressor variable. The reason is that the fi tted values   ̂yi are linear com-
binations of the regressor values  x i  , so the plots would only differ in the scale for 
the abscissa.    

 Example 4.4   The Delivery Time Data 

    Figure  4.7  presents the plots of the externally studentized residuals  t i   from the 
delivery time problem in Example  3.1  versus both regressors. Panel  a  plots residuals 
versus cases and panel  b  plots residuals versus distance. Neither of these plots 
reveals any clear indication of a problem with either misspecifi cation of the regres-
sor (implying the need for either a transformation on the regressor or higher order 
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     Figure 4.7     Plot of externally studentized residuals versus the regressors for the delivery 
time data: ( a ) residuals versus cases; ( b ) residuals versus distance.  
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terms in cases and/or distance) or inequality of variance, although the moderately 
large residual associated with point 9 is apparent on both plots.   

 It is also helpful to plot residuals against regressor variables that are  not currently 
in the model  but which could potentially be included. Any structure in the plot of 
residuals versus an omitted variable indicates that incorporation of that variable 
could improve the model. 

 Plotting residuals versus a regressor is not always the most effective way to reveal 
whether a curvature effect (or a transformation) is required for that variable in the 
model. In Section  4.2.4  we describe two additional residual plots that are more 
effective in investigating the relationship between the response variable and the 
regressors.        ■   
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     Figure 4.8     Prototype residual plots against time displaying autocorrelation in the errors: ( a ) 
positive autocorrelation; ( b ) negative autocorrelation.  
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  Plot of Residuals in Time Sequence     If the time sequence in which the data 
were collected is known, it is a good idea to plot the residuals against time order. 
Ideally, this plot will resemble Figure  4.5  a ; that is, a horizontal band will enclose all 
of the residuals, and the residuals will fl uctuate in a more or less random fashion 
within this band. However, if this plot resembles the patterns in Figures  4.5  b  –  d , this 
may indicate that the variance is changing with time or that linear or quadratic terms 
in time should be added to the model. 

 The time sequence plot of residuals may indicate that the errors at one time 
period are correlated with those at other time periods. The correlation between 
model errors at different time periods is called  autocorrelation . A plot such as 
Figure  4.8  a  indicates positive autocorrelation, while Figure  4.8  b  is typical of negative 
autocorrelation. The presence of autocorrelation is a potentially serious violation 
of the basic regression assumptions. More discussion about methods for detecting 
autocorrelation and remedial measures are discussed in Chapter  14 .     

   4.2.4    Partial Regression and Partial Residual Plots 

 We noted in Section  4.2.3  that a plot of residuals versus a regressor variable is useful 
in determining whether a curvature effect for that regressor is needed in the model. 
A limitation of these plots is that they may not completely show the correct or 
complete marginal effect of a regressor, given the other regressors in the model. A 
 partial regression plot  is a variation of the plot of residuals versus the predictor that 
is an enhanced way to study the marginal relationship of a regressor given the other 
variables that are in the model. This plot can be very useful in evaluating whether 
we have specifi ed the relationship between the response and the regressor variables 
correctly. Sometimes the partial residual plot is called the  added - variable plot  or 
the  adjusted - variable plot . Partial regression plots can also be used to provide infor-
mation about the marginal usefulness of a variable that is not currently in the model. 

 Partial regression plots consider the marginal role of the regressor  x j   given other 
regressors that are already in the model. In this plot, the response variable  y  and 
the regressor  x j   are both regressed against the other regressors in the model and 
the residuals obtained for each regression. The plot of these residuals against each 
other provides information about the nature of the marginal relationship for regres-
sor  x j   under consideration. 
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 Example 4.5   The Delivery Time Data 

    Figure  4.9  presents the partial regression plots for the delivery time data, with the 
plot for  x  1  shown in Figure  4.9  a  and the plot for  x  2  shown in Figure  4.9  b . The linear 
relationship between both cases and distance is clearly evident in both of these plots, 
although, once again, observation 9 falls somewhat off the straight line that appar-
ently well - describes the rest of the data. This is another indication that point 9 bears 
further investigation.        ■     

  Some Comments on Partial Regression Plots    

    1.     Partial regression plots need to be used with caution as they only suggest 
 possible  relationships between the regressor and the response. These plots 
may not give information about the proper form of the relationship if several 
variables already in the model are incorrectly specifi ed. It will usually be 
necessary to investigate several alternate forms for the relationship between 
the regressor and  y  or several transformations. Residual plots for these 
subsequent models should be examined to identify the best relationship or 
transformation.  

  2.     Partial regression plots will not, in general, detect  interaction  effects among 
the regressors.  

 To illustrate, suppose we are considering a fi rst - order multiple regression model 
with two regressors variables, that is,  y      =       β   0     +      β   1  x  1     +      β   2  x  2     +     ε . We are concerned 
about the nature of the marginal relationship for regressor  x  1  — in other words, is 
the relationship between  y  and  x  1  correctly specifi ed? First we would regress  y  on 
 x  2  and obtain the fi tted values and residuals:

    

ˆ ˆ ˆ

| ˆ , , , ,

y x x

e y x y y x i n
i i

i i i

2 0 1 2

2 2 1 2

( ) = +
( ) = − ( ) =

θ θ
…     (4.14)   

 Now regress  x  1  on  x  2  and calculate the residuals:

    

ˆ ˆ ˆ

| ˆ , , , ,

x x x

e x x x x x i n
i i

i i i

1 2 0 1 2

1 2 1 1 2 1 2

( ) = +
( ) = − ( ) =

α α
…     (4.15)   

 The partial regression plot for regressor variable  x  1  is obtained by plotting the  y  
residuals  e i  ( y | x  2 ) against the  x  1  residuals  e i  ( x  1 | x  2 ). If the regressor  x  1  enters the model 
linearly, then the partial regression plot should show a linear relationship, that is, 
the partial residuals will fall along a straight line with a nonzero slope. The slope of 
this line will be the regression coeffi cient of  x  1  in the multiple linear regression 
model. If the partial regression plot shows a curvilinear band, then higher order 
terms in  x  1  or a transformation (such as replacing  x  1  with 1/ x  1 ) may be helpful. When 
 x  1  is a  candidate  variable being considered for inclusion in the model, a horizontal 
band on the partial regression plot indicates that there is no additional useful infor-
mation in  x  1  for predicting  y .   
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     Figure 4.9     Partial regression plots for the delivery time data.  
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  3.     The presence of strong multicollinearity (refer to Section  3.9  and Chapter  9 ) 
can cause partial regression plots to give incorrect information about the 
relationship between the response and the regressor variables.  

  4.     It is fairly easy to give a general development of the partial regression plotting 
concept that shows clearly why the slope of the plot should be the regression 
coeffi cient for the variable of interest, say  x j  .    

 The partial regression plot is a plot of residuals from which the linear dependence 
of  y  on all regressors other than  x j   has been removed against regressor  x j   with its 
linear dependence on other regressors removed. In matrix form, we may write these 
quantities as  e [ y | X (    j   ) ] and  e [ x j  | X (    j   ) ], respectively, where  X  (   j   )  is the original  X  matrix 
with the  j th regressor ( x j  ) removed. To show how these quantities are defi ned, con-
sider the model

    y X X x= + = + +( )b e b ej j jβ     (4.16)   

 Premultiply Eq.  (4.16)  by  I      −      H  (   j   )  to give

   I H y I H X I H x I H−( ) = −( ) + −( ) + −( )( ) ( ) ( ) ( ) ( )j j j j j j jb eβ   

 and note that ( I      −      H  (   j   ) ) X  (   j   )      =      0 , so that

   I H y I H x I H−( ) = −( ) + −( )( ) ( ) ( )j j j j jβ e   
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 or

   e y X e x X| | *
j j j j( ) ( )[ ] = [ ] +β e   

 where  ε     *      =    ( I      −      H  (   j   ) )  ε  . This suggests that a partial regression plot should have slope 
  β  j  . Thus, if  x j   enters the regression in a linear fashion, the partial regression plot 
should show a linear relationship passing through the origin. Many computer pro-
grams (such as SAS and Minitab) will generate partial regression plots.  

  Partial Residual Plots     A residual plot closely related to the partial regression 
plot is the  partial residual plot . It is also designed to show the relationship between 
the response variable and the regressors. Suppose that the model contains the 
regressors  x  1 ,  x  2 ,    . . .    ,  x k  . The  partial residuals  for regressor  x j   are defi ned as

   e y x e x i ni j i j ij
* |( ) = + =ˆ , , , ,β 1 2 …  

  where the  e i   are the residuals from the model with all  k  regressors included. When 
the partial residuals are plotted against  x ij  , the resulting display has slope   β̂ j , the 
regression coeffi cient associated with  x j   in the model. The interpretation of the 
partial residual plot is very similar to that of the partial regression plot. See Larsen 
and McCeary [ 1972 ], Daniel and Wood [ 1980 ], Wood [ 1973 ], Mallows [ 1986 ], Man-
sfi eld and Conerly [ 1987 ], and Cook [ 1993 ] for more details and examples.   

   4.2.5    Using Minitab ® ,  SAS , and R for Residual Analysis 

 It is easy to generate the residual plots in Minitab. Select the  “ graphs ”  box. Once it 
is opened, select the  “ deleted ”  option to get the studentized residuals. You then 
select the residual plots you want. 

 Table  4.2  gives the SAS source code for SAS version 9 to do residual analysis for 
the delivery time data. The partial option provides the partial regression plots. A 
common complaint about SAS is the quality of many of the plots generated by its 
procedures. These partial regression plots are prime examples. Version 9, however, 
upgrades some of the more important graphics plots for PROC REG. The fi rst plot 
statement generates the studentized residuals versus predicted values, the studen-
tized residuals versus the regressors, and the studentized residuals by time plots 
(assuming that the order in which the data are given is the actual time order). 
The second plot statement gives the normal probability plot of the studentized 
residuals.   

 As we noted, over the years the basic plots generated by SAS have been improved. 
Table  4.3  gives appropriate source code for earlier versions of SAS that produce 
 “ nice ”  residual plots. This code is important when we discuss plots from other SAS 
procedures that still do not generate nice plots. Basically this code uses the OUTPUT 
command to create a new data set that includes all of the previous delivery informa-
tion plus the predicted values and the studentized residuals. It then uses the SAS-
GRAPH features of SAS to generate the residual plots. The code uses PROC 
CAPABILITY to generate the normal probability plot. Unfortunately, PROC 
CAPABILITY by default produces a lot of noninteresting information in the 
output fi le.   
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  TABLE 4.2     SAS  Code for Residual Analysis of Delivery Time Data 

   date delivery;   
   input time cases distance;   
   cards;   
   16.68 7 560   
   11.50 3 220   
   12.03 3 340   
   14.88 4 80   
   13.75 6 150   
   18.11 7 330   
    8.00 2 110   
   17.83 7 210   
   79.24 30 1460   
   21.50 5 605   
   40.33 16 688   
   21.00 10 215   
   13.50 4 255   
   19.75 6 462   
   24.00 9 448   
   29.00 10 776   
   15.35 6 200   
   19.00 7 132   
    9.50 3 36   
   35.10 17 770   
   17.90 10 140   
   52.32 26 810   
   18.75 9 450   
   19.83 8 635   
   10.75 4 150   
   proc reg;   
    model time  =  cases distance / partial;   
    plot rstudent. * (predicted. cases distance obs.);   
    plot npp. * rstudent.;   
   run;   

 We next illustrate how to use R to create appropriate residual plots. Once again, 
consider the delivery data. The fi rst step is to create a space delimited fi le named 
delivery.txt. The names of the columns should be time, cases, and distance. 

 The R code to do the basic analysis and to create the appropriate residual plots 
based on the externally studentized residuals is:

 deliver  <  -  read.table( " delivery.txt " ,header = TRUE, sep =  "   " ) 
 deliver.model  <  -  lm(time ∼ cases + distance, data = deliver) 
 summary(deliver.model) 
 yhat  <  -  deliver.model$fi t 
 t  <  -  rstudent(deliver.model) 
 qqnorm(t) 
 plot(yhat,t) 
 plot(deliver$x1,t) 
 plot(deliver$x2,t)  
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  TABLE 4.3    Older  SAS  Code for Residual Analysis of Delivery 
Time Data 

   date delivery;   
   input time cases distance;   
   cards;   
   16.68 7 560   
   11.50 3 220   
   12.03 3 340   
   14.88 4 80   
   13.75 6 150   
   18.11 7 330   
    8.00 2 110   
   17.83 7 210   
   79.24 30 1460   
   21.50 5 605   
   40.33 16 688   
   21.00 10 215   
   13.50 4 255   
   19.75 6 462   
   24.00 9 448   
   29.00 10 776   
   15.35 6 200   
   19.00 7 132   
    9.50 3 36   
   35.10 17 770   
   17.90 10 140   
   52.32 26 810   
   18.75 9 450   
   19.83 8 635   
   10.75 4 150   
   proc reg;   
    model time  =  cases distance / partial;   
    output out  =  delivery2 p  =  ptime rstudent =  t;   
   run;   
   data delivery3;   
    set delivery2;   
    index  =  _n_;   
   proc gplot data  =  delivery3;   
    plot t * ptime t * cases t * distance t * index;   
   run;   
   proc capability data  =  delivery3;   
    var t;   
    qqplot t;   
   run;   
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 Generally, the graphics in R require a great deal of work in order to be of suitable 
quality. The commands

 deliver2  <  -  cbind(deliver,yhat,t) 
 write.table(deliver2, " delivery_output.txt " )  

 create a fi le  “ delivery_output.txt ”  which the user than can import into his/her favor-
ite package for doing graphics.  

   4.2.6    Other Residual Plotting and Analysis Methods 

 In addition to the basic residual plots discussed in Sections  4.2.3  and  4.2.4 , there are 
several others that are occasionally useful. For example, it may be very useful to 
construct a scatterplot of regressor  x i   against regressor  x j  . This plot may be useful 
in studying the relationship between regressor variables and the disposition of the 
data in  x  space. Consider the plot of  x i   versus  x j   in Figure  4.10 . This display indicates 
that  x i   and  x j   are highly positively correlated. Consequently, it may not be necessary 
to include both regressors in the model. If two or more regressors are highly cor-
related, it is possible that multicollinearity is present in the data. As observed in 
Chapter  3  (Section  3.10 ), multicollinearity can seriously disturb the least - squares fi t 
and in some situations render the regression model almost useless. Plots of  x i   versus 
 x j   may also be useful in discovering points that are remote from the rest of the data 
and that potentially infl uence key model properties. Anscombe [ 1973 ] presents 
several other types of plots between regressors. Cook and Weisberg [ 1994 ] give a 
very modern treatment of regression graphics, including many advanced techniques 
not considered in this book.   

 Figure  4.11  is a scatterplot of  x  1  (cases) versus  x  2  (distance) for delivery time data 
from Example  3.1  (Table  3.2 ). Comparing Figure  4.11  with Figure  4.10 , we see that 
cases and distance are positively correlated. In fact, the simple correlation between 
 x  1  and  x  2  is  r  12      =     0.82. While highly correlated regressors can cause a number of 
serious problems in regression, there is no strong indication in this example that 

     Figure 4.10     Plot of  x i   versus  x j  .  
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any problems have occurred. The scatterplot clearly reveals that observation 9 is 
unusual with respect to both cases and distance ( x  1     =    30,  x  2     =    1460); in fact, it is 
rather remote in  x  space from the rest of the data. Observation 22 ( x  1     =    26,  x  2     =    810) 
is also quite far from the rest of the data. Points remote in  x  space can potentially 
control some of the properties of the regression model. Other formal methods for 
studying this are discussed in Chapter  6 .   

 The  problem situation  often suggests other types of residual plots. For example, 
consider the delivery time data in Example  3.1 . The 25 observations in Table  3.2  
were collected on truck routes in four different cities. Observations 1 – 7 were col-
lected in San Diego, observations 8 – 17 in Boston, observations 18 – 23 in Austin, and 
observations 24 and 25 in Minneapolis. We might suspect that there is a difference 
in delivery operations from city to city due to such factors as different types of 
equipment, different levels of crew training and experience, or motivational factors 
infl uenced by management policies. These factors could result in a  “ site ”  effect that 
is not incorporated in the present equation. To investigate this, we plot the residuals 
by site in Figure  4.12 . We see from this plot that there is some imbalance in the 
distribution of positive and negative residuals at each site. Specifi cally, there is an 
apparent tendency for the model to overpredict delivery times in Austin and under-
predict delivery times in Boston. This could happen because of the site - dependent 
factors mentioned above or because one or more important regressors have been 
omitted from the model.   

  Statistical Tests on Residuals     We may apply statistical tests to the residuals 
to obtain quantitative measures of some of the model inadequacies discussed 
above. For example, see Anscombe [ 1961, 1967 ], Anscombe and Tukey [ 1963 ], 
Andrews [ 1971 ], Looney and Gulledge [ 1985 ], Levine [ 1960 ], and Cook and 
Weisberg [ 1983 ]. Several formal statistical testing procedures for residuals are 
discussed in Draper and Smith [ 1998 ] and Neter, Kutner, Nachtsheim, and Wasser-
man [ 1996 ]. 

     Figure 4.12     Plot of externally studentized residuals by site (city) for the delivery time data 
in Table  3.2 .  
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 In our experience, statistical tests on regression model residuals are not widely 
used. In most practical situations the residual plots are more informative than the 
corresponding tests. However, since residual plots do require skill and experience 
to interpret, the statistical tests may occasionally prove useful. For a good example 
of the use of statistical tests in conjunction with plots see Feder [ 1974 ].    

   4.3    PRESS STATISTIC 

 In Section  4.2.2  we defi ned the PRESS residuals as   e y yi i i( ) ( )= − ˆ , where   ̂y i( ) is the 
predicted value of the  i th observed response based on a model fi t to the remaining 
 n     −    1 sample points. We noted that large PRESS residuals are potentially useful in 
identifying observations where the model does not fi t the data well or observations 
for which the model is likely to provide poor future predictions. 

 Allen [ 1971, 1974 ] has suggested using the prediction error sum of squares (or 
the PRESS statistic), defi ned as the sum of the squared PRESS residuals, as a 
measure of model quality. The PRESS statistic is
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 PRESS is generally regarded as a measure of how well a regression model will 
perform in  predicting new data . A model with a small value of PRESS is desired.   

 Example 4.6   The Delivery Time Data 

    Column 5 of Table  4.1  shows the calculations of the PRESS residuals for the delivery 
time data of Example  3.1 . Column 7 of Table  4.1  contains the squared PRESS 
residuals, and the PRESS statistic is shown at the foot of this column. The value of 
PRESS    =    457.4000 is nearly twice as large as the residual sum of squares for this 
model,  SS  Res     =    233.7260. Notice that almost half of the PRESS statistic is contributed 
by point 9, a relatively remote point in  x  space with a moderately large residual. 
This indicates that the model will not likely predict new observations with large case 
volumes and long distances particularly well.        ■   

     R 2  for Prediction Based on  PRESS      The PRESS statistic can be used to compute 
an  R  2  - like statistic for prediction, say

    R
SS

prediction
T

PRESS2 1= −     (4.18)   

 This statistic gives some indication of the predictive capability of the regression 
model. For the soft drink delivery time model we fi nd
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 Therefore, we could expect this model to  “ explain ”  about 92.09% of the variability 
in predicting new observations, as compared to the approximately 95.96% of the 
variability in the original data explained by the least - squares fi t. The predictive 
capability of the model seems satisfactory, overall. However, recall that the indi-
vidual PRESS residuals indicated that observations that are similar to point 9 may 
not be predicted well.  

  Using  PRESS  to Compare Models     One very important use of the PRESS sta-
tistic is in comparing regression models. Generally, a model with a small value of 
PRESS is preferable to one where PRESS is large. For example, when we added 
 x  2     =    distance to the regression model for the delivery time data containing  x  1     =    cases, 
the value of PRESS decreased from 733.55 to 457.40. This is an indication that the 
two - regressor model is likely to be a better predictor than the model containing 
only  x  1     =    cases.    

   4.4    DETECTION AND TREATMENT OF OUTLIERS 

 An outlier is an extreme observation; one that is considerably different from 
the majority of the data. Residuals that are considerably larger in absolute value 
than the others, say three or four standard deviations from the mean, indicate 
potential  y  space outliers. Outliers are data points that are not typical of the rest of 
the data. Depending on their location in  x  space, outliers can have moderate to 
severe effects on the regression model (e.g., see Figures  2.6  –  2.8 ). Residual plots 
against   ̂yi and the normal probability plot are helpful in identifying outliers. Examin-
ing  scaled residuals , such as the studentized and  R  - student residuals, is an excellent 
way to identify potential outliers. An excellent general treatment of the outlier 
problems is in Barnett and Lewis [ 1994 ]. Also see Myers [ 1990 ] for a good 
discussion. 

 Outliers should be carefully investigated to see if a reason for their unusual 
behavior can be found. Sometimes outliers are  “ bad ”  values, occurring as a result 
of unusual but explainable events. Examples include faulty measurement or analysis, 
incorrect recording of data, and failure of a measuring instrument. If this is the case, 
then the outlier should be corrected (if possible) or deleted from the data set. 
Clearly discarding bad values is desirable because least squares pulls the fi tted equa-
tion toward the outlier as it minimizes the residual sum of squares. However, we 
emphasize that there should be strong nonstatistical evidence that the outlier is a 
bad value before it is discarded. 

 Sometimes we fi nd that the outlier is an unusual but perfectly plausible observa-
tion. Deleting these points to  “ improve the fi t of the equation ”  can be dangerous, 
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as it can give the user a false sense of precision in estimation or prediction. Occa-
sionally we fi nd that the outlier is more important than the rest of the data because 
it may control many key model properties. Outliers may also point out inadequacies 
in the model, such as failure to fi t the data well in a certain region of  x  space. If the 
outlier is a point of particularly desirable response (e.g., low cost, high yield), knowl-
edge of the regressor values when that response was observed may be extremely 
valuable. Identifi cation and follow - up analyses of outliers often result in process 
improvement or new knowledge concerning factors whose effect on the response 
was previously unknown. 

 Various statistical tests have been proposed for detecting and rejecting outliers. 
For example, see Barnett and Lewis [ 1994 ]. Stefansky [ 1971, 1972 ] has proposed an 
approximate test for identifying outliers based on the maximum normed residual 
  e ei i

n
i/ ∑ =1
2  that is particularly easy to apply. Examples of this test and other related 

references are in Cook and Prescott [ 1981 ], Daniel [ 1976 ], and Williams [ 1973 ]. See 
also Appendix  C.9 . While these tests may be useful for identifying outliers, they 
should not be interpreted to imply that the points so discovered should be automati-
cally rejected. As we have noted, these points may be important clues containing 
valuable information. 

 The effect of outliers on the regression model may be easily checked by dropping 
these points and refi tting the regression equation. We may fi nd that the values of 
the regression coeffi cients or the summary statistics such as the  t  or  F  statistic,  R  2 , 
and the residual mean square may be very sensitive to the outliers. Situations in 
which a relatively small percentage of the data has a signifi cant impact on the model 
may not be acceptable to the user of the regression equation. Generally we are 
happier about assuming that a regression equation is valid if it is not overly sensitive 
to a few observations. We would like the regression relationship to be embedded in 
all of the observations and not merely an artifi ce of a few points.    

 Example 4.7   The Rocket Propellant Data 

    Figure  4.13  presents the normal probability plot of the externally studentized residu-
als and the plot of the externally studentized residuals versus the predicted   ŷi for 
the rocket propellant data introduced in Example  2.1 . We note that there are two 
large negative residuals that lie quite far from the rest (observations 5 and 6 in Table 
 2.1 ). These points are potential outliers. These two points tend to give the normal 
probability plot the appearance of one for skewed data. Note that observation 5 
occurs at a relatively low value of age (5.5 weeks) and observation 6 occurs at a 
relatively high value of age (19 weeks). Thus, these two points are widely separated 
in  x  space and occur near the extreme values of  x , and they may be infl uential in 
determining model properties. Although neither residual is excessively large, the 
overall impression from the residual plots (Figure  4.13 ) is that these two observa-
tions are distinctly from the others.   

 To investigate the infl uence of these two points on the model, a new regression 
equation is obtained with observations 5 and 6 deleted. A comparison of the 
summary statistics from the two models is given below. 
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     Figure 4.13     Externally studentized residual plots for the rocket propellant data: ( a ) the 
normal probability plot; ( b ) residuals versus predicted   ŷi .  
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        Observations 5 and 6 IN     Observations 5 and 6 OUT  

    β̂0
    2627.82    2658.97  

    β̂1      − 37.15     − 37.69  
   R  2     0.9018    0.9578  
   MS  Res     9244.59    3964.63  
    se β̂1( )    2.89    1.98  

 Deleting points 5 and 6 has almost no effect on the estimates of the regression coef-
fi cients. There has, however, been a dramatic reduction in the residual mean square, 
a moderate increase in  R  2 , and approximately a one - third reduction in the standard 
error of   β̂1. 
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     Figure 4.14     Residual plots for the rocket propellant data with observations 5 and 6 removed: 
( a ) the normal probability plot; ( b ) residuals versus predicted   ŷi .  
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 Since the estimates of the parameters have not changed dramatically, we con-
clude that points 5 and 6 are not overly infl uential. They lie somewhat off the line 
passing through the other 18 points, but they do not control the slope and intercept. 
However, these two residuals make up approximately 56% of the residual sum of 
squares. Thus, if these points are truly bad values and should be deleted, the preci-
sion of the parameter estimates would be improved and the widths of confi dence 
and prediction intervals could be substantially decreased. 

 Figure  4.14  shows the normal probability plot of the externally studentized resid-
uals and the plot of the externally studentized residuals versus   ̂yi  for the model with 
points 5 and 6 deleted. These plots do not indicate any serious departures from 
assumptions.   

 Further examination of points 5 and 6 fails to reveal any reason for the unusually 
low propellant shear strengths obtained. Therefore, we should not discard these two 
points. However, we feel relatively confi dent that including them does not seriously 
limit the use of the model.        ■   
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     Figure 4.15     Data illustrating lack of fi t of the straight - line model.  
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   4.5    LACK OF FIT OF THE REGRESSION MODEL 

 A famous quote attributed to George Box is  “ All models are wrong; some models 
are useful. ”  This comment goes to heart of why tests for lack - of - fi t are important. 
In basic English, lack - of - fi t is  “ the terms that we could have fi t to the model but 
chose not to fi t. ”  For example, only two distinct points are required to fi t a straight 
line. If we have three distinct points, then we could fi t a parabola (a second - order 
model). If we choose to fi t only the straight line, then we note that in general the 
straight line does not go through all three points. We typically assume that this 
phenomenon is due to error. On the other hand, the true underlying mechanism 
could really be quadratic. In the process, what we claim to be random error is actu-
ally a systematic departure as the result of not fi tting enough terms. In the simple 
linear regression context, if we have  n  distinct data points, we can always fi t a poly-
nomial of order up to  n     −    1. When we choose to fi t a straight line, we give up n    −    2 
degrees of freedom to estimate the error term when we could have chosen to fi t 
these other higher - order terms. 

   4.5.1    A Formal Test for Lack of Fit 

 The formal statistical test for the lack of fi t of a regression model assumes that the 
normality, independence, and constant - variance requirements are met and that only 
the fi rst - order or straight - line character of the relationship is in doubt. For example, 
consider the data in Figure  4.15 . There is some indication that the straight - line fi t is 
not very satisfactory. Perhaps, a quadratic term ( x  2 ) should be added, or perhaps 
another regressor should be added. It would be helpful to have a test procedure to 
determine if systematic lack of fi t is present.   

 The lack - of - fi t test requires that we have replicate observations on the response 
 y  for at least one level of  x . We emphasize that these should be true replications, 
not just duplicate readings or measurements of  y . For example, suppose that  y  
is product viscosity and  x  is temperature. True replication consists of running  n i   
separate experiments at  x     =     x i   and observing viscosity, not just running a single 
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experiment at  x i   and measuring viscosity  n i   times. The readings obtained from the 
latter procedure provide information only on the variability of the method of mea-
suring viscosity. The error variance   σ      2  includes this measurement error and the 
variability associated with reaching and maintaining the same temperature level in 
different experiments. These replicated observations are used to obtain a  model -
 independent estimate  of   σ      2 . 

 Suppose that we have  n i   observations on the response at the  i th level of the 
regressor  x i  ,  i     =    1, 2,    . . .    ,  m . Let  y ij   denote the  j th observation on the response 
at  x i  ,  i     =    1, 2,    . . .    ,  m  and  j     =    1, 2,    . . .    ,  n i  . There are   n ni

m
i= ∑ =1  total observations. 

The test procedure involves partitioning the residual sum of squares into two com-
ponents, say

   SS SS SSRes PE LOF= +  

  where  SS  PE  is the sum of squares due to  pure error  and  SS  LOF  is the sum of squares 
due to  lack of fi t . 

 To develop this partitioning of  SS  Res , note that the ( ij )th residual is

    y y y y y yij i ij i i i− = −( ) + −( )ˆ ˆ     (4.19)   

 where   yi is the average of the  n i   observations at  x i  . Squaring both sides of Eq.  (4.19)  
and summing over  i  and  j  yields

    y y y y n y yij i

j

n

i

m

ij i

j

n

i

n

i i i

i

mi i

−( ) = −( ) + −( )
== == =

∑∑ ∑∑ˆ ˆ2

11

2

11

2

1
∑∑     (4.20)   

 since the cross - product term equals zero. 
 The left - hand side of Eq.  (4.20)  is the usual residual sum of squares. The two 

components on the right - hand side measure pure error and lack of fi t. We see that 
the pure - error sum of squares

    SS y yij i

j

n

i

m i

PE = −( )
==

∑∑ 2

11

    (4.21)   

 is obtained by computing the corrected sum of squares of the repeat observations 
at each level of  x  and then pooling over the  m  levels of  x . If the assumption of 
constant variance is satisfi ed, this is a  model - independent measure of pure error  
since only the variability of the  y  ’ s at each  x  level is used to compute  SS  PE . Since 
there are  n i      −    1 degrees of freedom for pure error at each level  x i  , the total number 
of degrees of freedom associated with the pure - error sum of squares is

    n n mi

i

m

−( ) = −
=
∑ 1

1

    (4.22)   

 The sum of squares for lack of fi t
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    SS n y yi i i

i

m

LOF = −( )
=
∑ ˆ 2

1

    (4.23)  

  is a weighted sum of squared deviations between the mean response   yi  at each  x  
level and the corresponding fi tted value. If the fi tted values   ̂yi are close to the cor-
responding average responses   yi , then there is a strong indication that the regression 
function is linear. If the   ̂yi  deviate greatly from the   yi, then it is likely that the regres-
sion function is not linear. There are  m     −    2 degrees of freedom associated with  SS  LOF , 
since there are  m  levels of  x  and two degrees of freedom are lost because two 
parameters must be estimated to obtain the   yi. Computationally we usually obtain 
 SS  LOF  by subtracting  SS  PE  from  SS  Res . 

 The test statistic for lack of fi t is

    F
SS m
SS n m

MS
MS

0
2= −( )

−( )
=LOF

PE

LOF

PE

/
/

    (4.24)   

 The expected value of  MS  PE  is   σ      2 , and the expected value of  MS  LOF  is

    E MS

n E y x

m

i i i

i

m

LOF( ) = +
( ) − −[ ]

−
=
∑

σ
β β

2

0 1
2

1

2
    (4.25)   

 If the true regression function is linear, then   E y xi i( ) = +β β0 1 , and the second term 
of Eq.  (4.25)  is zero, resniting in  E ( MS  LOF )    =      σ      2 . However, if the true regression 
function is not linear, then  E ( y i  )    ≠      β   0     +      β   1  x i  , and  E ( MS  LOF )    >      σ      2 . Furthermore, if the 
true regression function is linear, then the statistic  F  0  follows the  F m    − 2,   n    −    m   distribution. 
Therefore, to test for lack of fi t, we would compute the test statistic  F  0  and conclude 
that the regression function is not linear if  F  0     >     F  α    ,   m    − 2,   n    −    m  . 

 This test procedure may be easily introduced into the analysis of variance con-
ducted for signifi cance of regression. If we conclude that the regression function is 
not linear, then the tentative model must be abandoned and attempts made to fi nd 
a more appropriate equation. Alternatively, if  F  0  does not exceed  F  α    ,   m    − 2,   n    −    m  , there is 
no strong evidence of lack of fi t, and  MS  PE  and  MS  LOF  are often combined to esti-
mate   σ      2 . 

 Ideally, we fi nd that the  F  ratio for lack of fi t is not signifi cant, and the hypothesis 
of signifi cance of regression ( H  0 :   β   1     =    0) is rejected. Unfortunately, this does not 
guarantee that the model will be satisfactory as a prediction equation. Unless 
the variation of the predicted values is large relative to the random error, the model 
is not estimated with suffi cient precision to yield satisfactory predictions. That is, the 
model may have been fi tted to the errors only. Some analytical work has been 
done on developing criteria for judging the adequacy of the regression model from 
a prediction point of view. See Box and Wetz [ 1973 ], Ellerton [ 1978 ], Gunst and 
Mason [ 1979 ], Hill, Judge, and Fomby [ 1978 ], and Suich and Derringer [ 1977 ]. 
The Box and Wetz work suggests that the observed  F  ratio must be at least four or 
fi ve times the critical value from the  F  table if the regression model is to be 
useful as a predictor, that is, if the spread of predicted values is to be large relative 
to the noise. 
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 A relatively simple measure of potential prediction performance is found by 
comparing the range of the fi tted values   ̂yi (i.e.,   ̂ ˆmax miny y− ) to their average standard 
error. It can be shown that, regardless of the form of the model, the average vari-
ance of the fi tted values is

    Var Varˆ ˆy
n

y
p

n
i

i

n

( ) = ( ) =
=
∑1

1

2σ
    (4.26)  

  where  p  is the number of parameters in the model. In general, the model is not 
likely to be a satisfactory predictor unless the range of the fi tted values   ̂yi is large 
relative to their average estimated standard error   p nˆ /σ 2( ) , where   σ̂ 2 is a model -
 independent estimate of the error variance.  

 Example 4.8   Testing for Lack of Fit 

    The data from Figure  4.15  are shown below:   

   x     1.0    1.0    2.0    3.3    3.3    4.0    4.0    4.0    4.7    5.0  
   y     10.84    9.30    16.35    22.88    24.35    24.56    25.86    29.16    24.59    22.25  
   x     5.6    5.6    5.6    6.0    6.0    6.5    6.9              
   y     25.90    27.20    25.61    25.45    26.56    21.03    21.46              

 The straight - line fi t is   ˆ . .y x= +13 301 2 108 , with  SS  T     =    487.6126,  SS  R     =    234.7087, 
and  SS  Res     =    252.9039. Note that there are 10 distinct levels of  x , with repeat points 
at  x      =     1.0,  x      =     3.3,  x      =     4.0,  x      =     5.6, and  x      =     6.0. The pure - error sum of squares is 
computed using the repeat points as follows: 

   Level of  x        ∑ −( )j ij iy y 2      Degrees of Freedom  

  1.0    1.1858    1  
  3.3    1.0805    1  
  4.0    11.2467    2  
  5.6    1.4341    2  
  6.0    0.6161    1  
  Total    15.5632    7  

 The lack - of - fi t sum of squares is found by subtraction as

   
SS SS SSLOF Res PE= −

= − =252 9039 15 5632 237 3407. . .
  

 with  m     −    2    =    10    −    2    =    8 degrees of freedom. The analysis of variance incorporating 
the lack - of - fi t test is shown in Table  4.4 . The lack - of - fi t test statistic is  F  0     =    13.34, and 
since the  P  value is very small, we reject the hypothesis that the tentative model 
adequately describes the data.        ■     
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   4.5.2    Estimation of Pure Error from Near Neighbors 

 In Section  4.5.1  we described a test for lack of fi t for the linear regression model. 
The procedure involved partitioning the error or residual sum of squares into a 
component due to  “ pure ”  error and a component due to lack of fi t:

   SS SS SSRes PE LOF= +   

 The pure - error sum of squares  SS  PE  is computed using responses at repeat observa-
tions at the same level of  x . This is a  model - independent estimate  of   σ      2 . 

 This general procedure can in principle be applied to any regression model. 
The calculation of  SS  PE  requires repeat observations on the response  y  at the 
same set of levels on the regressor variables  x  1 ,  x  2 ,    . . .    ,  x k  . That is, some of the  rows  
of the  X  matrix must be the same. However, repeat observations do not often occur 
in multiple regression, and the procedure described in Section  4.5.1  is not often 
useful. 

 Daniel and Wood [ 1980 ] and Joglekar, Schuenemeyer, and La Riccia [ 1989 ] have 
investigated methods for obtaining a model - independent estimate of error when 
there are no exact repeat points. These procedures search for points in  x  space that 
are  near neighbors , that is, sets of observations that have been taken with nearly 

  TABLE 4.4    Analysis of Variance for Example  4.8  

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    234.7087    1    234.7087          
  Residual    252.9039    15    16.8603          
  (Lack of fi t)    237.3407    8    29.6676    13.34    0.0013  
  (Pure error)    15.5632    7    2.2233          
  Total    487.6126    16              

 Example 4.9   Testing for Lack of Fit in  JMP  

    Some software packages will perform the lack of fi t test automatically if there are 
replicate observations in the data. In the patient satisfaction data of Appendix Table 
 B.17  there are replicate observations in the severity predictor (they occur at 30, 31, 
38, 42, 28, and 50). Figure  4.16  is a portion of the JMP output that results from fi tting 
a simple linear regression model to these data. The  F  - test for lack of fi t in Equation 
 4.24  is shown in the output. The  P  - value is 0.0874, so there is some mild indication 
of lack of fi t. Recall from Section  3.6  that when we added the second predictor (age) 
to this model the quality of the overall fi t improved considerably. As this example 
illustrates, sometimes lack of fi t is caused by missing regressors; it isn ’ t always neces-
sary to add higher - order terms to the model.        ■     
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identical levels of  x  1 ,  x  2 ,    . . .    ,  x k  . The responses  y i   from such near neighbors can be 
considered as repeat points and used to obtain an estimate of pure error. As a 
measure of the distance between any two points, for example,  x i   1 ,  x i   2 ,    . . .    ,  x ik   and  x i ′    1 , 
 x i ′     2 ,    . . .    ,  x i ′ k  , we will use the weighted sum of squared distance (WSSD)

    D
x x

MS
ii

j ij i j

j

k

′
′

=

=
−( )⎡

⎣
⎢

⎤

⎦
⎥∑2

2

1

β̂

Res

    (4.27)   

 Pairs of points that have small values of   Dii′
2  are  “ near neighbors, ”  that is, they are 

relatively close together in  x  space. Pairs of points for which   Dii′
2  is large (e.g.,   Dii′

2 1� ) 
are widely separated in  x  space. The residuals at two points with a small value of 
  Dii′

2  can be used to obtain an estimate of pure error. The estimate is obtained from 
the range of the residuals at the points  i  and  i ′  , say

     Figure 4.16     JMP output for the simple linear regression model relating satisfaction to 
severity.  
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   E e ei i i= − ′   

 There is a relationship between the range of a sample from a normal population 
and the population standard deviation. For samples of size 2, this relationship is

   ˆ . .σ = ( ) =−1 128 0 8861 E E   

 The quantity   σ̂  so obtained is an estimate of the standard deviation of pure error. 
 An effi cient algorithm may be used to compute this estimate. A computer 

program for this algorithm is given in Montgomery, Martin, and Peck [ 1980 ]. First 
arrange the data points  x i   1 ,  x i   2 ,    . . .    ,  x ik   in order of increasing   ̂yi . Note that points with 
very different values of   ̂yi  cannot be near neighbors, but those with similar values 
of   ̂yi could be neighbors (or they could be near the same contour of constant   ŷ but 
far apart in some  x  coordinates). Then:

   1.     Compute the values of   Dii′
2  for all  n     −    1 pairs of points with adjacent values of 

  ŷ. Repeat this calculation for the pairs of points separated by one, two, and 
three intermediate   ŷ values. This will produce 4 n     −    10 values of   Dii′

2 .  
  2.     Arrange the 4 n     −    10 values of   Dii′

2  found in 1 above in ascending order. Let  E u  , 
 u     =    1, 2,    . . .    , 4 n     −    10, be the range of the residuals at these points.  

  3.     For the fi rst  m  values of  E u  , calculate an estimate of the standard deviation of 
pure error as

    ˆ .σ =
=

∑0 886

1m
Eu

u

m

    (4.28)      

 Note that   σ̂  is based on the average range of the residuals associated with the 
 m  smallest values of   Dii′

2 ;  m  must be chosen after inspecting the values of   Dii′
2 . 

One should not include values of  E u   in the calculations for which the weighted 
sum of squared distance is too large.         

 Example 4.10   The Delivery Time Data 

    We use the procedure described above to calculate an estimate of the standard 
deviation of pure error for the soft drink delivery time data from Example  3.1 . Table 
 4.5  displays the calculation of   Dii′

2  for pairs of points that, in terms of   ŷ, are adjacent, 
one apart, two apart, and three apart. The R columns in this table identify the 15 
smallest values of   Dii′

2 . The residuals at these 15 pairs of points are used to estimate 
  σ  . These calculations yield   ˆ .σ = 1 969 and are summarized in Table  4.6 . From Table 
 3.4 , we fi nd that   MSRes = =10 6239 3 259. . . Now if there is no appreciable lack of 
fi t, we would expect to fi nd that   σ̂ = MSRes . In this case   MSRes  is about 65% larger 
than   σ̂ , indicating some lack of fi t. This could be due to the effects of regressors not 
presently in the model or the presence of one or more outliers.        ■     
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  TABLE 4.6    Calculation of   ŝ  for Example  4.10  

   Number  

   Standard Deviation Estimated from Residuals 
of Neighboring Observations  

   Cumulative 
Standard 
Deviation  

   Ordered by   Dii′
2   

     Dii′
2      Observation     Observation     Delta Residual  

  1    .4677 E     +    01    .7791 E     −    04    15    23    5.2788  
  2    .2729 E     +    01    .4859 E     −    01    5    17    0.8807  
  3    .3336 E     +    01    .9544 E     −    01    4    25    5.1369  
  4    .2950 E     +    01    .1096 E     +    00    21    12    2.0211  
  5    .2766 E     +    01    .1185 E     +    00    18    8    2.2920  
  6    .2488 E     +    01    .2147 E     +    00    25    13    1.2396  
  7    .2224 E     +    01    .2477 E     +    00    17    8    0.7203  
  8    .2377 E     +    01    .2521 E     +    00    5    18    3.8930  
  9    .2125 E     +    01    .2696 E     +    00    2    13    0.1194  

  10    .2040 E     +    01    .2805 E     +    00    8    6    1.4462  
  11    .1951 E     +    01    .2805 E     +    00    2    3    1.1962  
  12    .2020 E     +    01    .2835 E     +    00    19    4    3.1312  
  13    .1973 E     +    01    .3159 E     +    00    5    8    1.6010  
  14    .2023 E     +    01    .3358 E     +    00    17    18    3.0123  
  15    .1969 E     +    01    .3412 E     +    00    2    25    1.3590  
  16    .1898 E     +    01    .3524 E     +    00    7    19    0.9486  
  17    .1810 E     +    01    .3553 E     +    00    1    24    0.4552  
  18    .2105 E     +    01    .3767 E     +    00    11    20    8.0255  
  19    .2044 E     +    01    .3865 E     +    00    3    13    1.0768  
  20    .2212 E     +    01    .4328 E     +    00    14    1    6.0956  
  21    .2119 E     +    01    .4814 E     +    00    7    2    0.3018  
  22    .2104 E     +    01    .4989 E     +    00    19    25    2.0058  
  23    .2040 E     +    01    .5749 E     +    00    17    6    0.7259  
  24    .2005 E     +    01    .5851 E     +    00    6    14    1.3571  
  25    .2063 E     +    01    .5965 E     +    00    4    13    3.8973  
  26    .2113 E     +    01    .6275 E     +    00    4    2    3.7780  
  27    .2077 E     +    01    .6441 E     +    00    14    10    1.3089  
  28    .2024 E     +    01    .6594 E     +    00    19    2    0.6468  
  29    .2068 E     +    01    .7636 E     +    00    18    6    3.7382  
  30    .2004 E     +    01    .8768 E     +    00    5    6    0.1548  
  31    .1940 E     +    01    .9124 E     +    00    23    24    0.0347  
  32    .2025 E     +    01    .9269 E     +    00    15    24    5.2441  
  33    .1968 E     +    01    .9489 E     +    00    25    3    0.1628  
  34    .1916 E     +    01    .9831 E     +    00    25    5    0.2318  
  35    .1964 E     +    01    .1001 E     +    01    7    4    4.0797  
  36    .1936 E     +    01    .1014 E     +    01    7    25    1.0572  
  37    .2061 E     +    01    .1023 E     +    01    10    1    7.4045  
  38    .2022 E     +    01    .1032 E     +    01    25    17    0.6489  
  39    .1983 E     +    01    .1042 E     +    01    13    17    0.5907  
  40    .1966 E     +    01    .1198 E     +    01    13    5    1.4714  
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    PROBLEMS 

       4.1    Consider the simple regression model fi t to the National Football League 
team performance data in Problem 2.1.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Plot the residuals versus the team passing yardage,  x  2 . Does this plot indi-

cate that the model will be improved by adding  x  2  to the model?      

    4.2    Consider the multiple regression model fi t to the National Football League 
team performance data in Problem 3.1.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Construct plots of the residuals versus each of the regressor variables. Do 

these plots imply that the regressor is correctly specifi ed?  
  d.     Construct the partial regression plots for this model. Compare the plots 

with the plots of residuals versus regressors from part c above. Discuss the 
type of information provided by these plots.  

  e.     Compute the studentized residuals and the  R  - student residuals for this 
model. What information is conveyed by these scaled residuals?      

    4.3    Consider the simple linear regression model fi t to the solar energy data in 
Problem 2.3.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.      

    4.4    Consider the multiple regression model fi t to the gasoline mileage data in 
Problem 3.5.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Construct and interpret the partial regression plots for this model.  
  d.     Compute the studentized residuals and the  R  - student residuals for this 

model. What information is conveyed by these scaled residuals?      

    4.5    Consider the multiple regression model fi t to the house price data in Problem 
3.7.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Construct the partial regression plots for this model. Does it seem that 

some variables currently in the model are not necessary?  
  d.     Compute the studentized residuals and the  R  - student residuals for this 

model. What information is conveyed by these scaled residuals?      
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    4.6    Consider the simple linear regression model fi t to the oxygen purity data in 
Problem 2.7.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.      

    4.7    Consider the simple linear regression model fi t to the weight and blood pres-
sure data in Problem 2.10.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Suppose that the data were collected in the order shown in the table. Plot 

the residuals versus time order and comment on the plot.      

    4.8    Consider the simple linear regression model fi t to the steam plant data in 
Problem 2.12.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Suppose that the data were collected in the order shown in the table. Plot 

the residuals versus time order and comment on the plot.      

    4.9    Consider the simple linear regression model fi t to the ozone data in Problem 
2.13.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Plot the residuals versus time order and comment on the plot.      

    4.10    Consider the simple linear regression model fi t to the copolyester viscosity 
data in Problem 2.14.
   a.     Construct a normal probability plot of the unscaled residuals. Does there 

seem to be any problem with the normality assumption?  
  b.     Repeat part a using the studentized residuals. Is there any substantial dif-

ference in the two plots?  
  c.     Construct and interpret a plot of the residuals versus the predicted 

response.      

    4.11    Consider the simple linear regression model fi t to the toluene – tetralin viscos-
ity data in Problem 2.15.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted 

response.      

    4.12    Consider the simple linear regression model fi t to the tank pressure and 
volume data in Problem 2.16.
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
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  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Suppose that the data were collected in the order shown in the table. Plot 

the residuals versus time order and comment on the plot.      

    4.13    Problem 3.8 asked you to fi t two different models to the chemical process 
data in Table  B.5 . Perform appropriate residual analyses for both models. 
Discuss the results of these analyses. Calculate the PRESS statistic for both 
models. Do the residual plots and PRESS provide any insight regarding the 
best choice of model for the data?   

    4.14    Problems 2.4 and 3.5 asked you to fi t two different models to the gasoline 
mileage data in Table  B.3 . Calculate the PRESS statistic for these two models. 
Based on this statistic, which model is most likely to provide better predic-
tions of new data?   

    4.15    In Problem 3.9, you were asked to fi t a model to the tube - fl ow reactor data 
in Table  B.6 .
   a.     Construct a normal probability plot of the residuals. Does there seem to 

be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.  
  c.     Construct the partial regression plots for this model. Does it seem that 

some variables currently in the model are not necessary?      

    4.16    In Problem 3.12, you were asked to fi t a model to the clathrate formation 
data in Table  B.8 .
   a.     Construct a normality plot of the residuals from the full model. Does there 

seem to be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted 

response.  
  c.     In Problem 3.12, you were asked to fi t a second model. Compute the 

PRESS statistic for both models. Based on this statistic, which model is 
most likely to provide better predictions of new data?      

    4.17    In Problem 3.14, you were asked to fi t a model to the kinematic viscosity data 
in Table  B.10 .
   a.     Construct a normality plot of the residuals from the full model. Does there 

seem to be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted 

response.  
  c.     In Problem 3.14, you were asked to fi t a second model. Compute the 

PRESS statistic for both models. Based on this statistic, which model is 
most likely to provide better predictions of new data?      

    4.18    Coteron, Sanchez, Martinez, and Aracil ( “ Optimization of the Synthesis of an 
Analogue of Jojoba Oil Using a Fully Central Composite Design, ”   Canadian 
Journal of Chemical Engineering , 1993) studied the relationship of reaction 
temperature  x  1 , initial amount of catalyst  x  2 , and pressure  x  3  on the yield of 
a synthetic analogue to jojoba oil. The following table summarizes the experi-
mental results. 
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         a.     Perform a thorough analysis of the results including residual plots.  
  b.     Perform the appropriate test for lack of fi t.      

    4.19    Derringer and Suich ( “ Simultaneous Optimization of Several Response Vari-
ables, ”   Journal of Quality Technology , 1980) studied the relationship of an 
abrasion index for a tire tread compound in terms of three factors:  x  1 , hydrated 
silica level;  x  2 , silane coupling agent level; and  x  3 , sulfur level. The following 
table gives the actual results. 

    x  l       x  2       x  3       y   

   − 1     − 1     − 1    17  
  1     − 1     − 1    44  

   − 1    1     − 1    19  
  1    1     − 1    46  

   − 1     − 1    1    7  
  1     − 1    1    55  

   − 1    1    1    15  
  1    1    1    41  
  0    0    0    29  
  0    0    0    28.5  
  0    0    0    30  
  0    0    0    27  
  0    0    0    28  

    x  1       x  2       x  3       y   

   − 1     − 1    1    102  
  1     − 1     − 1    120  

   − 1    1     − 1    117  
  1    1    1    198  

   − 1     − 1     − 1    103  
  1     − 1    1    132  

   − 1    1    1    132  
  1    1     − 1    139  
  0    0    0    133  
  0    0    0    133  
  0    0    0    140  
  0    0    0    142  
  0    0    0    145  
  0    0    0    142  

         a.     Perform a thorough analysis of the results including residual plots.  
  b.     Perform the appropriate test for lack of fi t.      

    4.20    Myers Montgomery and Anderson - Cook ( Response Surface Methodology  3 rd  
edition, Wiley, New York, 2009) discuss an experiment to determine the infl u-
ence of fi ve factors:
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    x  1  — acid bath temperature  
   x  2  — cascade acid concentration  
   x  3  — water temperature  
   x  4  — sulfi de concentration  
   x  5  — amount of chlorine bleach    

 on an appropriate measure of the whiteness of rayon ( y ). The engineers con-
ducting this experiment wish to minimize this measure. The experimental 
results follow. 

        Acid Temp.     Acid Conc.     Water Temp.     Sulfi de Conc.     Amount of Bleach      y   

  35    0.3    82    0.2    0.3    76.5  
  35    0.3    82    0.3    0.5    76.0  
  35    0.3    88    0.2    0.5    79.9  
  35    0.3    88    0.3    0.3    83.5  
  35    0.7    82    0.2    0.5    89.5  
  35    0.7    82    0.3    0.3    84.2  
  35    0.7    88    0.2    0.3    85.7  
  35    0.7    88    0.3    0.5    99.5  
  55    0.3    82    0.2    0.5    89.4  
  55    0.3    82    0.3    0.3    97.5  
  55    0.3    88    0.2    0.3    103.2  
  55    0.3    88    0.3    0.5    108.7  
  55    0.7    82    0.2    0.3    115.2  
  55    0.7    82    0.3    0.5    111.5  
  55    0.7    88    0.2    0.5    102.3  
  55    0.7    88    0.3    0.3    108.1  
  25    0.5    85    0.25    0.4    80.2  
  65    0.5    85    0.25    0.4    89.1  
  45    0.1    85    0.25    0.4    77.2  
  45    0.9    85    0.25    0.4    85.1  
  45    0.5    79    0.25    0.4    71.5  
  45    0.5    91    0.25    0.4    84.5  
  45    0.5    85    0.15    0.4    77.5  
  45    0.5    85    0.35    0.4    79.2  
  45    0.5    85    0.25    0.2    71.0  
  45    0.5    85    0.25    0.6    90.2  

    a.     Perform a thorough analysis of the results including residual plots.  
  b.     Perform the appropriate test for lack of fi t.      

    4.21    Consider the test for lack of fi t. Find  E ( MS  PE ) and  E ( MS  LOF ).   

    4.22    Table  B.14  contains data on the transient points of an electronic inverter. 
Using only the regressors  x  1 ,    . . .    ,  x  4 , fi t a multiple regression model to these 
data.
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   a.     Investigate the adequacy of the model.  
  b.     Suppose that observation 2 was recorded incorrectly. Delete this observa-

tion, refi t the model, and perform a thorough residual analysis. Comment 
on the difference in results that you observe.      

    4.23    Consider the advertising data given in Problem 2.18.
   a.     Construct a normal probability plot of the residuals from the full model. 

Does there seem to be any problem with the normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.      

    4.24    Consider the air pollution and mortality data given in Problem 3.15 and Table 
 B.15 .
   a.     Construct a normal probability plot of the residuals from the full model. 

Does there seem to be any problem with normality assumption?  
  b.     Construct and interpret a plot of the residuals versus the predicted response.      

    4.25    Consider the life expectancy data given in Problem 3.16 and Table  B.16 .
   a.     For each model construct a normal probability plot of the residuals from 

the full model. Does there seem to be any problem with the normality 
assumption?  

  b.     For each model construct and interpret a plot of the residuals versus the 
predicted response.      

    4.26    Consider the multiple regression model for the patient satisfaction data in 
Section  3.6 . Analyse the residuals from this model and comment on model 
adequacy.   

    4.27    Consider the fuel consumption data in Table  B.18 . For the purposes of this 
exercise, ignore regressor  x  1 . Perform a thorough residual analysis of these 
data. What conclusions do you draw from this analysis?   

    4.28    Consider the wine quality of young red wines data in Table  B.19 . For the 
purposes of this exercise, ignore regressor  x  1 . Perform a thorough residual 
analysis of these data. What conclusions do you draw from this analysis?   

    4.29    Consider the methanol oxidation data in Table  B.20 . Perform a thorough 
analysis of these data. What conclusions do you draw from this residual 
analysis?       
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  CHAPTER 5 

TRANSFORMATIONS AND WEIGHTING 
TO CORRECT MODEL INADEQUACIES     

    5.1    INTRODUCTION 

 Chapter  4  presented several techniques for checking the adequacy of the linear 
regression model. Recall that regression model fi tting has several implicit assump-
tions, including the following:

   1.     The model errors have mean zero and constant variance and are 
uncorrelated.  

  2.     The model errors have a normal distribution — this assumption is made in 
order to conduct hypothesis tests and construct CIs — under this assumption, 
the errors are independent.  

  3.     The form of the model, including the specifi cation of the regressors, is correct.    

 Plots of residuals are very powerful methods for detecting violations of these basic 
regression assumptions. This form of model adequacy checking should be conducted 
for every regression model that is under serious consideration for use in practice. 

 In this chapter, we focus on methods and procedures for building regression 
models when some of the above assumptions are violated. We place considerable 
emphasis on  data transformation . It is not unusual to fi nd that when the response 
and/or the regressor variables are expressed in the correct scale of measurement or 
metric, certain violations of assumptions, such as inequality of variance, are no 
longer present. Ideally, the choice of metric should be made by the engineer or 
scientist with  subject - matter knowledge , but there are many situations where this 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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information is not available. In these cases, a data transformation may be chosen 
heuristically or by some analytical procedure. 

 The method of weighted least squares is also useful in building regression models 
in situations where some of the underlying assumptions are violated. We will illus-
trate how weighted least squares can be used when the equal - variance assumption 
is not appropriate. This technique will also prove essential in subsequent chapters 
when we consider other methods for handling nonnormal response variables.  

   5.2    VARIANCE - STABILIZING TRANSFORMATIONS 

 The assumption of  constant variance  is a basic requirement of regression analysis. 
A common reason for the violation of this assumption is for the response variable 
 y  to follow a probability distribution in which the variance is functionally related to 
the mean. For example, if  y  is a Poisson random variable in a simple linear regres-
sion model, then the variance of  y  is equal to the mean. Since the mean of  y  is related 
to the regressor variable  x , the variance of  y  will be proportional to  x.  Variance -
 stabilizing transformations are often useful in these cases. Thus, if the distribution 
of  y  is Poisson, we could regress   ′ =y y against  x  since the variance of the square 
root of a Poisson random variable is independent of the mean. As another example, 
if the response variable is a proportion (0    ≤     y i      ≤    1) and the plot of the residuals 
versus   ̂yi has the double - bow pattern of Figure  4.5  c , the arcsin transformation 
  ′ = ( )−y ysin 1  is appropriate. 

 Several commonly used variance - stabilizing transformations are summarized in 
Table  5.1 . The  strength  of a transformation depends on the amount of curvature 
that it induces. The transformations given in Table  5.1  range from the relatively mild 
square root to the relatively strong reciprocal. Generally speaking, a mild transfor-
mation applied over a relatively narrow range of values (e.g.,  y  max / y  min     <    2, 3) has 
little effect. On the other hand, a strong transformation over a wide range of values 
will have a dramatic effect on the analysis.   

 Sometimes we can use prior experience or theoretical considerations to guide us 
in selecting an appropriate transformation. However, in many cases we have no a 
priori reason to suspect that the error variance is not constant. Our fi rst indication 
of the problem is from inspection of scatter diagrams or residual analysis. In these 
cases the appropriate transformation may be selected  empirically . 

  TABLE 5.1    Useful Variance - Stabilizing Transformations 

   Relationship of   σ      2 to  E ( y )     Transfonnation  

    σ      2     ∝    constant     y  ′     =     y  (no transformation)  
    σ     2     ∝    E ( y )      ′ =y y (square root; Poisson data)  
    σ     2     ∝    E ( y )[1    −     E ( y )]      ′ = ( )−y ysin 1  (arcsin; binomial proportions 0    ≤     y   i      ≤    1)  
    σ      2     ∝    [ E ( y )] 2      y  ′     =    ln( y )(log)  
    σ      2     ∝    [ E ( y )] 3      y  ′     =     y   − 1/2  (reciprocal square root)  
    σ   2     ∝    [ E ( y )] 4      y  ′     =     y   − 1 (reciprocal)  
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 It is important to detect and correct a nonconstant error variance. If this problem 
is not eliminated, the least - squares estimators will still be unbiased, but they will no 
longer have the minimum - variance property. This means that the regression coef-
fi cients will have larger standard errors than necessary. The effect of the transforma-
tion is usually to give more precise estimates of the model parameters and increased 
sensitivity for the statistical tests. 

 When the response variable has been reexpressed, the predicted values are in 
the transformed scale. It is often necessary to convert the predicted values back to 
the original units. Unfortunately, applying the inverse transformation directly to the 
predicted values gives an estimate of the median of the distribution of the response 
instead of the mean. It is usually possible to devise a method for obtaining unbiased 
predictions in the original units. Procedures for producing unbiased point estimates 
for several standard transformations are given by Neyman and Scott [ 1960 ]. Miller 
[ 1984 ] also suggests some simple solutions to this problem. Confi dence or prediction 
intervals may be directly converted from one metric to another, as these interval 
estimates are percentiles of a distribution and percentiles are unaffected by trans-
formation. However, there is no assurance that the resulting intervals in the original 
units are the shortest possible intervals. For further discussion, see Land [ 1974 ].    

 Example 5.1   The Electric Utility Data 

    An electric utility is interested in developing a model relating peak - hour demand 
( y ) to total energy usage during the month ( x ). This is an important planning 
problem because while most customers pay directly for energy usage (in kilowatt -
 hours), the generation system must be large enough to meet the maximum demand 
imposed. Data for 53 residential customers for the month of August are shown in 
Table  5.2 , and a scatter diagram is given in Figure  5.1 . As a starting point, a simple 
linear regression model is assumed, and the least - squares fi t is

   ˆ . .y x= − +0 8313 0 00368       

 The analysis of variance is shown in Table  5.3 . For this model  R  2     =    0.7046; that is, 
about 70% of the variability in demand is accounted for by the straight - line fi t to 
energy usage. The summary statistics do not reveal any obvious problems with this 
model.   

 A plot of the  R  - student residuals versus the fi tted values   ̂yi is shown in Figure 
 5.2 . The residuals form an outward - opening funnel, indicating that the error variance 
is increasing as energy consumption increases. A transformation may be helpful in 
correcting this model inadequacy. To select the form of the transformation, note that 
the response variable  y  may be viewed as a  “ count ”  of the number of kilowatts used 
by a customer during a particular hour. The simplest probabilistic model for count 
data is the Poisson distribution. This suggests regressing   y y* =  on  x  as a variance -
 stabilizing transformation. The resulting least - squares fi t is

   ˆ* . .y x= +0 5822 0 0009529     

 The  R  - student values from this least - squares fi t are plotted against   ̂ *yi in 
Figure  5.3 . The impression from examining this plot is that the variance is stable; 
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  TABLE 5.2    Demand ( y ) and Energy Usage ( x ) Data for 53 Residential 
Cnstomers, August 

   Customer      x  (kWh)     y (kW)     Customer      x  (kWh)     y(kW)  

  1    679    0.79    27    837    4.20  
  2    292    0.44    28    1748    4.88  
  3    1012    0.56    29    1381    3.48  
  4    493    0.79    30    1428    7.58  
  5    582    2.70    31    1255    2.63  
  6    1156    3.64    32    1777    4.99  
  7    997    4.73    33    370    0.59  
  8    2189    9.50    34    2316    8.19  
  9    1097    5.34    35    1130    4.79  

  10    2078    6.85    36    463    0.51  
  11    1818    5.84    37    770    1.74  
  12    1700    5.21    38    724    4.10  
  13    747    3.25    39    808    3.94  
  14    2030    4.43    40    790    0.96  
  15    1643    3.16    41    783    3.29  
  16    414    0.50    42    406    0.44  
  17    354    0.17    43    1242    3.24  
  18    1276    1.88    44    658    2.14  
  19    745    0.77    45    1746    5.71  
  20    435    1.39    46    468    0.64  
  21    540    0.56    47    1114    1.90  
  22    874    1.56    48    413    0.51  
  23    1543    5.28    49    1787    8.33  
  24    1029    0.64    50    3560    14.94  
  25    710    4.00    51    1495    5.11  
  26    1434    0.31    52    2221    3.85  
              53    1526    3.93  

       Figure 5.1     Scatter diagram of the energy demand (kW) versus energy usage (kWh), 
Example  5.1 .  

0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1000 2000

Usage

D
e
m

a
n
d

3000 4000



VARIANCE-STABILIZING TRANSFORMATIONS  175

consequently, we conclude that the transformed model is adequate. Note that there 
is one suspiciously large residual (customer 26) and one customer whose energy 
usage is somewhat large (customer 50). The effect of these two points on the fi t 
should be studied further before the model is released for use.        ■     

  TABLE 5.3    Analysis of Variance for Regression of  y  on  x  for Example  5.1  

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    303.6331    1    302.6331    121.66     < 0.0001  
  Residual    126.8660    51    2.4876          
  Total    429.4991    52              

       Figure 5.2     Plot of  R  - student values  t i   versus fi tted values   ̂yi, Example  5.1 .  
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       Figure 5.3     Plot of  R  - student values  t i   versus fi tted values   ˆ *yi  for the transformed data, 
Example  5.1 .  

0
−4

−3

−2

−1

0

ti

1

2

1 2 3 4

y i

›

*



176  TRANSFORMATIONS AND WEIGHTING TO CORRECT MODEL INADEQUACIES

   5.3    TRANSFORMATIONS TO LINEARIZE THE MODEL 

 The assumption of a linear relationship between  y  and the regressors is the usual 
starting point in regression analysis. Occasionally we fi nd that this assumption 
is inappropriate. Nonlinearity may be detected via the lack - of - fi t test described 
in Section  4.5  or from scatter diagrams, the matrix of scatterplots, or residual plots 
such as the partial regression plot. Sometimes prior experience or theoretical 
considerations may indicate that the relationship between  y  and the regressors 
is not linear. In some cases a nonlinear function can be linearized by using a suitable 
transformation. Such nonlinear models are called  intrinsically  or  transformably 
linear . 

 Several linearizable functions are shown in Figure  5.4 . The corresponding non-
linear functions, transformations, and resulting linear forms are shown in Table  5.4 . 
When the scatter diagram of  y  against  x  indicates curvature, we may be able to 
match the observed behavior of the plot to one of the curves in Figure  5.4  and use 
the linearized form of the function to represent the data.     

 To illustrate a nonlinear model that is intrinsically linear, consider the exponen-
tial function

   y e x= β εβ
0

1   

 This function is intrinsically linear since it can be transformed to a straight line 
by a  logarithmic transformation 

   ln ln lny x= + +β β ε0 1  

  or

   ′ = ′ + + ′y xβ β ε0 1  

  as shown in Table  5.4 . This transformation requires that the transformed error 
terms  ε  ′     =    ln  ε  are normally and independently distributed with mean zero and vari-
ance   σ   2 . This implies that the multiplicative error  ε  in the original model is 
log normally distributed. We should look at the residuals from the transformed 
model to see if the assumptions are valid. Generally if  x  and/or  y  are in the proper 
metric, the usual least - squares assumptions are more likely to be satisfi ed, although 
it is no unusual to discover at this stage that a nonlinear model is preferable (see 
Chapter  12 ). 

 Various types of reciprocal transformations are also useful. For example, the 
model

   y
x

= + ⎛
⎝⎜

⎞
⎠⎟ +β β ε0 1

1
 

  can be linearized by using the  reciprocal transformation   x  ′     =    1 /x.  The resulting lin-
earized model is

   y x= + ′ +β β ε0 1   
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  TABLE 5.4    Linearizable Functions and Corresponding Linear Form 

   Figure     Linearizable Function     Transformation     Linear Form  

  5.4 a, b       y x= β β
0

1      y  ′     =    log  y ,  x  ′     =    log  x      y  ′     =    log   β   0     +      β   1  x  ′   
  5.4 c, d       y e x= β β

0
1      y  ′     =    ln  y      y  ′     =    ln   β   0     +      β   1  x   

  5.4 e, f      y     =      β   0     +      β   1 log  x      x  ′     =    log  x      y  ′     =      β   0     +      β   1  x  ′   

  5.4 g, h   
    
y

x
x

=
−β β0 1   

    ′ = ′ =y
y

x
x

1 1
,      y  ′     =      β   0     −      β   1  x  ′   

 Other models that can be linearized by reciprocal transformations are

   
1

0 1
y

x= + +β β ε  

  and

   y
x

x
=

− +β β ε0 1

  

 This last model is illustrated in Figures  5.4  g, h.  
 When transformations such as those described above are employed, the least -

 squares estimator has least - squares properties with respect to the transformed data, 
not the original data. For additional reading on transformations, see Atkinson [ 1983, 
1985 ], Box, Hunter, and Hunter  [1978] , Carroll and Ruppert [ 1985 ], Dolby [ 1963 ], 
Mosteller and Tukey [ 1977 , Chs. 4 – 6], Myers [ 1990 ], Smith [ 1972 ], and Tukey [ 1957 ].    

 Example 5.2   The Windmill Data 

    A research engineer is investigating the use of a windmill to generate electricity. He 
has collected data on the DC output from his windmill and the corresponding wind 
velocity. The data are plotted in Figure  5.5  and listed in Table  5.5 .     

 Inspection of the scatter diagram indicates that the relationship between DC 
output ( y ) and wind velocity ( x ) may be nonlinear. However, we initially fi t a 
straight - line model to the data. The regression model is

   ˆ . .y x= +0 1309 0 2411   

 The summary statistics for this model are  R  2     =    0.8745,  MS  Res     =    0.0557, and 
 F  0     =    160.26 (the  P  value is  < 0.0001). Column A of Table  5.6  shows the fi tted values 
and residuals obtained from this model. In Table  5.6  the observations are arranged 
in order of increasing wind speed. The residuals show a distinct pattern, that is, they 
move systematically from negative to positive and back to negative again as wind 
speed increases.   

 A plot of the residuals versus   ̂yi is shown in Figure  5.6 . This residual plot indicates 
model inadequacy and implies that the linear relationship has not captured all 
of the information in the wind speed variable. Note that the curvature that was 
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       Figure 5.5     Plot of DC output  y  versus wind velocity  x  for the windmill data.  
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  TABLE 5.5    Observed Values  y i   and Regressor Variable  x i   
for Example  5.2  

   Observation 
Number,  i   

   Wind Velocity, 
 x i   (mph)  

   DC Output, 
 y i    

  1    5.00    1.582  
  2    6.00    1.822  
  3    3.40    1.057  
  4    2.70    0.500  
  5    10.00    2.236  
  6    9.70    2.386  
  7    9.55    2.294  
  8    3.05    0.558  
  9    8.15    2.166  

  10    6.20    1.866  
  11    2.90    0.653  
  12    6.35    1.930  
  13    4.60    1.562  
  14    5.80    1.737  
  15    7.40    2.088  
  16    3.60    1.137  
  17    7.85    2.179  
  18    8.80    2.112  
  19    7.00    1.800  
  20    5.45    1.501  
  21    9.10    2.303  
  22    10.20    2.310  
  23    4.10    1.194  
  24    3.95    1.144  
  25    2.45    0.123  
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apparent in the scatter diagram of Figure  5.5  is greatly amplifi ed in the residual plot. 
Clearly some other model form must be considered.   

 We might initially consider using a quadratic model such as

   y x x= + + +β β β ε0 1 2
2  

  to account for the apparent curvature. However, the scatter diagram Figure  5.5  sug-
gests that as wind speed increases, DC output approaches an upper limit of approxi-
mately 2.5. This is also consistent with the theory of windmill operation. Since the 
quadratic model will eventually bend downward as wind speed increases, it would 
not be appropriate for these data. A more reasonable model for the windmill data 
that incorporates an upper asymptote would be

   y
x

= + ⎛
⎝⎜

⎞
⎠⎟ +β β ε0 1

1
  

 Figure  5.7  is a scatter diagram with the transformed variable  x  ′     =    1 /x.  This plot 
appears linear, indicating that the reciprocal transformation is appropriate. The 
fi tted regression model is

   ˆ . .y x= − ′2 9789 6 9345     

 The summary statistics for this model are  R 2      =    0.9800,  MS  Res     =    0.0089, and 
 F  0     =    1128.43 (the  P  value is  < 0.0001). 

 The fi tted values and corresponding residuals from the transformed model are 
shown in column B of Table  5.6 . A plot of  R  - student values from the transformed 
model versus   ̂y is shown in Figure  5.8 . This plot does not reveal any serious problem 

       Figure 5.6     Plot of residuals  e i   versus fi tted values   ̂yi for the windmill data.  
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  TABLE 5.6    Observations  y i   Ordered by Increasing Wind Velocity, Fitted Values   ̂yi, and 
Residuals  e i   for Both Models for Example  5.2  

   Wind Velocity,  x i       DC Output  y i    

   A. Straight - Line Model 
  ̂ ˆ ˆy x= +β β0 1   

   B. Transformed Model 
  ˆ ˆ ˆy x= + ( )β β0 1 1   

     ̂yi      e   i        y   i        e   i    

  2.45    0.123    0.7217     − 0.5987    0.1484     − 0.0254  
  2.70    0.500    0.7820     − 0.2820    0.4105    0.0895  
  2.90    0.653    0.8302     − 0.1772    0.5876    0.0654  
  3.05    0.558    0.8664     − 0.3084    0.7052     − 0.1472  
  3.40    1.057    0.9508    0.1062    0.9393    0.1177  
  3.60    1.137    0.9990    0.1380    1.0526    0.0844  
  3.95    1.144    1.0834    0.0606    1.2233     − 0.0793  
  4.10    1.194    1.1196    0.0744    1.2875     − 0.0935  
  4.60    1.562    1.2402    0.3218    1.4713    0.0907  
  5.00    1.582    1.3366    0.2454    1.5920     − 0.0100  
  5.45    1.501    1.4451    0.0559    1.7065     − 0.2055  
  5.80    1.737    1.5295    0.2075    1.7832     − 0.0462  
  6.00    1.822    1.5778    0.2442    1.8231     − 0.0011  
  6.20    1.866    1.6260    0.2400    1.8604    0.0056  
  6.35    1.930    1.6622    0.2678    1.8868    0.0432  
  7.00    1.800    1.8189     − 0.0189    1.9882     − 0.1882  
  7.40    2.088    1.9154    0.1726    2.0418    0.0462  
  7.85    2.179    2.0239    0.1551    2.0955    0.0835  
  8.15    2.166    2.0962    0.0698    2.1280    0.0380  
  8.80    2.112    2.2530     − 0.1410    2.1908     − 0.0788  
  9.10    2.303    2.3252     − 0.0223    2.2168    0.0862  
  9.55    2.294    2.4338     − 0.1398    2.2527     − 0.1472  
  9.70    2.386    2.4700     − 0.0840    2.2640    0.1220  

  10.00    2.236    2.5424     − 0.3064    2.2854     − 0.0494  
  10.20    2.310    2.5906     − 0.2906    2.2990    0.0110  

with inequality of variance. Other residual plots are satisfactory, and so because 
there is no strong signal of model inadequacy, we conclude that the transformed 
model is satisfactory.        ■     

       Figure 5.7     Plot of DC output versus  x  ′     =    1/ x  for the windmill data.  

0.10
0.0

1.0D
C

 o
u
tp

u
t,
 y

2.0

3.0

0.20 0.30

x' = 1x

0.40 0.50



182  TRANSFORMATIONS AND WEIGHTING TO CORRECT MODEL INADEQUACIES

       Figure 5.8     Plot of  R  - student values  t i   versus fi tted values   ŷi  for the transformed model for 
the windmill data.  
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   5.4    ANALYTICAL METHODS FOR SELECTING A TRANSFORMATION 

 While in many instances transformations are selected empirically, more formal, 
objective techniques can be applied to help specify an appropriate transformation. 
This section will discuss and illustrate analytical procedures for selecting transfor-
mations on both the response and regressor variables. 

   5.4.1    Transformations on  y:  The Box - Cox Method 

 Suppose that we wish to transform  y  to correct nonnormality and/or nonconstant 
variance. A useful class of transformations is the  power transformation   y   λ  , where  λ  
is a parameter to be determined (e.g.,   λ = 1

2  means use   y as the response). Box and 
Cox [ 1964 ] show how the parameters of the regression model and  λ  can be estimated 
simultaneously using the method of maximum likelihood. 

 In thinking about the power transformation  y   λ   a diffi culty arises when  λ     =    0; 
namely, as  λ  approaches zero,  y   λ   approaches unity. This is obviously a problem, since 
it is meaningless to have all of the response values equal to a constant. One approach 
to solving this diffi culty (we call this a discontinuity at  λ     =    0) is to use ( y   λ      −    1)/ λ  as 
the response variable. This ·  solves the discontinuity problem, because as  λ  tends to 
zero, ( y   λ      −    1)/ λ  goes to a limit of ln  y.  However, there is still a problem, because as 
 λ  changes, the values of ( y   λ      −    1)/ λ  change dramatically, so it would be diffi cult to 
compare model summary statistics for models with different values of  λ . 

 The appropriate procedure is to use

    y
y

y

y y

λ

λ

λλ
λ

λ

( ) −=
− ≠
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0
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ln ,

    (5.1)  

  where   �y n yi
n

i= ∑[ ]−
=ln ln1

11  is the geometric mean of the observations, and fi t the 
model

    y Xλ( ) = +b e     (5.2)  
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  by least squares (or maximum likelihood). The divisor   �yλ −1 turns out to be related 
to the  Jacobian  of the transformation converting the response variable  y  into  y  ( λ ) . 
It is, in effect, a scale factor that ensures that residual sums of squares for models 
with different values of  λ  are comparable. 

  Computational Procedure     The maximum - likelihood estimate of  λ  corresponds 
to the value of  λ  for which the residual sum of squares from the fi tted model  SS  Res ( λ ) 
is a minimum. This value of  λ  is usually determined by fi tting a model to  y  ( λ )  for 
various values of  λ , plotting the residual sum of squares  SS  Res ( λ ) versus  λ , and then 
reading the value of  λ  that minimizes  SS  Res ( λ ) from the graph. Usually 10 – 20 values 
of  λ  are suffi cient for estimation of the optimum value. A second iteration can be 
performed using a fi ner mesh of values if desired. As noted above, we  cannot  select 
 λ  by  directly  comparing residual sums of squares from the regressions of  y   λ   on  x  
because for each  λ  the residual sum of squares is measured on a different scale. 
Equation  (5.1)  scales the responses so that the residual sums of squares are directly 
comparable. We recommend that the analyst use simple choices for  λ , as the practi-
cal difference in the fi ts for  λ     =    0.5 and  λ     =    0.596 is likely to be small, but the former 
is much easier to interpret. 

 Once a value of  λ  is selected, the analyst is now free to fi t the model using  y   λ   as 
the response if  λ     ≠    0. If  λ     =    0, then use ln  y  as the response. It is entirely acceptable 
to use  y  ( λ )  as the response for the fi nal model — this model will have a scale differ-
ence and an origin shift in comparison to the model using  y   λ   (or ln  y).  In our experi-
ence, most engineers and scientists prefer using  y   λ   (or ln  y)  as the response.  

  An Approximate Confi dence Interval for  λ      We can also fi nd an approximate 
CI for the transformation parameter  λ . This CI can be useful in selecting the fi nal 
value for  λ ; for example, if   ̂ .λ = 0 596 is the minimizing value for the residual sum of 
squares, but if  λ     =    0.5 is in the CI, then one might prefer to use the square - root 
transformation on the basis that it is easier to explain. Furthermore, if  λ     =    1 is in 
the CI, then no transformation may be necessary. 

 In applying the method of maximum likelihood to the regression model, we are 
essentially maximizing

    L n SSλ λ( ) = − ( )[ ]1
2 ln Res     (5.3)  

  or equivalently, we are minimizing the residual - sum - of - squares function  SS  Res ( λ ). 
An approximate 100(1    −      α  ) percent CI for  λ  consists of those values of  λ  that satisfy 
the inequality

    L L nˆ
,λ λ χα( ) − ( ) ≤ 1

2 1
2     (5.4)  

  where   χα ,1
2

 is the upper   α   percentage point of the chi - square distribution with one 
degree of freedom. To actually construct the CI, we would draw, on a plot of  L ( λ ) 
versus  λ  a horizontal line at height

   L ˆ
,λ χα( ) − 1

2 1
2  
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  on the vertical scale. This line would cut the curve of  L ( λ ) at two points, and the 
location of these two points on the  λ  axis defi nes the two end points of the approxi-
mate CI. If we are minimizing the residual sum of squares and plotting  SS  Res ( λ ) 
versus  λ , then the line must be plotted at height

    SS SS e n* Res= ( )ˆ ,λ χα 1
2

    (5.5)   

 Remember that   ̂λ  is the value of  λ  that minimizes the residual sum of squares. 
 In actually applying the CI procedure, one is likely to fi nd that the factor 

exp(  χα ,1
2 n) on the right - hand side of Eq.  (5.5)  is replaced by either   1 2

2+ z nα  or 
  1 2

2+ t nα ν,  or   1 1
2+ χα , n, or perhaps either   1 2

2+ zα ν  or   1 2
2+ tα ν ν,  or   1 1

2+ χ να , , where 
  ν   is the number of residual degrees of freedom. These are based on the expansion 
of exp( x )    =    1    +     x     +     x  2  / 2!    +     x  3  / 3!    +     . . .     =    1    +     x  and the fact that   χ ν1

2 2 2= ≈z t  unless the 
number of residual degrees of freedom   ν   is small. It is perhaps debatable whether 
we should use  n  or   ν  , but in most practical cases, there will be very little difference 
between the CIs that result.     

 Example 5.3   The Electric Utility Data 

    Recall the electric utility data introduced in Example  5.1 . We use the Box - Cox 
procedure to select a variance - stabilizing transformation. The values of  SS  Res ( λ ) 
for various values of  λ  are shown in Table  5.7 . This display indicates that  λ     =    0.5 
(the square - root transformation) is very close to the optimum value. Notice that we 
have used a fi ner  “ grid ”  on  λ  in the vicinity of the optimum. This is helpful in locat-
ing the optimum  λ  more precisely and in plotting the residual - sum - of - squares 
function.   

 A graph of the residual sum of squares versus  λ  is shown in Figure  5.9 . If we take 
 λ     =    0.5 as the optimum value, then an approximate 95% CI for  λ  may be found by 
calculating the critical sum of squares  SS *   from Eq.  (5.5)  as follows:

   

SS SS e

e

n* Res= ( )
=
=
=

ˆ

.

. ( . )

. ,

.

λ χ0 05 1
2

96 9495

96 9495 1 0751

104

3 84 53

..23

    

 The horizontal line at this height is shown in Figure  5.9 . The corresponding values 
of  λ   −      =    0.26 and  λ   +      =    0.80 read from the curve give the lower and upper confi dence 
limits for  λ , respectively. Since these limits do not include the value 1 (implying 
no transformation), we conclude that a transformation is helpful. Furthermore, 
the square - root transformation that was used in Example  5.1  has an analytic 
justifi cation.        ■   

   5.4.2    Transformations on the Regressor Variables 

 Suppose that the relationship between  y  and one or more of the regressor variables 
is nonlinear but that the usual assumptions of normally and independently distrib-
uted responses with constant variance are at least approximately satisfi ed. We want 
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  TABLE 5.7    Values of the Residual Sum of 
Squares for Various Values of  λ , Example  5.3  

    λ       SS  Res ( λ )  

   − 2    34,101.0381  
   − 1    986.0423  
   − 0.5    291.5834  
  0    134.0940  
  0.125    118.1982  
  0.25    107.2057  

   0.375    100.2561  
  0.5    96.9495  
  0.625    97.2889  
  0.75    101.6869  
  1    126.8660  
  2    1,275.5555  

       Figure 5.9     Plot of residual sum of squares  SS  Res ( λ ) versus  λ .  
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to select an appropriate transformation on the regressor variables so that the rela-
tionship between  y  and the transformed regressor is as simple as possible. Box and 
Tidwell [ 1962 ] describe an analylical procedure for determining the form of the 
transformation on  x.  While their procedure may be used in the general regression 
situation, we will present and illustrate its application to the simple linear regression 
model. 

 Assume that the response variable  y  is related to a power of the regressor, say 
 ξ     =    x  a  , as
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   E y f( ) = ( ) = +ξ β β β β ξ, ,0 1 0 1  

  where

   ξ
α

=
≠
=

⎧
⎨
⎩

x a

x a

,

ln

0

0
 

  and   β   0 ,   β   1 , and   α   are unknown parameters. Suppose that   α   0  is an initial guess of the 
constant  α . Usually this fi rst guess is   α   0     =    1, so that   ξ α

0
0= =x x, or that no transfor-

mation at all is applied in the fi rst iteration. Expanding about the initial guess in a 
Taylor series and ignoring terms of higher than fi rst order gives

    

E y f
df

d

x

( ) = ( ) + −( ) ( ){ }
= + + −(

=
=

ξ β β α α ξ β β
α

β β α

α α
ξ ξ

0 0 1 0
0 1

0 1

0
0

1

, ,
, ,

)) ( ){ }
=
=

df
d

ξ β β
α

α α
ξ ξ

, ,0 1

0
0

    (5.6)   

 Now if the term in braces in Eq.  (5.6)  were known, it could be treated as an 
additional regressor variable, and it would be possible to estimate the parameters 
  β   0 ,   β   1 , and   α   in Eq.  (5.6)  by least squares. The estimate of   α   could be taken as an 
improved estimate of the transformation parameter. The term in braces in Eq.  (5.6)  
can be written as

   
df

d
df

d
d
d

ξ β β
α

ξ β β
ξ

ξ
α

α α
ξ ξ

ξ ξ α α

, , , ,0 1 0 1

0
0

0 0

( ){ } = ( )⎧
⎨
⎩

⎫
⎬
⎭ { }

=
=

= =
 

  and since the form of the transformation is known, that is,  ξ     =     x  α   , we have  d  ξ  /d α      =   
  x  ln  x . Furthermore,

   
df

d
d x

dx
ξ β β

ξ
β β β

ξ ξ

, ,0 1 0 1
1

0

( )⎧
⎨
⎩

⎫
⎬
⎭

=
+( ) =

=
  

 This parameter may be conveniently estimated by fi tting the model

    ˆ ˆ ˆy x= +β β0 1     (5.7)  

  by least squares. Then an  “ adjustment ”  to the initial guess   α   0     =    1 may be 
computed by defi ning a second regressor variable as  w     =     x  ln  x , estimating the 
parameters in

    E y x w x w( ) = + + −( ) = + +β β α β β β γ0 1 1 0 01* * * *     (5.8)  

  by least squares, giving

    ˆ ˆ ˆ ˆ* *y w= + +β β γ0 1     (5.9)  

  and taking
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    α γ
β

1

1

1= +
ˆ
ˆ

    (5.10)  

  as the revised estimate of   α  . Note that   ̂β1 is obtained from Eq.  (5.7)  and   γ̂  from Eq. 
 (5.9) ; generally   β̂1 and   ˆ *β1 will differ. This procedure may now be repeated using a 
new regressor   ′ =x xα1  in the calculations. Box and Tidwell [ 1962 ] note that this 
procedure usually converges quite rapidly, and often the fi rst - stage result  α  is a 
satisfactory estimate of   α .  They also caution that round - off error is potentially a 
problem and successive values of   α   may oscillate wildly unless enough decimal 
places are carried. Convergence problems may be encountered in cases where the 
error standard deviation   σ   is large or when the range of the regressor is very small 
compared to its mean. This situation implies that the data do not support the need 
for any transformation.     

 Example 5.4   The Windmill Data 

    We will illustrate this procedure using the windmill data in Example  5.2 . The scatter 
diagram in Figure  5.5  suggests that the relationship between DC output ( y ) and 
wind speed ( x ) is not a straight line and that some transformation on  x  may be 
appropriate. 

 We begin with the initial guess   α   0     =    1 and fi t a straight - line model, giving 
  ˆ . .y x= +0 1309 0 2411 . Then defi ning  w     =     x  ln  x , we fi t Eq.  (5.8)  and obtain

   ˆ ˆ ˆ ˆ . . .* *y x w x w= + + = − + −β β γ0 1 2 4168 1 5344 0 4626   

 From Eq.  (5.10)  we calcnlate

   α
γ
β

1

1

1
0 4626
0 2411

1 0 92= + =
−

+ = −
ˆ
ˆ

.
.

.  

  as the improved estimate of   α  . Note that this estimate of   α   is very close to  − 1,  · so 
that the reciprocal transformation on  x  actually used in Example  5.2  is supported 
by the Box - Tidwell procedure. 

 To perform a second iteration, we would defi ne a new regressor variable  x  ′     =     x   − 0.92  
and fi t the model

   ˆ ˆ ˆ . .y x x= + ′ = − ′β β0 1 3 1039 6 6784   

 Then a second regressor  w  ′     =     x  ′  ln  x  ′  is formed and we fi t

   ˆ ˆ ˆ ˆ . . .* *y x w x w= + + = − ′ + ′β β γ0 1 3 2409 6 445 0 5994   

 The second - step estimate of   α   is thus

   α
γ
β

α2

1

1
0 5994
6 6784

0 92 1 01= + =
−

= −( ) = −
ˆ
ˆ

.
.

. .  

  which again supports the use of the reciprocal transformation on  x.         ■   
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   5.5    GENERALIZED AND WEIGHTED LEAST SQUARES 

 Linear regression models with nonconstant error variance can also be fi tted by the 
method of  weighted least squares . In this method of estimation the deviation 
between the observed and expected values of  y i   is multiplied by a  weight   w i   chosen 
inversely proportional to the variance of  y i  . For the case of simple linear regression, 
the weighted least - squares function is

    S w y xi i i

i

n

β β β β0 1 0 1
2

1

,( ) = − −( )
=
∑     (5.11)   

 The resulting least - squares normal equations are
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    (5.12)   

 Solving Eq.  (5.12)  will produce weighted least - squares estimates of   β   0  and   β   1 . 
 In this section we give a development of weighted least squares for the multiple 

regression model. We begin by considering a slightly more general situation con-
cerning the structure of the model errors. 

   5.5.1    Generalized Least Squares 

 The assumptions usually made concerning the linear regression model  y     =     X   β       +       ε   
are that  E (  ε  )    =    0 and that Var(  ε  )    =      σ       2 I . As we have observed, sometimes these 
assumptions are unreasonable, so that we will now consider what modifi cations to 
these in the ordinary least - squares procedure are necessary when Var(  ε  )    =      σ       2 V , 
where  V  is a known  n     ×     n  matrix. This situation has an easy interpretation; if  V  is 
diagonal but with unequal diagonal elements, then the observations  y  are  uncor-
related  but have  unequal variances , while if some of the off - diagonal elements of  V  
are nonzero, then the observations are  correlated . 

 When the model is

    

y X

0 V

= +
( ) = ( ) =

b e
e eE , Var σ 2     (5.13)  

  the ordinary least - squares estimator   b̂ = ′( ) ′−X X X y1  is no longer appropriate. We 
will approach this problem by transforming the model to a new set of observations 
that satisfy the standard least - squares assumptions. Then we will use ordinary least 
squares on the transformed data. Since   σ       2 V  is the covariance matrix of the errors, 
 V  must be nonsingular and positive defi nite, so there exists an  n     ×     n  nonsingular 
symmetric matrix  K , where  K  ′  K      =      KK      =      V . The matrix  K  is often called the  square 
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root  of  V . Typically,   σ      2  is unknown, in which case  V  represents the assumed 
structure of the variances and covariances among the random errors apart from a 
constant. 

 Defi ne the new variables

    z K y B K X g K= = =− − −1 1 1, , e     (5.14)  

  so that the regression model  y      =      X   β      +      ε   becomes  K  − 1 y      =      K  − 1 X   β       +      K  − 1    ε  , or

    z B g= +b     (5.15)   

 The errors in this transformed model have zero expectation, that is, 
 E  (  g  )      =      K   −  1   E (  ε  )     =      0 . Furthermore, the covariance matrix of  g  is

    

Var g g g g g

gg

K K

K K

( ) = − ( )[ ] − ( )[ ]{ }
= ′( )
= ′( )
= ′( )

− −

− −

E E

E

E

E
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1 1

1

ee

ee 11

2 1 1

2 1 1

2

=
=
=

− −

− −

σ
σ
σ

K VK

K KKK

I     (5.16)   

 Thus, the elements of  g  have mean zero and constant variance and are uncor-
related. Since the errors  g  in the model (5.15) satisfy the usual assumptions, we may 
apply ordinary least squares. The least - squares function is

    S b e e b b( ) = ′ = ′ = −( ) −( )− −g g V y X V y X1 1′     (5.17)   

 The least - squares normal equations are

    ′( ) = ′− −X V X X V y1 1b̂     (5.18)  

  and the solution to these equations is

    b̂ = ′( ) ′− − −X V X X V y1 1 1     (5.19)   

 Here   b̂  is called the  generalized least - squares estimator  of   β  . 
 It is not diffi cult to show that   b̂  is an unbiased estimator of   β  . The covariance 

matrix of   b̂  is

    Var b̂( ) = ′( ) = ′( )− − −σ σ2 1 2 1 1
B B X V X     (5.20)   

 Appendix  C .11 shows that   b̂  is the best linear unbiased estimator of   β  . The analy-
sis of variance in terms of generalized least squares is summarized in Table  5.8 .    
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   5.5.2    Weighted Least Squares 

 When the errors   ε   are uncorrelated but have unequal variances so that the covari-
ance matrix of   ε   is

   σ σ2 2
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  say, the estimation procedure is usually called  weighted least squares . Let  W      =      V  − 1  . 
Since  V  is a diagonal matrix,  W  is also diagonal with diagonal elements or  weights  
 w  1 ,  w  2     . . .    ,  w n  . From Eq.  (5.18) , the weighted least - squares normal equations are

   ′( ) = ′X WX X Wyb̂   

 This is the multiple regression analogue of the weighted least - squares normal 
equations for simple linear regression given in Eq.  (5.12) . Therefore,

   b̂ = ′( ) ′−X WX X Wy1  

  is the  weighted least - squares estimator . Note that observations with large variances 
will have smaller weights than observations with small variances. 

 Weighted least - squares estimates may be obtained easily from an ordinary least -
 squares computer program. If we multiply each of the observed values for the  i th 
observation (including the 1 for the intercept) by the square root of the weight for 
that observation, then we obtain a transformed set of data:
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  TABLE 5.8     Analysis of Variance for Generalized Least Squares 

   Source     Sum of Squares  
   Degrees of 
Freedom  

   Mean 
Square      F  0   

  Regression  

    

SSR = ′ ′

= ′ ′( ) ′− − − −

b̂ B z

y V X X V X X V y1 1 1 1   

   p      SS  R / p      MS  R / MS  Res   

  Error  

    

SSRes = ′ − ′ ′
= ′

− ′ ′( ) ′

−

− − − −

z z B z

y V y

y V X X V X X V y

b̂
1

1 1 1 1   

   n     −     p      SS  Res /
( n     −     p )  

    

  Total     z ′ z      =      y ′ V   − 1  y      n           
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 Now if we apply ordinary least squares to these transformed data, we obtain

   b̂ = ′( ) ′ = ′( ) ′− −B B B z X WX X Wy1 1  

  the weighted least - squares estimate of   β  . 
 Both JMP and Minitab will perform weighted least squares. SAS will do weighted 

least squares. The user must specify a  “ weight ”  variable, for example,  w.  To perform 
weighted least squares, the user adds the following statement after the model 
statement:

 weight w;   

   5.5.3    Some Practical Issues 

 To use weighted least squares, the weights  w i   must be known. Sometimes prior 
knowledge or experience or information from a theoretical model can be used to 
determine the weights (for an example of this approach, see Weisberg [ 1985 ]). 
Alternatively, residual analysis may indicate that the variance of the errors may be 
a function of one of the regressors, say Var( ε   i  )    =      σ      2  x ij  , so that  w i      =    1 /x ij  . In some cases 
 y i   is actually an average of  n i   observations at  x i   and if all  original  observations have 
constant variance   σ      2 , then the variance of  y i   is Var( y i  )    =    Var(  ε    i  )    =      σ      2  /n i  , and we would 
choose the weights as  w i      =     n i  . Sometimes the primary source of error is measure-
ment error and different observations are measured by different instruments of 
unequal but known (or well - estimated) accuracy. Then the weights could be chosen 
inversely proportional to the variances of measurement error. In many practical 
cases we may have to guess at the weights, perform the analysis, and then reestimate 
the weights based on the results. Several iterations may be necessary. 

 Since generalized or weighted least squares requires making additional assump-
tions regarding the errors, it is of interest to ask what happens when we fail to do 
this and use ordinary least squares in a situation where Var(  ε  )    =      σ       2   V  with  V     ≠     I . If 
ordinary least squares is used in this case, the resulting estimator   b̂ = ′( ) ′−X X X y1  is 
still unbiased. However, the ordinary least - squares estimator is no longer a minimum -
 variance estimator. That is, the covariance matrix of the ordinary least - squares 
estimator is

    Var b̂( ) = ′( ) ′ ′( )− −σ 2 1 1X X X VX X X     (5.21)  

  and the covariance matrix of the generalized least - squares estimator (5.20) gives 
smaller variances for the regression coeffi cients. Thus, generalized or weighted least 
squares is preferable to ordinary least squares whenever  V     ≠     I .     

 Example 5.5   Weighted Least Squares 

    The average monthly income from food sales and the corresponding annual adver-
tising expenses for 30 restaurants are shown in columns a and b of Table  5.9 . 
Management is interested in the relationship between these variables, and so a 
linear regression model relating food sales  y  to advertising expense  x  is fi t by ordi-
nary least squares, resulting in   ̂ , . .y x= +49 443 3838 8 0484 . The residuals from this 
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least - squares fi t are plotted against   ̂yi in Figure  5.10 . This plot indicates violation of 
the constant - variance assumption. Consequently, the ordinary least - squares fi t is 
inappropriate.     

 To correct this inequality - of - variance problem, we must know the weights  w i  . We 
note from examining the data in Table  5.9  that there are several sets of  x  values that 
are  “ near neighbors, ”  that is, that have approximate repeat points on  x . We will 
assume that these near neighbors are close enough to be considered repeat points 
and use the variance of the responses at those repeat points to investigate how 
Var( y ) changes with  x . Columns c and d of Table  5.9  show the average  x  value   x( ) 
for each cluster of near neighbors and the sample variance of the  y  ’ s in each cluster. 
Plotting   sy

2 against the corresponding   x  implies that   sy
2 increases approximately lin-

early with   x . A least - squares fi t gives

  TABLE 5.9    Restaurant Food Sales Data 

   Obs.  i      (a) Income,  Yi   
    (b) Advertising 

Expense,  Xi      (c)   x      (d)   sy
2   

   (e) Weights, 
 w i    

  1    81,464    3,000  
        

  3,078.3    26,794,616    6.21771  E  - 08  
  2    72,661    3,150    5.79507  E  - 08  
  3    72,344    3,085    5.97094  E  - 08  
  4    90,743    5,225            5,287.5    30,772,013    2.98667  E  - 08  
  5    98,588    5,350    2,90195  E  - 08  
  6    96,507    6,090                2.48471  E  - 08  
  7    126,574    8,925  

         

  8,955.0    52,803,695    1.60217  E  - 08  
  8    114,133    9,015    1.58431  E  - 08  
  9    115,814    8,885    1.61024  E  - 08  

  10    123,181    8,950    1.59717  E  - 08  
  11    131,434    9,000    1.58726  E  - 08  
  12    140,564    1,1345  

         

  12,171.0    59,646,475    1.22942  E  - 08  
  13    151,352    12,275    1.12852  E  - 08  
  14    146,926    12,400    1.11621  E  - 08  
  15    130,963    12,525    1.10416  E  - 08  
  16    144,630    12,310    1.12505  E  - 08  
  17    147,041    13,700                1.00246  E  - 08  
  18    179,021    15,000  

         

  15,095.0    120,571,061    9.09750  E  - 09  
  19    166,200    15,175    8.98563  E  - 09  
  20    180,732    14,995    9.10073  E  - 09  
  21    178,187    15,050    9.06525  E  - 09  
  22    185,304    15,200    8.96987  E  - 09  
  23    155,931    15,150    9.00144  E  - 09  
  24    172,579    16,800  

        
  16,650.0    132,388,992    8.06478  E  - 09  

  25    188,851    16,500    8.22030  E  - 09  
  26    192,424    17,830                7.57287  E  - 09  
  27    203,112    19,500  

    
      19,262.5    138,856,871    6.89136  E  - 09  

  28    192,482    19,200    7.00460  E  - 09  
  29    218,715    19,000    7.08218  E  - 09  
  30    214,317    19,350    6.94752  E  - 09  
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   ˆ , , .s xy
2 9 226 002 7781 626= − +   

 Substituting each  x i   value into this equation will give an estimate of the variance 
of the corresponding observation  y i  . The inverse of these fi tted values will be reason-
able estimates of the weights  w i  . These estimated weights are shown in column e of 
Table  5.9 . 

 Applying weighted least squares to the data using the weights in Table  5.9  gives 
the fi tted model

   ˆ , . .y x= +50 974 564 7 92224   

 We must now examine the residuals to determine if using weighted least squares 
has improved the fi t. To do this, plot the  weighted  residuals   w e w y yi i i i

1 2 1 2= −( )ˆ , 
where   ŷi  comes from the weighted least - squares fi t, against   w yi i

1 2 ˆ . This plot is shown 
in Figure  5.11  and is much improved when compared to the previous plot for the 
ordinary least - squares fi t. We conclude that weighted least squares has corrected 
the inequality - of - variance problem.   

 Two other points concerning this example should be made. First, we were fortu-
nate to have several near neighbors in the  x  space. Furthermore, it was easy to 
identify these clusters of points by inspection of Table  5.9  because there was only 
one regressor involved. With several regressors visual identifi cation of these clusters 
would be more diffi cult. Recall that an analytical procedure for fi nding pairs of 
points that are close together in  x  space was presented in Section  4.5.3 . The second 
point involves the use of a regression equation to estimate the weights. The analyst 
should carefully check the weights produced by the equation to be sure that they 
are reasonable. For example, in our problem a suffi ciently small x value could result 
in a negative weight, which is clearly unreasonable.        ■   

       Figure 5.10     Plot of ordinary least - squares residuals versus fi tted values, Example  5.5 .  
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       Figure 5.11     Plot of weighted residuals   w ei i
1 2  versus weighted fi tted values   w yi i

1 2 ˆ , 
Example  5.5 .  
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   5.6    REGRESSION MODELS WITH RANDOM EFFECTS 

   5.6.1    Subsampling 

 Random effects allow the analyst to take into account multiple sources of variability. 
For example, many people use simple paper helicopters to illustrate some of the 
basic principles of experimental design. Consider a simple experiment to determine 
the effect of the length of the helicopter ’ s wings to the typical fl ight time. There 
often is quite a bit of error associated with measuring the time for a specifi c fl ight 
of a helicopter, especially when the people who are timing the fl ights have never 
done this before. As a result, a popular protocol for this experiment has three people 
timing each fl ight to get a more accurate idea of its actual fl ight time. In addition, 
there is quite a bit of variability from helicopter to helicopter, particularly in a 
corporate short course where the students have never made these helicopters before. 
This particular experiment thus has two sources of variability: within each specifi c 
helicopter and between the various helicopters used in the study. 

 A reasonable model for this experiment is

    y x i m j rij i i ij i= + + + = =( )β β δ ε0 1 1 2 1 2, , , , , ,… …and     (5.22)  

  where  m  is the number of helicopters,  r i   is the number of measured fl ight times for 
the  i th   helicopter,  y ij   is the fl ight time for the  j th   fl ight of the  i th   helicopter,  x i   is the 
length of the wings for the  i th   helicopter,   δ  i   is the error term associated with the  i th   
helicopter, and  ε   ij   is the random error associated with the  j th   fl ight of the  i th   helicopter. 
The key point is that there are two sources of variability represented by   δ  i   and  ε   ij  . 
Typically, we would assume that the   δ  i  s are independent and normally distributed 
with a mean of 0 and a constant variance   σδ

2, that the  ε   ij  s are independent and nor-
mally distributed with mean 0 and constant variance   σ      2 , and that the   δ  i  s and the  ε   ij  s 
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are independent. Under these assumptions, the fl ight times for a specifi c helicopter 
are correlated. The fl ight times across helicopters are independent. 

 Equation  (5.22)  is an example of a  mixed model  that contains  fi xed effects , in 
this case the  x i  s, and  random effects , in this case the   δ  i  s and the  ε   ij  s. The units used 
for a specifi c random effect represent a random sample from a much larger popula-
tion of possible units. For example, patients in a biomedical study often are random 
effects. The analyst selects the patients for the study from a large population of 
possible people. The focus of all statistical inference is not on the specifi c patients 
selected; rather, the focus is on the population of all possible patients. The key point 
underlying all random effects is this focus on the population and not on the specifi c 
units selected for the study. Random effects almost always are categorical. 

 The data collection method creates the need for the mixed model. In some sense, 
our standard regression model  y      =      X β       +       ε   is a mixed model with   β   representing the 
fi xed effects and   ε   representing the random effects. More typically, we restrict the 
term mixed model to the situations where we have more than one error term. 

 Equation  (5.22)  is the standard model when we have multiple observations on a 
single unit. Often we call such a situation subsampling. The experimental protocol 
creates the need for two separate error terms. In most biomedical studies we have 
several observations for each patient. Once again, our protocol creates the need for 
two error terms: one for the observation - to - observation differences within a patient 
and another error term to explain the randomly selected patient - to - patient 
differences. 

 In the subsampling situation, the total number of observations in the study, 
  n ri

m
i= ∑ =1 . Equation  (5.22)  in matrix form is

   y X Z= + +b d e  

  where  Z  is a  n     ×     m   “ incidence ”  matrix and   δ   is a  m     ×    1 vector of random helicopter -
 to - helicopter errors. The form of  Z  is

   Z

1 0 0

0 1 0

0 0 1

1

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r

r

rm

…
…

� � � �
…

2  

  where  1   i   is a  r i      ×    1 vector of ones. We can establish that

   Var y I ZZ( ) = + ′σ σδ
2 2 .   

 The matrix  ZZ  ′  is block diagonal with each block consisting of a  r i      ×     r i   matrix of 
ones. The net consequence of this model is that one should use generalized least 
squares to estimate   β  . In the case that we have balanced data, where there are the 
same number of observations per helicopter, then the ordinary least squares esti-
mate of   β   is exactly the same as the generalized least squares estimate and is the 
best linear unbiased estimate. As a result, ordinary least squares is an excellent way 
to estimate the model. However, there are serious issues with any inference based 
on the usual ordinary least squares methodology because it does not refl ect the 
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helicopter - to - helicopter variability. This important source of error is missing from 
the usual ordinary least squares analysis. Thus, while it is appropriate to use ordinary 
least squares to estimate the model, it is not appropriate to do the standard ordinary 
least squares inference on the model based on the original fl ight times. To do so 
would be to ignore the impact of the helicopter - to - helicopter error term. In the 
balanced case and only in the balanced case, we can construct exact  F  and  t  tests. It 
can be shown (see Exercise 5.19) that the appropriate error term is based on

   SSsubsample = ′ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦
− −y Z Z Z Z X X X X y1 1 ,  

  which has  m     −     p  degrees of freedom. Basically, this error term uses the average fl ight 
times for each helicopter rather than the individual fl ight times. As a result, the 
generalized least squares analysis is exactly equivalent to doing an ordinary least 
squares analysis on the average fl ight time for each helicopter. This insight is impor-
tant when using the software, as we illustrate in the next example. 

 If we do not have balance, then we recommend residual maximum likelihood, 
also known as restricted maximum likelihood (REML) as the basis for estimation 
and inference (see Section  5.6.2 ). In the unbalanced situation there are no best 
linear unbiased estimates of   β  . The inference based on REML is asymptotically 
effi cient.    

 Example 5.6   The Helicopter Subsampling Study 

    Table  5.10  summarizes data from an industrial short course on experimental design 
that used the paper helicopter as a class exercise. The class conducted a simple 2 2  
factorial experiment replicated a total of twice. As a result, the experiment required 
a total of eight helicopters to see the effect of  “ aspect, ”  which was the length of the 
body of a paper helicopter, and  “ paper, ”  which was the weight of the paper, on the 
fl ight time. Three people timed the each helicopter fl ight, which yields three fl ight 
times for each fl ight. The variable Rep is necessary to do the proper analysis on the 
original fl ight times. The table gives the data in the actual run order.   

 The Minitab analysis of the original fl ight times requires three steps. First, we can 
do the ordinary least squares estimation of the model to get the estimates of the 
model coeffi cients. Next, we need to re - analyze the data to get the estimate of 
the proper error variance. The fi nal step requires us to update the  t  statistics from 
the fi rst step to refl ect the proper error term. 

 Table  5.11  gives the analysis for the fi rst step. The estimated model is correct. 
However, the  R  2 , the  t  statistics, the  F  statistics and their associated  P  values are all 
incorrect because they do not refl ect the proper error term.   

 The second step creates the proper error term. In so doing, we must use the 
General Linear Model functionality within Minitab. Basically, we treat the factors 
and their interaction as categorical. The model statement to generate the correct 
error term is:

   aspect paper aspect*paper rep aspect paper( )   

 One then must list rep as a random factor. Table  5.12  gives the results. The proper 
error term is the mean squared for rep(aspect paper).   
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  TABLE 5.10    The Helicopter Subsampling Data 

   Helicopter     Aspect     Paper     Interaction     Rep     Time  

  1    1     − 1     − 1    1    3.60  
  1    1     − 1     − 1    1    3.85  
  1    1     − 1     − 1    1    3.98  
  2     − 1     − 1    1    1    6.44  
  2     − 1     − 1    1    1    6.37  
  2     − 1     − 1    1    1    6.78  
  3     − 1    1     − 1    1    6.84  
  3     − 1    1     − 1    1    6.90  
  3     − 1    1     − 1    1    7.18  
  4     − 1    1     − 1    2    6.37  
  4     − 1    1     − 1    2    6.38  
  4     − 1    1     − 1    2    6.58  
  5    1    1    1    1    3.44  
  5    1    1    1    1    3.43  
  5    1    1    1    1    3.75  
  6    1     − 1     − 1    2    3.75  
  6    1     − 1     − 1    2    3.73  
  6    1     − 1     − 1    2    4.10  
  7    1    1    1    2    4.59  
  7    1    1    1    2    4.64  
  7    1    1    1    2    5.02  
  8     − 1     − 1    1    2    6.50  
  8     − 1     − 1    1    2    6.33  
  8     − 1     − 1    1    2    6.92  

  TABLE 5.11    Minitab Analysis for the First Step of the Helicopter Subsampling Data 

   The regression equation is   
   time  =  5.31    −    1.32 aspect  +  0.115 paper  +  0.0396 inter   

   Predictor      Coef      SE Coef      T      P       
   Constant      5.31125      0.08339      63.69      0.000       
   aspect      −  1.32125      0.08339      −  15.84      0.000       
   paper      0.11542      0.08339      1.38      0.182       
   inter      0.03958      0.08339      0.47      0.640       

   S  =  0.408541      R - Sq  =  92.7%      R - Sq(adj)  =  91.6%   

   Analysis of Variance   

   Source      DF      SS      MS      F      P   
   Regression      3      42.254      14.085      84.39      0.000   
   Residual 
Error   

   20      3.338      0.167           

   Total      23      45.592               
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 The third step is to correct the  t  statistics from the fi rst step. The mean squared 
residual from the fi rst step is 0.167. The correct error variance is 0.6564. Both of 
these values are rounded, which is all right, but it will lead to small differences when 
we do a correct one - step procedure based on the average fl ight times. Let  t j   be the 
 t  - statistic for the fi rst - step analysis for the  j th   estimated coeffi cient, and let  t c   ,   j   be the 
corrected statistic given by

   t tc j j,
.
.

.=
0 167
0 6564

  

 These  t  statistics have the degrees of freedom associated with rep(aspect paper), 
which in this case is 4. Table  5.13  gives the correct  t  statistics and  P  values. We note 
that the correct  t  statistics are smaller in absolute value than for the fi rst - step analy-
sis. This result refl ects the fact that the error variance in the fi rst step is too small 
since it ignores the helicopter - to - helicopter variability. The basic conclusion is that 
aspect seems to be the only important factor, which is true in both the fi rst - step 
analysis and the correct analysis. It is important to note, however, that this equiva-
lence does not hold in general.  Regressors that appear important in the fi rst - step 
analysis often are not statistically signifi cant in the correct analysis .   

 An easier way to do this analysis in Minitab recognizes that we do have a bal-
anced situation here because we have exactly three times for each helicopter ’ s fl ight. 
As a result, we can do the proper analysis using the average time for each helicopter 
fl ight. Table  5.14  summarizes the data. Table  5.15  gives the analysis from Minitab, 
which apart from rounding refl ects the same values as Table  5.12 . We can do a full 
residual analysis of these data, which we leave as an exercise for the reader.        ■     

  TABLE 5.12    Minitab Analysis for the Second Step of the Helicopter Subsampling Data 

   Analysis of Variance for time, using Adjusted SS for Tests   

   Source      DF      Seq SS      Adj SS      Adj MS      F      P   
   aspect      1      41.8968      41.8968      41.8968      63.83      0.001   
   paper      1      0.3197      0.3197      0.3197      0.49      0.524   
   aspect * paper      1      0.0376      0.0376      0.0376      0.06      0.823   
   rep(aspect paper)      4      2.6255      2.6255      0.6564      14.74      0.000   
   Error      16      0.7126      0.7126      0.0445           
   Total      23      45.5923                   

   S  =  0.211039 R - Sq  =  98.44% R - Sq(adj)  =  97.75%   

   5.6.2    The General Situation for a Regression Model with a Single 
Random Effect 

 The balanced subsampling problem discussed in Section  5.6.1  is common. This 
section extends these ideas to the more general situation when there is a single 
random effect in our regression model. 

 For example, suppose an environmental engineer postulates that the amount of 
a particular pollutant in lakes across the Commonwealth of Virginia depends upon 
the water temperature. She takes water samples from various randomly selected 
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  TABLE 5.13    Correct  t  Statistics and  P  
Values for the Helicopter Subsampling Data 

   Factor      t       P  Value  

  Constant    32.12515    0.000  
  aspect     − 7.98968    0.001  
  paper    0.60607    0.525  
  Aspect * paper    0.237067    0.824  

  TABLE 5.14    Average Flight Times for the Helicopter 
Subsampling Data 

   Helicopter     Aspect     Paper     Interaction     Average Time  

  1    1     − 1     − 1    3.810  
  2     − 1     − 1    1    6.530  
  3     − 1    1     − 1    6.973  
  4     − 1    1     − 1    6.443  
  5    1    1    1    3.540  
  6    1     − 1     − 1    3.860  
  7    1    1    1    4.750  
  8     − 1     − 1    1    6.583  

  TABLE 5.15    Final Minitab Analysis for the Helicopter Experiment in Table  5.14  

   The regression equation is   
   Average Time  =  5.31  -  1.32 Aspect  +  0.115 Paper  +  0.040 Aspect * Paper   

   Predictor      Coef      SE Coef      T      P   
   Constant      5.3111      0.1654      32.12      0.000   
   Aspect       - 1.3211      0.1654       - 7.99      0.001   
   Paper      0.1154      0.1654      0.70      0.524   
   Aspect * Paper      0.0396      0.1654      0.24      0.822   

   S  =  0.467748         R - Sq  =  94.1%         R - Sq(adj)  =  89.8%   

   Analysis of Variance   
   Source      DF      SS      MS      F      P   
   Regression      3      14.0820      4.6940      21.45      0.006   
   Residual Error      4      0.8752      0.2188           
   Total      7      14.9572               

locations for several randomly selected lakes in Virginia. She records the water 
temperature at the time of the sample was taken. She then sends the water sample 
to her laboratory to determine the amount of the particular pollutant present. There 
are two sources of variability: location - to - location within a lake and lake - to - lake. 
This point is important. A heavily polluted lake is likely to have much higher amount 
of the pollutant across all of its locations than a lightly polluted lake. 

 The model given by Equation  (5.22)  provides a basis for analyzing these 
data. The water temperature is a fi xed regressor. There are two components to the 
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variability in the data: the random lake effect and the random location within 
the lake effect. Let   σ      2  be the variance of the location random effect, and let   σδ

2 be 
the variance of the lake random effect. 

 Although we can use the same model for this lake pollution example as 
the subsampling experiment, the experimental contexts are very different. In the 
helicopter experiment, the helicopter is the fundamental experimental unit, which 
is the smallest unit to which we can apply the treatment. However, we realize 
that there is a great deal of variability in the fl ight times for a specifi c helicopter. 
Thus, fl ying the helicopter several times gives us a better idea about the typical 
fl ying time for that specifi c helicopter. The experimental error looks at the variability 
among the experimental units. The variability in the fl ying times for a specifi c 
helicopter is part of the experimental error, but it is only a part. Another component 
is the variability in trying to replicate precisely the levels for the experimental 
factors. In the subsampling case, it is pretty easy to ensure that the number of 
subsamples (in the helicopter case, the fl ights) is the same, which leads to the 
balanced case. 

 In the lake pollution case, we have a true observational study. The engineer is 
taking a single water sample at each location. She probably uses fewer randomly 
selected locations for smaller lakes, and more randomly selected lakes from larger-
lakes. In addition, it is not practical for her to sample from every lake in Virginia. 
On the other hand, it is very straightforward for her to select randomly a series of 
lakes for testing. As a result, we expect to have different number of locations for 
each lake; hence, we expect to see an unbalanced situation. 

 We recommend the use of REML for the unbalanced case. REML is a very 
general method for analysis of statistical models with random effects represented 
by the model terms   δ  i   and  ε   ij   in Equation  (5.22) . Many software packages use REML 
to estimate the variance components associated with the random effects in mixed 
models like the model for the paper helicopter experiment. REML then uses an 
iterative procedure to pursue a weighted least squares approach for estimating the 
model. Ultimately, REML uses the estimated variance components to perform 
statistical tests and construct confi dence intervals for the fi nal estimated model. 

 REML operates by dividing the parameter estimation problem into two parts. In 
the fi rst stage the random effects are ignored and the fi xed effects are estimated, 
usually by ordinary least squares. Then a set of residuals from the model is con-
structed and the likelihood function for these residuals is obtained. In the second 
stage the maximum likelihood estimates for the variance components are obtained 
by maximizing the likelihood function for the residuals. The procedure then takes 
the estimated variance components to produce an estimate of the variance of  y , 
which it then uses to reestimate the fi xed effects. It then updates the residuals and 
the estimates of the variance components. The procedure continues to some con-
vergence criterion. REML always assumes that the observations are normally dis-
tributed because this simplifi es setting up the likelihood function. 

 REML estimates have all the properties of maximum likelihood. As a result, they 
are asymptotically unbiased and minimum variance. There are several ways to 
determine the degrees of freedom for the maximum likelihood estimates in REML, 
and some controversy about the best way to do this, but a full discussion of these 
issues is beyond the scope of this book. The following example illustrates the use of 
REML for a mixed effects regression model.    
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 Example 5.7   The Delivery Time Data Revisited 

    We introduced the delivery time data in Example 3.1. In Section  4.2.6  we observed 
that the fi rst seven observations were collected from San Diego, observations 8 – 17 
from Boston, observations 18 – 23 from Austin, and observations 24 and 25 from 
Minneapolis. 

 It is not unreasonable to assume that the cities used in this study represent a 
random sample of cities across the country. Ultimately, our interest is the impact of 
the number of cases deliveryed and the distance required to make the delivery on 
the delivery times over the entire country. As a result, a proper analysis needs to 
consider the impact of the random city effect on this analysis. 

 Figure  5.12  summarizes the analysis from JMP. We see few differences in the 
parameter estimates between the mixed model analysis that did not include the city ’ s 
factor, given in Example 3.1. The  P  values for cases and distance are larger but only 
slightly so. The intercept  P  value is quite a bit larger. Part of this change is due to the 
signifi cant decrease in the effective degrees of freedom for the intercept effect as the 
result of using the city information. The plot of the actual delivery times versus 
the predicted shows that the model is reasonable. The variance component for city 
is approximately 2.59. The variance for the residual error is 8.79. In the original analy-
sis of Example 3.1 is 10.6. Clearly, part of the variability from the Example 3.1 analysis 
considered purely random is due to systematic variability due to the various cities, 
which the REML refl ects through the cities ’  variance component.   

 The SAS code to analyze these data is:

 proc mixed cl; 
            class city;
             model time    =    cases      distance /       ddfm = kenwardroger       s;
             random city;
run;  

 The following R code assumes that the data are in the object deliver. Also, one must 
load the package nlme in order to perform this analysis.

       Figure 5.12     JMP results for the delivery time data treating city as a random effects.  
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   5.6.3    The Importance of the Mixed Model in Regression 

 Classical regression analysis always has assumed that there is only one source of 
variability. However, the analysis of many important experimental designs often has 
required the use of multiple sources of variability. Consequently, analysts have been 
using mixed models for many years to analyze experimental data. However, in such 
cases, the investigator typically planned a balanced experiment, which made for a 
straightforward analysis. REML evolved as a way to deal with imbalance primarily 
for the analysis of variance (ANOVA) models that underlie the classical analysis of 
experimental designs. 

 Recently, regression analysts have come to understand that there often are mul-
tiple sources of error in their observational studies. They have realized that classical 
regression analysis falls short in taking these multiple error terms in the analysis. 
They have realized that the result often is the use of an error term that understates 
the proper variability. The resulting analyses have tended to identify more signifi cant 
factors than the data truly justifi es. 

 We intend this section to be a short introduction to the mixed model in regression 
analysis. It is quite straightforward to extend what we have done here to more 
complex mixed models with more error terms. We hope that this presentation will 
help readers to appreciate the need for mixed models and to see how to modify the 
classical regression model and analysis to accommodate more complex error struc-
tures. The modifi cation requires the use of generalized least squares; however, it is 
not diffi cult to do.    

 PROBLEMS 

       5.1    Byers and Williams ( “ Viscosities of Binary and Ternary Mixtures of Polyaro-
matic Hydrocarbons, ”   Journal of Chemical and Engineering Data ,  32 , 349 – 354, 
1987) studied the impact of temperature (the regressor) on the viscosity (the 
response) of toluene - tetralin blends. The following table gives the data for 
blends with a 0.4 molar fraction of toluene.

   Temperature ( ° C)     Viscosity (mPa  ·  s)  

  24.9    1.133  
  35.0    0.9772  
  44.9    0.8532  
  55.1    0.7550  
  65.2    0.6723  
  75.2    0.6021  
  85.2    0.5420  
  95.2    0.5074  

 deliver.model       <  -       lme(time ∼ cases + dist,      random =  ∼ 1|city,      
data = deliver) print(deliver.model)  

 R reports the estimated standard deviations rather than the variances. As a result, 
one needs to square the estimates to get the same results as SAS and JMP.        ■   
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   Temperature 
( ° K)  

   Vapor Pressure 
(mm Hg)  

  273    4.6  
  283    9.2  
  293    17.5  
  303    31.8  
  313    55.3  
  323    92.5.  
  333    149.4  
  343    233.7  
  353    355.1  
  363    525.8  
  373    760.0  

      a.     Plot a scatter diagram. Does it seem likely that a straight - line model will 
be adequate?  

  b.     Fit the straight - line model. Compute the summary statistics and the resid-
ual plots. What are your conclusions regarding model adequacy?  

  c.     From physical chemistry the Clausius - Clapeyron equation states that

   ln p
T

ν( ) ∝ −
1      

 Repeat part b using the appropriate transformation based on this 
information.   

    5.3    The data shown below present the average number of surviving bacteria in a 
canned food product and the minutes of exposure to 300 ° F heat.

   Number of 
Bacteria     Minutes of Exposure  

  175    1  
  108    2  
  95    3  
  82    4  
  71    5  
  50    6  

      a.     Plot a scatter diagram. Does it seem likely that a straight - line model will 
be adequate?  

  b.     Fit the straight - line model. Compute the summary statistics and the resid-
ual plots. What are your conclusions regarding model adequacy?  

  c.     Basic principles of physical chemistry suggest that the viscosity is an expo-
nential function of the temperature. Repeat part b using the appropriate 
transformation based on this information.      

    5.2    The following table gives the vapor pressure of water for various 
temperatures.

(Continued)
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      a.     Plot a scatter diagram. Does it seem likely that a straight - line model will 
be adequate?  

  b.     Fit the straight - line model. Compute the summary statistics and the resid-
ual plots. What are your conclusions regarding model adequacy?  

  c.     Identify an appropriate transformed model for these data. Fit this model 
to the data and conduct the usual tests of model adequacy.      

    5.4    Consider the data shown below. Construct a scatter diagram and suggest an 
appropriate form for the regression model. Fit this model to the data and 
conduct the standard tests of model adequacy.

      
  x    10    15    18    12    9    8    11    6  
  y    0.17    0.13    0.09    0.15    0.20    0.21    0.18    0.24  

   Defects per 10,000     Weeks     Defects per 10,000     Weeks  

  13.0    4    34.2    11  
  16.1    5    65.6    12  
  14.5    6    49.2    13  
  17.8    7    66.2    14  
  22.0    8    81.2    15  
  27.4    9    87.4    16  
  16.8    10    114.5    17  

    5.5    A glass bottle manufacturing company has recorded data on the average 
number of defects per 10,000 bottles due to stones (small pieces of rock 
embedded in the bottle wall) and the number of weeks since the last furnace 
overhaul. The data are shown below.

      a.     Fit a straight - line regression model to the data and perform the standard 
tests for model adequacy.  

  b.     Suggest an appropriate transformation to eliminate the problems encoun-
tered in part a. Fit the transformed model and check for adequacy.      

    5.6    Consider the fuel consumption data in Table B.18. For the purposes of this 
exercise, ignore regressor  x  1 . Recall the thorough residual analysis of these 
data from Exercise 4.27. Would a transformation improve this analysis? Why 
or why not? If yes, perform the transformation and repeat the full analysis.   

   Number of 
Bacteria     Minutes of Exposure  

  49    7  
  31    8  
  28    9  
  17    10  
  16    11  
  11    12  
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    5.7    Consider the methanol oxidation data in Table B.20. Perform a thorough 
analysis of these data. Recall the thorough residual analysis of these data from 
Exercise 4.29. Would a transformation improve this analysis? Why or why 
not? If yes, perform the transformation and repeat the full analysis.   

    5.8    Consider the three models 
  a.      y     =      β  0      +      β  1  (1/ x )    +      ε    
  b.     1/ y     =      β  0      +      β  1 x     +      ε    
  c.      y     =     x/ (  β  0      −      β  1 x )    +      ε      
 All of these models can be linearized by reciprocal transformations. Sketch 
the behavior of  y  as a function of  x . What observed characteristics in the 
scatter diagram would lead you to choose one of these models?   

    5.9    Consider the clathrate formation data in Table B.8.
   a.     Perform a thorough residual analysis of these data.  
  b.     Identify the most appropriate transformation for these data. Fit this model 

and repeat the residual analysis.      

    5.10    Consider the pressure drop data in Table B.9.
   a.     Perform a thorough residual analysis of these data.  
  b.     Identify the most appropriate transformation for these data. Fit this model 

and repeat the residual analysis.      

    5.11    Consider the kinematic viscosity data in Table B.10.
   a.     Perform a thorough residual analysis of these data.  
  b.     Identify the most appropriate transformation for these data. Fit this model 

and repeat the residual analysis.      

    5.12    Vining and Myers ( “ Combining Taguchi and Response Surface Philosophies: 
A Dual Response Approach, ”   Journal of Quality Technology ,  22 , 15 – 22, 1990) 
analyze an experiment, which originally appeared in Box and Draper [ 1987 ]. 
This experiment studied the effect of speed ( x  1 ), pressure ( x  2 ), and distance 
( x  3 ) on a printing machine ’ s ability to apply coloring inks on package labels. 
The following table summarizes the experimental results.

    i       x i        x  2       x  3       y i   1       y i   2       y i   3        yi       s i    

  1     − 1     − 1     − 1    34    10    28    24.0    12.5  
  2    0     − 1     − 1    115    116    130    120.3    8.4  
  3    1     − 1     − 1    192    186    263    213.7    42.8  
  4     − 1    0     − 1    82    88    88    86.0    3.7  
  5    0    0     − 1    44    178    188    136.7    80.4  
  6    1    0     − 1    322    350    350    340.7    16.2  
  7     − 1    1     − 1    141    110    86    112.3    27.6  
  8    0    1     − 1    259    251    259    256.3    4.6  
  9    1    1     − 1    290    280    245    271.7    23.6  

  10     − 1     − 1    0    81    81    81    81.0    0.0  
  11    0     − 1    0    90    122    93    101.7    17.7  
  12    1     − 1    0    319    376    376    357.0    32.9  

(Continued)
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      a.     Fit an appropriate modal to each respone and conduct the residual 
analysis.  

  b.     Use the sample variances as the basis for weighted least - squares estimation 
of the original data (not the sample means).  

  c.     Vining and Myers suggest fi tting a linear model to an appropriate trans-
formation of the sample variances. Use such a model to develop the appro-
priate weights and repeat part b.      

    5.13    Schubert et al. ( “ The Catapult Problem: Enhanced Engineering Modeling 
Using Experimental Design, ”   Quality Engineering ,  4 , 463 – 473, 1992) con-
ducted an experiment with a catapult to determine the effects of hook ( x  1 ), 
arm length ( x  2 ), start angle ( x  3 ), and stop angle ( x  4 ) on the distance that the 
catapult throws a ball. They threw the ball three times for each setting of the 
factors. The following table summarizes the experimental results.

    x  1       x  2       x  3       x  4            y        

   − 1     − 1     − 1     − 1    28.0    27.1    26.2  
   − 1     − 1    1    1    46.3    43.5    46.5  
   − 1    1     − 1    1    21.9    21.0    20.1  
   − 1    1    1     − 1    52.9    53.7    52.0  
  1     − 1     − 1    1    75.0    73.1    74.3  
  1     − 1    1     − 1    127.7    126.9    128.7  
  1    1     − 1     − 1    86.2    86.5    87.0  
  1    1    1    1    195.0    195.9    195.7  

    i       x i        x  2       x  3       y i   1       y i   2       y i   3        yi       s i    

  13     − 1    0    0    180    180    154    171.3    15.0  
  14    0    0    0    372    372    372    372.0    0.0  
  15    1    0    0    541    568    396    501.7    92.5  
  16     − 1    1    0    288    192    312    264.0    63.5  
  17    0    1    0    432    336    513    427.0    88.6  
  18    1    1    0    713    725    754    730.7    21.1  
  19     − 1     − 1    1    364    99    199    220.7    133.8  
  20    0     − 1    1    232    221    266    239.7    23.5  
  21    1     − 1    1    408    415    443    422.0    18.5  
  22     − 1    0    1    182    233    182    199.0    29.4  
  23    0    0    1    507    515    434    485.3    44.6  
  24    1    0    1    846    535    640    673.7    158.2  
  25     − 1    1    1    236    126    168    176.7    55.5  
  26    0    1    1    660    440    403    501.0    138.9  
  27    1    1    1    878    991    1161    1010.0    142.5  

      a.     Fit a fi rst - order regression model to the data and conduct the residual 
analysis.  

  b.     Use the sample variances as the basis for weighted least - squares estimation 
of the original data (not the sample means).  
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  c.     Fit an appropriate model to the sample variances (note: you will require 
an appropriate transformation!). Use this model to develop the appropri-
ate weights and repeat part b.      

    5.14    Consider the simple linear regression model  y i      =      β   0     +      β   1  x i      +     ε   i  , where the vari-
ance of  ε   i   is proportional to   xi

2, that is,   Var ε σi ix( ) = 2 2.
   a.     Suppose that we use the transformations  y  ′     =     y / x  and  x  ′     =    l/ x . Is this a 

variance - stabilizing transformation?  
  b.     What are the relationships between the parameters in the original and 

transformed models?  
  c.     Suppose we use the method of weighted least squares with   w xi i= 1 2. Is this 

equivalent to the transformation introduced in part a?      

    5.15    Suppose that we want to fi t the no - intercept model y    =      β x     +      ε   using weighted 
least squares. Assume that the observations are uncorrelated but have unequal 
variances.
   a.     Find a general formula for the weighted least - squares estimator of   β  .  
  b.     What is the variance of the weighted least - squares estimator?  
  c.     Suppose that Var( y i  )    =     cx i  , that is, the variance of  y i   is proportional to the 

corresponding  x i  . Using the results of parts a and b, fi nd the weighted least -
 squares estimator of   β   and the variance of this estimator.  

  d.     Suppose that   Var y cxi i( ) = 2, that is, the variance of  y i   is proportional to 
the square of the corresponding  x i  . Using the results of parts a and b, 
fi nd the weighted least - squares estimator of   β   and the variance of this 
estimator.      

    5.16    Consider the model

   y X X= + +1 1 2 2b b e  

  where  E (  ε  )    =     0  and Var(  ε  )    =      σ       2 V . Assume that   σ     2   and  V  are known. Derive 
an appropriate test statistic for the hypotheses

   H H0 2 1 2: , :b b= ≠0 0   

 Give the distribution under both the null and alternative hypotheses.   

    5.17    Consider the model

   y X= +b e  

  where  E (  ε  )    =     0  and Var(  ε  )    =      σ       2 V . Assume that  V  is known but not   σ       2  . Show 
that

   ′ − ′ ′( ) ′( ) −( )− − − − −y V y y V X X V X X V y1 1 1 1 1 n p  

  is an unbiased estimate of   σ       2  .   
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    5.18    Table B.14 contains data on the transient points of an electronic inverter. 
Delete the second observation and use  x  1     −     x  4  as regressors. Fit a multiple 
regression model to these data.
   a.     Plot the ordinary residuals, the studentized residuals, and  R  - student versus 

the predicted response. Comment on the results.  
  b.     Investigate the utility of a transformation on the response variable. Does 

this improve the model?  
  c.     In addition to a transformation on the response, consider transformations 

on the regressors. Use partial regression or partial residual plots as an aid 
in this study.      

    5.19    Consider the following subsampling model:

    y x i m j rij i i ij= + + + = =( )β β δ ε0 1 1 2 1 2, , , , , ,… …and     (5.22)  

  where  m  is the number of helicopters,  r  is the number of measured fl ight times 
for each helicopter,  y ij   is the fl ight time for the  j th   fl ight of the  i th   helicopter,  x i   
is the length of the wings for the  i th   helicopter,   δ  i   is the error term associated 
with the  i th   helicopter, and  ε   ij   is the random error associated with the  j th   fl ight 
of the  i th   helicopter. Assume that the  δ  i s are independent and normally dis-
tributed with a mean of 0 and a constant variance   σδ

2, that the  ε   ij  s are inde-
pendent and normally distributed with mean 0 and constant variance   σ      2 , and 
that the   δ  i  s and the  ε   ij  s are independent. The total number of observations in 
this study is   n ri

m
i= ∑ =1 . This model in matrix form is

   y X Z= + +b d e  

  where  Z  is a  n     ×     m   “ incidence ”  matrix and   δ   is a  m     ×    1 vector of random 
helicopter - to - helicopter errors. The form of  Z  is

   Z

r

r

r

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

0 1 0

0 0 1

…
…

� � � �
…

 

  where  1   r   is a  r     ×    1 vector of ones.

   a.     Show that

   Var y I ZZ( ) = + ′σ σδ
2 2 .    

  b.     Show that the ordinary least squares estimates of   β   are the same as the 
generalized least squares estimates.  

  c.     Derive the appropriate error term for testing the regression coeffi cients.      

    5.20    The fuel consumption data in Appendix  B .18 is actually a subsampling 
problem. The batches of oil are divided into two. One batch went to the bus, 
and the other batch went to the truck. Perform the proper analysis of these 
data.   
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    5.21    A construction engineer studied the effect of mixing rate on the tensile 
strength of portland cement. From each batch she mixed, the engineer made 
four test samples. Of course, the mix rate was applied to the entire batch. The 
data follow. Perform the appropriate analysis.

      

   Mix Rate(rpm)      Tensile Strength(lb/in 2 )  

  150    3129    3000    3065    3190  
  175    3200    3300    2975    3150  
  200    2800    2900    2985    3050  
  225    2600    2700    2600    2765  

   Temp.      Density  

  900    21.8    21.9    21.7    21.6    21.7  
  910    22.7    22.4    22.5    22.4      
  920    23.9    22.8    22.8    22.6    22.5  
  930    23.4    23.2    23.3    22.9      

    5.22    A ceramic chemist studied the effect of four peak kiln temperatures on the 
density of bricks. Her test kiln could hold fi ve bricks at a time. Two samples, 
each from different peak temperatures, broke before she could test their 
density. The data follow. Perform the appropriate analysis.

      

    5.23    A paper manufacturer studied the effect of three vat pressures on the strength 
of one of its products. Three batches of cellulose were selected at random 
from the inventory. The company made two production runs for each pressure 
setting from each batch. As a result, each batch produced a total of six pro-
duction runs. The data follow. Perform the appropriate analysis.

      
   Batch     Pressure     Strength  

  A    400    198.4  
  A    400    198.6  
  A    500    199.6  
  A    500    200.4  
  A    600    200.6  
  A    600    200.9  
  B    400    197.5  
  B    400    198.1  
  B    500    198.7  
  B    500    198.0  
  B    600    199.6  
  B    600    199.0  

(Continued)
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   Location      x  1       x  2       x  3       x  4       x  5       y   

  A    227    145    196    203    727    810  
  B    243    194    193    226    810    1500  
  B    254    183    195    268    790    1340  
  C    296    179    239    327    711    2750  
  C    296    181    239    304    705    3240  
  D    327    196    358    388    641    2860  
  E    441    189    363    465    663    4970  
  F    356    186    340    441    846    3780  
  G    419    195    340    387    713    2740  
  H    293    182    235    306    638    3190  
  I    274    182    201    220    638    2350  
  J    363    194    316    370    766    4440  
  K    253    189    255    340    778    2110  

    5.24    French and Schultz ( “ Water Use Effi ciency of Wheat in a Mediterranean - type 
Environment, I The Relation between Yield, Water Use, and Climate, ”   Aus-
tralian Journal of Agricultural Research ,  35 , 743 – 64) studied the impact of 
water use on the yield of wheat in Australia. The data below are from 1970 
for several locations assumed to be randomly selected for this study. The 
response,  y , is the yield of what in kg/ha. The regressors are:
    •       x  1  the amount of rain in mm for the period October to April.  
   •       x  2  is the number of days in the growing season.  
   •       x  3  is the amount of rain in mm during the growing season.  
   •       x  4  is the water use in mm for the growing season.  
   •       x  5  is the pan evaporation in mm during the growing season.    
 Perform a thorough analysis of these data. 

           

 

   Batch     Pressure     Strength  

  C    400    197.6  
  C    400    198.4  
  C    500    197.0  
  C    500    197.8  
  C    600    198.5  
  C    600    199.8  
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  CHAPTER 6 

DIAGNOSTICS FOR LEVERAGE 
AND INFLUENCE     

    6.1    IMPORTANCE OF DETECTING INFLUENTIAL OBSERVATIONS 

 When we compute a sample average, each observation in the sample has the same 
weight in determining the outcome. In the regression situation, this is not the case. 
For example, we noted in Section  2.9  that the location of observations in  x  space 
can play an important role in determining the regression coeffi cients (refer to 
Figures  2.8  and  2.9 ). We have also focused attention on outliers, or observations that 
have unusual  y  values. In Section  4.4  we observed that outliers are often identifi ed 
by unusually large residuals and that these observations can also affect the regres-
sion results. The material in this chapter is an extension and consolidation of some 
of these issues. 

 Consider the situation illustrated in Figure  6.1 . The point labeled  A  in this fi gure 
is remote in  x  space from the rest of the sample, but it lies almost on the regression 
line passing through the rest of the sample points. This is an example of a  leverage  
point; that is, it has an unusual  x  value and may control certain model properties. 
Now this point does not affect the estimates of the regression coeffi cients, but it 
certainly will have a dramatic effect on the model summary statistics such as  R  2  and 
the standard errors of the regression coeffi cients. Now consider the point labeled  A  
in Figure  6.2 . This point has a moderately unusual  x  coordinate, and the  y  value is 
unusual as well. This is an  infl uence  point, that is, it has a noticeable impact on the 
model coeffi cients in that it  “ pulls ”  the regression model in its direction.   

 We sometimes fi nd that a small subset of the data exerts a disproportionate infl u-
ence on the model coeffi cients and properties. In an extreme case, the parameter 
estimates may depend more on the infl uential subset of points than on the majority 
of the data. This is obviously an undesirable situation; we would like for a regression 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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model to be representative of all of the sample observations, not an artifact of a few. 
Consequently, we would like to fi nd these infl uential points and assess their impact 
on the model. If these infl uential points are indeed  “ bad ”  values, then they should 
be eliminated from the sample. On the other hand, there may be nothing wrong 
with these points, but if they control key model properties, we would like to know 
it, as it could affect the end use of the regression model. 

 In this chapter we present several diagnostics for leverage and infl uence. These 
diagnostics are available in most multiple regression computer packages. It is impor-
tant to use these diagnostics in conjunction with the residual analysis techniques of 
Chapter  4 . Sometimes we fi nd that a regression coeffi cient may have a sign that does 
not make engineering or scientifi c sense, a regressor known to be important may be 
statistically insignifi cant, or a model that fi ts the data well and that is logical from 
an application – environment perspective may produce poor predictions. These situ-
ations may be the result of one or perhaps a few infl uential observations. Finding 
these observations then can shed considerable light on the problems with the model.  

   6.2    LEVERAGE 

 As observed above, the location of points in  x  space is potentially important in 
determining the properties of the regression model. In particular, remote points 
potentially have disproportionate impact on the parameter estimates, standard 
errors, predicted values, and model summary statistics. The hat matrix

    H X X X X= ′( ) ′−1     (6.1)  

  plays an important role in identifying infl uential observations. As noted earlier, 
 H  determines the variances and covariances of   ̂y and  e , since   Var ŷ H( ) = σ 2  
and Var( e )    =      σ      2 ( I     −     H ). The elements  h ij   of the matrix  H  may be interpreted 
as the amount of  leverage  exerted by the  i th observation  y i   on the  j th fi tted 
value   ̂yj. 

     Figure 6.1     An example of a 
leverage point.  

X

y

A

     Figure 6.2     An example of an 
infl uential observation.  

X

y

A
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 We usually focus attention on the  diagonal elements   h ii   of the hat matrix  H , which 
may be written as

    hii i i= ′ ′( )−x X X x1     (6.2)  

  where   ′xi is the  i th row of the  X  matrix. The hat matrix diagonal is a standardized 
measure of the distance of the  i th observation from the center (or centroid) of the 
 x  space. Thus, large hat diagonals reveal observations that are potentially infl uential 
because they are remote in  x  space from the rest of the sample. It turns out that the 
average size of a hat diagonal is   h p n= /  [because   ∑ = ( ) = ( ) ==i

n
iih p1 rank rankH X ], 

and we traditionally assume that any observation for which the hat diagonal exceeds 
twice the average 2 p / n  is remote enough from the rest of the data to be considered 
a  leverage point . 

 Not all leverage points are going to be infl uential on the regression coeffi cients. 
For example, recall point  A  in Figure  6.1 . This point will have a large hat diagonal 
and is assuredly a leverage point, but it has almost no effect on the regression coef-
fi cients because it lies almost on the line passing through the remaining observations. 
Because the hat diagonals examine only the location of the observation in  x  space, 
some analysts like to look at the studentized residuals or  R  - student  in conjunction 
with  the  h ii  . Observations with large hat diagonals  and  large residuals are likely to 
be infl uential. Finally, note that in using the cutoff value 2 p / n  we must also be careful 
to assess the magnitudes of both  p  and  n . There will be situations where 2 p / n     >    1, 
and in these situations, the cutoff does not apply.   

 Example 6.1   The Delivery Time Data 

    Column a of Table  6.1  shows the hat diagonals for the soft drink delivery time data 
Example 3.1. Since  p     =    3 and  n     =    25, any point for which the hat diagonal  h ii   exceeds 
2 p/n     =    2(3)/25    =    0.24 is a leverage point. This criterion would identify observations 
9 and 22 as leverage points. The remote location of these points (particularly point 
9) was previously noted when we examined the matrix of scatterplots in Figure 
 3.4  and when we illustrated interpolation and extrapolation with this model in 
Figure  3.11 .   

 In Example 4.1 we calculated the scaled residuals for the delivery time data. Table 
 4.1  contains the studentized residuals and  R  - student. These residuals are not unusu-
ally large for observation 22, indicating that it likely has little infl uence on the fi tted 
model. However, both scaled residuals for point 9 are moderately large, suggesting 
that this observation may have moderate infl uence on the model. To illustrate the 
effect of these two points on the model, three additional analyses were performed: 
one deleting observation 9, a second deleting observation 22, and the third deleting 
both 9 and 22. The results of these additional runs are shown in the following table: 

   Run       β̂0       β̂1       β̂2      MS Res        R  2   

  9 and 22 in    2.341    1.616    0.014    10.624    0.9596  
  9 out    4.447    1.498    0.010    5.905    0.9487  
  22 out    1.916    1.786    0.012    10.066    0.9564  
  9 and 22 out    4.643    1.456    0.011    6.163    0.9072  
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 The SAS code to generate its infl uence diagnostics is:

 model time  =  cases dist / infl uence;  

 The R code is:

 deliver.model  <  −  lm(time ∼ cases + dist, data = deliver) 
summary(deliver.model) 
 print(infl uence.measures(deliver.model))   

   6.3    MEASURES OF INFLUENCE: COOK ’ S  D  

 We noted in the previous section that it is desirable to consider both the location 
of the point in the  x  space and the response variable in measuring infl uence. Cook 
[ 1977, 1979 ] has suggested a way to do this, using a measure of the squared distance 
between the least - squares estimate based on all  n  points   b̂  and the estimate obtained 
by deleting the  i th point, say   b̂ i( ). This distance measure can be expressed in a general 
form as

    D c
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 The usual choices of  M  and  c  are  M     =     X ́ X  and  c     =     pMS  Res , so that Eq.  (6.3)  becomes
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 Points with large values of  D i   have considerable infl uence on the least - squares esti-
mates   b̂. 

 The magnitude of  D i   is usually assessed by comparing it to  F   α ,   p   ,   n    −    p  . If  D i      =     F  0.5,   p   ,   n    −    p  , 
then deleting point  i  would move   b̂ i( ) to the boundary of an approximate 50% con-
fi dence region for   β   based on the complete data set. This is a large displacement 

 Deleting observation 9 produces only a minor change in   β̂1 but results in approxi-
mately a 28% change in   β̂2 and a 90% change in   β̂0. This illustrates that observation 
9 is off the plane passing through the other 24 points and exerts a moderately strong 
infl uence on the regression coeffi cient associated with  x  2  (distance). This is not sur-
prising considering that the value of  x  2  for this observation (1460 feet) is very dif-
ferent from the other observations. In effect, observation 9 may be causing curvature 
in the  x  2  direction. If observation 9 were deleted, then  MS Res   would be reduced to 
5.905. Note that   5 905 2 430. .= , which is not too different from the estimate of pure 
error   ˆ .σ = 1 969 found by the near - neighbor analysis in Example 4.10. It seems that 
most of the lack of fi t noted in this model in Example 4.11 is due to point 9 ’ s large 
residual. Deleting point 22 produces relative smaller changes in the regression coef-
fi cients and model summary statistics. Deleting both points 9 and 22 produces 
changes similar to those observed when deleting only 9.        ■   
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 Example 6.2   The Delivery Time Data 

    Column b of Table  6.1  contains the values of Cook ’ s distance measure for the soft 
drink delivery time data. We illustrate the calculations by considering the fi rst obser-
vation. The studentized residuals for the delivery time data in Table  4.1 , and 
 r  1     =     − 1.6277. Thus,
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 The largest value of the  D i   statistic is  D  9     =    3.41835, which indicates that deletion 
of observation 9 would move the least - squares estimate to approximately the 
boundary of a 96% confi dence region around   b̂ . The next largest value is 
 D  22     =    0.45106, and deletion of point 22 will move the estimate of   β   to approximately 
the edge of a 35% confi dence region. Therefore, we would conclude that observation 
9 is defi nitely infl uential using the cutoff of unity, and observation 22 is not infl uential. 
Notice that these conclusions agree quite well with those reached in Example  6.1  
by examining the hat diagonals and studentized residuals separately.        ■   

and indicates that the least - squares estimate is sensitive to the  i th data point. Since 
  F p n p0 5 1. , , − � , we usually consider points for which  D i      >    1 to be infl uential. Ideally we 
would like each estimate   b̂ i( ) to stay within the boundary of a 10 or 20% confi dence 
region. This recommendation for a cutoff is based on the similarity of  D i   to the 
equation for the normal - theory confi dence ellipsoid [Eq.  (3.50) ]. The distance 
measure  D i   is not an  F  statistic. However, the cutoff of unity works very well in 
practice. 

 The  D i   statistic may be rewritten as
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 Thus, we see that, apart from the constant  p ,  D i   is the product of the square of the 
 i th studentized residual and  h ii  /(1    −     h ii  ). This ratio can be shown to be the distance 
from the vector  x   i   to the centroid of the remaining data. Thus,  D i   is made up of a 
component that refl ects how well the model fi ts the  i th observation  y i   and a com-
ponent that measures how far that point is from the rest of the data. Either com-
ponent (or both) may contribute to a large value of  D i  . Thus,  D i   combines residual 
magnitude for the  i th observation and the location of that point in  x  space to assess 
infl uence. 

 Because   X X y yˆ ˆ ˆ ˆb bi i( ) ( )− = − , another way to write Cook ’ s distance measure is
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    (6.6)   

 Therefore, another way to interpret Cook ’ s distance is that it is the squared Euclid-
ean distance (apart from  pMS  Res ) that the vector of fi tted values moves when the 
 i th observation is deleted.    
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   6.4    MEASURES OF INFLUENCE:  DFFITS  AND  DFBETAS  

 Cook ’ s distance measure is a  deletion diagnostic , that is, it measures the infl uence 
of the  i th observation if it is removed from the sample. Belsley, Kuh, and Welsch 
[ 1980 ] introduced two other useful measures of deletion infl uence. The fi rst of these 
is a statistic that indicates how much the regression coeffi cient   β̂ j changes, in stan-
dard deviation units, if the  i th observation were deleted. This statistic is
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  where  C jj   is the  j th diagonal element of ( X ́ X )  − 1  and   β̂ j i( ) is the  j th regression coef-
fi cient computed without use of the  i th observation. A large (in magnitude) value 
of  DFBETAS j   ,   i   indicates that observation  i  has considerable infl uence on the  j th 
regression coeffi cient. Notice that  DFBETAS j   ,   i   is an  n     ×     p  matrix that conveys 
similar information to the composite infl uence information in Cook ’ s distance 
measure. 

 The computation of  DFBETAS j   ,   i   is interesting. Defi ne the  p     ×     n  matrix

   R X X X= ′( ) ′−1

  

 The  n  elements in the  j th row of  R  produce the leverage that the  n  observations in 
the sample have on   β̂ j. If we let   ′rj  denote the  j th row of  R , then we can show (see 
Appendix  C.13 ) that
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  where  t i   is the  R  - student residual. Note that  DFBETAS j   ,   i   measures both leverage 
(  rj i j j, / ′r r  is a measure of the impact of the  i th observation on   β̂ j) and the effect of 
a large residual. Belsley, Kuh, and Welsch [ 1980 ] suggest a cutoff of   2 / n for 
 DFBETAS j   ,   i  ; that is, if   DFBETAS nj i, /> 2 , then the  i th observation warrants 
examination. 

 We may also investigate the deletion infl uence of the  i th observation on the 
predicted or fi tted value. This leads to the second diagnostic proposed by Belsley, 
Kuh, and Welsch:
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  where   ̂y i( ) is the fi tted value of  y i   obtained without the use of the  i th observation. 
The denominator is just a standardization, since   Var ŷ hi ii( ) = σ 2 . Thus,  DFFITS i   is 
the number of standard deviations that the fi tted value   ̂yi  changes  if observation  i  
is removed. 

 Computationally we may fi nd (see Appendix  C.13  for details)
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 Example 6.3   The Delivery Time Data 

    Columns c – f of Table  6.1  present the values of  DFFITS i   and  DFBETAS j,i   for 
the soft drink delivery time data. The formal cutoff value for  DFFITS i   is 
  2 2 3 25 0 69p n/ / .= = . Inspection of Table  6.1  reveals that both points 9 and 22 
have values of  DFFITS i   that exceed this value, and additionally  DFFITS  20  is close 
to the cutoff. 

 Examining  DFBETAS j,i   and recalling that the cutoff is   2 25 0 40/ .= , we imme-
diately notice that points 9 and 22 have large effects on all three parameters. Point 
9 has a very large effect on the intercept and smaller effects on   β̂1 and   β̂2, while 
point 22 has its largest effect on   β̂1. Several other points produce effects on the 
coeffi cients that are close to the formal cutoff, including 1 (on   β̂1 and   β̂2), 4 (on   β̂0), 
and 24 (on   β̂1 and   β̂2). These points produce relatively small changes in comparison 
to point 9. 

 Adopting a diagnostic view, point 9 is clearly infl uential, since its deletion results 
in a displacement of every regression coeffi cient by at least 0.9 standard deviation. 
The effect of point 22 is much smaller. Furthermore, deleting point 9 displaces the 

  where  t i   is  R  - student. Thus,  DFFITS i   is the value of  R  - student multiplied by 
the leverage of the  i th observation [ h ii  /(1    −     h ii  )] 1/2 . If the data point is an outlier, 
then  R  - student will be large in magnitude, while if the data point has high leverage, 
 h ii   will be close to unity. In either of these cases  DFFITS i   can be large. However, 
if   hii � 0, the effect of  R  - student will be moderated. Similarly a near - zero  R  - student 
combined with a high leverage point could produce a small value of  DFFITS i  . 
Thus,  DFFITS i   is affected by both leverage and prediction error. Belsley, Kuh, and 
Welsch suggest that any observation for which   DFFITS p ni > 2 /  warrants 
attention. 

     A Remark on Cutoff Values     In this section we have provided recommended 
cutoff values for  DFFITS i   and  DFBETAS j,i  . Remember that these recommendations 
are only guidelines, as it is very diffi cult to produce cutoffs that are correct for all 
cases. Therefore, we recommend that the analyst utilize information about both 
what the diagnostic means and the application environment in selecting a cutoff. 
For example, if  DFFITS i      =    1.0, say, we could translate this into actual response units 
to determine just how much   ŷi  is affected by removing the  i th observation. Then 
 DFBETAS j,i   could be used to see whether this observation is responsible for the 
signifi cance (or perhaps nonsignifi cance) of particular coeffi cients or for changes of 
sign in a regression coeffi cient. Diagnostic  DFBETAS j,i   can also be used to deter-
mine (by using the standard error of the coeffi cient) how much change in actual 
 problem - specifi c units  a data point has on the regression coeffi cient. Sometimes 
these changes will be important in a  problem - specifi c context  even though the diag-
nostic statistics do not exceed the formal cutoff. 

 Notice that the recommended cutoffs are a function of sample size  n . Certainly, 
we believe that any formal cutoff should be a function of sample size; however, in 
our experience these cutoffs often identify more data points than an analyst may 
wish to analyze. This is particularly true in small samples. We believe that the cutoffs 
recommended by Belsley, Kuh, and Welsch make sense for large samples, but when 
 n  is small, we prefer the diagnostic view discussed previously.      
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   6.5    A MEASURE OF MODEL PERFORMANCE 

 The diagnostics  D i , DFBETAS j,i  , and  DFFITS i   provide insight about the effect of 
observations on the estimated coeffi cients   β̂ j and fi tted values   ̂yi. They do not 
provide any information about overall  precision of estimation . Since it is fairly 
common practice to use the determinant of the covariance matrix as a convenient 
scalar measure of precision, called the  generalized variance , we could defi ne the 
generalized variance of   b̂  as

   
GV Varˆ ˆb b( ) = ( ) = ′( )−σ 2 1X X

  

 To express the role of the  i th observation on the precision of estimation, we could 
defi ne
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 Clearly if  COVRATIO i      >    1, the  i th observation improves the precision of estimation, 
while if  COVRATIO i      <    1, inclusion of the  i th point degrades precision. 
Computationally
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 Note that [1/(1    −     h ii  )] is the ratio of |( X ′   (   i   )  X  (   i   ) )  − 1 | to |( X ′ X )  − 1 |, so that a high leverage 
point will make  COVRATIO i   large. This is logical, since a high leverage point will 
improve the precision unless the point is an outlier in  y  space. If the  i th observation 
is an outlier,   S MSi( )

2 / Res will be much less than unity. 
 Cutoff values for  COVRATIO  are not easy to obtain. Belsley, Kuh, and Welsch 

[ 1980 ] suggest that if  COVRATIO i      >    1    +    3 p / n  or if  COVRATIO i      <    1    −    3 p / n , then the 
 i th point should be considered infl uential. The lower bound is only appropriate when 
 n     >    3 p . These cutoffs are only recommended for large samples.    

 Example 6.4   The Delivery Time Data 

    Column g of Table  6.1  contains the values of  COVRATIO i   for the soft drink delivery 
time data. The formal recommended cutoff for  COVRATIO i   is 1    ±    3 p / n     =    1    ±    3(3)/25, 
or 0.64 and 1.36. Note that the values of  COVRATIO  9  and  COVRATIO  22  exceed 
these limits, indicating that these points are infl uential. Since  COVRATIO  9     <    1, this 
observation degrades precision of estimation, while since  COVRATIO  22     >    1, this 
observation tends to improve the precision. However, point 22 barely exceeds its 
cutoff, so the infl uence of this observation, from a practical viewpoint, is fairly small. 
Point 9 is much more clearly infl uential.        ■   

predicted response by over four standard deviations. Once again, we have a clear 
signal that observation 9 is infl uential.        ■   
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   6.6    DETECTING GROUPS OF INFLUENTIAL OBSERVATIONS 

 We have focused on single - observation deletion diagnostics for infl uence and lever-
age. Now obviously, there could be situations where a  group  of points have high 
leverage or exert undue infl uence on the regression model. Very good discussions 
of this problem are in Belsley, Kuh, and Welsch [ 1980 ] and Rousseeuw and Leroy 
[ 1987 ]. 

 In principle, we can extend the single - observation diagnostics to the multiple 
observation case. In fact, there are several strategies for solving the multiple - outlier 
infl uential observation problem. For example, see Atkinson [ 1994 ], Hadi and 
Simonoff [ 1993 ], Hawkings, Bradu, and Kass  [1984] , Pena and Yohai [ 1995 ], and 
Rousseeuw and van Zomeren [ 1990 ]. To show how we could extend Cook ’ s distance 
measure to assess the simultaneous infl uence of a group of  m  observations, let  i  
denote the  m     ×    1 vector of indices specifying the points to be deleted, and defi ne
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 Obviously,  D   i   is a multiple - observation version of Cook ’ s distance measure. The 
interpretation of  D   i   is similar to the single - observation statistic. Large values of  D   i   
indicate that the set of  m  points are infl uential. Selection of the subset of points to 
include in  m  is not obvious, however, because in some data sets subsets of points 
are  jointly infl uential  but individual points are not. Furthermore, it is not practical 
to investigate all possible combinations of the  n  sample points taken  m     =    1, 2,    . . .    , 
 n  points at a time. 

 Sebert, Montgomery, and Roilier  [1998]  investigate the use of  cluster analysis  to 
fi nd the set of infl uential observations in regression. Cluster analysis is a multivariate 
technique for fi nding groups of similar observations. The procedure consists of defi n-
ing a measure of similarity between observations and then using a set of rules to 
classify the observations into groups based on their interobservation similarities. 
They use a single - linkage clustering procedure (see Johnson and Wichern [ 1992 ] 
and Everitt [ 1993 ]) applied to the least - squares residuals and fi tted values to cluster 
 n     −     m  observations into a  “ clean ”  group and a potentially infl uential group of  m  
observations. The potentially infl uential group of observations are then evaluated 
in subsets of size 1, 2,    . . .    ,  m  using the multiple - observation version of Cook ’ s 
distance measure. The authors report that this procedure is very effective in fi nding 
the subset of infl uential observations. There is some  “ swamping, ”  that is, identifying 
too many observations as potentially infl uential, but the use of Cook ’ s distance 
effi ciently eliminates the noninfl uential observations. In studying nine data sets from 
the literature, the authors report no incidents of  “ masking, ”  that is, failure to fi nd 
the correct subset of infl uential points. They also report successful results from an 
extensive performance study conducted by Monte Carlo simulation.  

   6.7    TREATMENT OF INFLUENTIAL OBSERVATIONS 

 Diagnostics for leverage and infl uence are an important part of the regression 
model - builder ’ s arsenal of tools. They are intended to offer the analyst insight about 
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the data and to signal which observations may deserve more scrutiny. How much 
effort should be devoted to study of these points? It probably depends on the 
number of infl uential points identifi ed, their actual impact on the model, and the 
importance of the model - building problem. If you have spent a year collecting 30 
observations, then it seems probable that a lot of follow - up analysis of suspect points 
can be justifi ed. This is particularly true if an unexpected result occurs because of a 
single infl uential observation. 

 Should infl uential observations ever be discarded? This question is analogous to 
the question regarding discarding outliers. As a general rule, if there is an error in 
recording a measured value or if the sample point is indeed invalid or not part of 
the population that was intended to be sampled, then discarding the observation is 
appropriate. However, if analysis reveals that an infl uential point is a valid observa-
tion, then there is no justifi cation for its removal. 

 A  “ compromise ”  between deleting an observation and retaining it is to consider 
using an estimation technique that is not impacted as severely by infl uential points 
as least squares. These  robust  estimation techniques essentially  downweight  obser-
vations in proportion to residual magnitude or infl uence, so that a highly infl uential 
observation will receive less weight than it would in a least - squares fi t. Robust 
regression methods are discussed in Section  15.1 .   

 PROBLEMS 

       6.1    Perform a thorough infl uence analysis of the solar thermal energy test data 
given in Table B.2. Discuss your results.   

    6.2    Perform a thorough infl uence analysis of the property valuation data given 
in Table B.4. Discuss your results.   

    6.3    Perform a thorough infl uence analysis of the Belle Ayr liquefaction runs given 
in Table B.5. Discuss your results.   

    6.4    Perform a thorough infl uence analysis of the tube - fl ow reactor data given in 
Table B.6. Discuss your results.   

    6.5    Perform a thorough infl uence analysis of the NFL team performance data 
given in Table B.1. Discuss your results.   

    6.6    Perform a thorough infl uence analysis of the oil extraction data given in Table 
B.7. Discuss your results.   

    6.7    Perform a thorough infl uence analysis of the clathrate formation data 
given in Table B.8. Perform any appropriate transformations. Discuss 
your results.   

    6.8    Perform a thorough infl uence analysis of the pressure drop data given in 
Table B.9. Perform any appropriate transformations. Discuss your results.   

    6.9    Perform a thorough infl uence analysis of kinematic viscosity data given in 
Table B.10. Perform any appropriate transformations. Discuss your results.   

    6.10    Formally show that
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    6.12    Table B.11 contains data on the quality of Pinot Noir wine. Fit a regression 
model using clarity, aroma, body, fl avor, and oakiness as the regressors. 
Investigate this model for infl uential observations and comment on your 
fi ndings.   

    6.13    Table B.12 contains data collected on heat treating of gears. Fit a regression 
model to these data using all of the regressors. Investigate this model for 
infl uential observations and comment on your fi ndings.   

    6.14    Table B.13 contains data on the thrust of a jet turbine engine. Fit a regression 
model to these data using all of the regressors. Investigate this model for 
infl uential observations and comment on your fi ndings.   

    6.15    Table B.14 contains data concerning the transient points of an electronic 
inverter. Fit a regression model to all 25 observations but only use  x  1     −     x  4  as 
the regressors. Investigate this model for infl uential observations and comment 
on your fi ndings.   

    6.16    Perform a thorough infl uential analysis of the air pollution and mortality data 
given in Table B.15. Perform any appropriate transformations. Discuss your 
results.   

    6.17    For each model perform a thorough infl uence analysis of the life expectancy 
data given in Table B.16. Perform any appropriate transformations. Discuss 
your results.   

    6.18    Consider the patient satisfaction data in Table B.17. Fit a regression model to 
the satisfaction response using age and security as the predictors. Perform an 
infl uence analysis of the date and comment on your fi ndings.   

    6.19    Consider the fuel consumption data in Table B.18. For the purposes of this 
exercise, ignore regressor  x  1 . Perform a thorough infl uence analysis of these 
data. What conclusions do you draw from this analysis?   

    6.20    Consider the wine quality of young red wines data in Table B.19. For the 
purposes of this exercise, ignore regressor  x  1 . Perform a thorough infl uence 
analysis of these data. What conclusions do you draw from this analysis?   

    6.21    Consider the methanol oxidation data in Table B.20. Perform a thorough 
infl uence analysis of these data. What conclusions do you draw from this 
analysis?       
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  CHAPTER 7 

POLYNOMIAL REGRESSION MODELS     

    7.1    INTRODUCTION 

 The linear regression model  y     =     X   β      +      ε   is a general model for fi tting any relationship 
that is linear in the unknown parameters   β  . This includes the important class of 
 polynomial regression models . For example, the second - order polynomial in one 
variable

   y x x= + + +β β β ε0 1 2
2  

  and the second - order polynomial in two variables

   y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 11 1
2

22 2
2

12 1 2  

  are linear regression models. 
 Polynomials are widely used in situations where the response is curvilinear, as 

even complex nonlinear relationships can be adequately modeled by polynomials 
over reasonably small ranges of the  x  ’ s. This chapter will survey several problems 
and issues associated with fi tting polynomials.  

   7.2    POLYNOMIAL MODELS IN ONE VARIABLE 

   7.2.1    Basic Principles 

 As an example of a  polynomial regression model  in one variable, consider

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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    y x x= + + +β β β ε0 1 2
2     (7.1)   

 This model is called a  second - order model  in one variable. It is also sometimes called 
a  quadratic model , since the expected value of  y  is

   E y x x( ) = + +β β β0 1 2
2  

  which describes a quadratic function. A typical example is shown in Figure  7.1 . We 
often call   β   1  the linear effect parameter and   β   2  the quadratic effect parameter. The 
parameter   β   0  is the mean of  y  when  x      =     0 if the range of the data includes  x      =     0. 
Otherwise   β   0  has no physical interpretation. 

 In general, the  k th - order polynomial model in one variable is

    y x x xk k= + + + + +β β β β ε0 1 2
2 �     (7.2)     

 If we set  x j       =      x j  ,  j     =    1, 2,    . . .    ,  k , then Eq.  (7.2)  becomes a multiple linear regression 
model in the  k  regressors  x  1 ,  x  2 ,    . . .     x k  . Thus, a polynomial model of order  k  may be 
fi tted using the techniques studied previously. 

 Polynomial models are useful in situations where the analyst knows that curvi-
linear effects are present in the true response function. They are also useful as 
approximating functions to unknown and possibly very complex nonlinear relation-
ships. In this sense, the polynomial model is just the Taylor series expansion of the 
unknown function. This type of application seems to occur most often in practice. 

 There are several important considerations that arise when fi tting a polynomial 
in one variable. Some of these are discussed below.

   1.     Order of the Model     It is important to keep the order of the model as  low as 
possible . When the response function appears to be curvilinear,  transforma-
tions  should be tried to keep the model fi rst order. The methods discussed in 
Chapter  5  are useful in this regard. If this fails, a second - order polynomial 

     Figure 7.1     An example of a quadratic polynomial.  
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should be tried. As a general rule the use of high - order polynomials ( k     >    2) 
should be avoided unless they can be justifi ed for reasons outside the data. A 
low - order model in a transformed variable is almost always preferable to a 
high - order model in the original metric. Arbitrary fi tting of high - order poly-
nomials is a serious abuse of regression analysis. One should always maintain 
a sense of  parsimony , that is, use the simplest possible model that is consistent 
with the data and knowledge of the problem environment. Remember that 
in an extreme case it is always possible to pass a polynomial of order  n     −    1 
through  n  points so that a polynomial of suffi ciently high degree can always 
be found that provides a  “ good ”  fi t to the data. In most cases, this would do 
nothing to enhance understanding of the unknown function, nor will it likely 
be a good predictor.  

  2.     Model - Building Strategy     Various strategies for choosing the order of an 
approximating polynomial have been suggested. One approach is to succes-
sively fi t models of increasing order until the  t  test for the highest order term 
is nonsignifi cant. An alternate procedure is to appropriately fi t the highest 
order model and then delete terms one at a time, starting with the highest 
order, until the highest order remaining term has a signifi cant  t  statistic. These 
two procedures are called  forward selection  and  backward elimination , respec-
tively. They do not necessarily lead to the same model. In light of the comment 
in 1 above, these procedures should be used carefully. In most situations we 
should restrict our attention to fi rst -  and second - order polynomials.  

  3.     Extrapolation     Extrapolation with polynomial models can be extremely haz-
ardous. For example, consider the second - order model in Figure  7.2 . If we 
extrapolate beyond the range of the original data, the predicted response turns 
downward. This may be at odds with the true behavior of the system. In 
general, polynomial models may turn in unanticipated and inappropriate 
directions, both in interpolation and in extrapolation.    

     Figure 7.2     Danger of extrapolation.  
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  4.     Ill - Conditioning I     As the order of the polynomial increases, the  X ′ X  matrix 
becomes  ill - conditioned . This means that the matrix inversion calculations will 
be inaccurate, and considerable error may be introduced into the parameter 
estimates. For example, see Forsythe [ 1957 ].  Nonessential ill - conditioning  
caused by the arbitrary choice of origin can be removed by fi rst  centering  the 
 regressor variables  (i.e., correcting  x  for its average   x), but as Bradley and 
Srivastava  [1979]  point out, even centering the data can still result in large 
sample correlations between certain regression coeffcients. One method for 
dealing with this problem will be discussed in Section  7.5 .  

  5.     Ill - Conditioning II     If the values of  x  are limited to a narrow range, there can 
be signifi cant ill - conditioning or multicollinearity in the columns of the  X  
matrix. For example, if  x  varies between 1 and 2,  x 2   varies between 1 and 4, 
which could create strong multicollinearity between  x  and  x  2 .  

  6.     Hierarchy     The regression model

   y x x x= + + + +β β β β ε0 1 2
2

3
3  

  is said to be  hierarchical  because it contains all terms of order 3 and lower. By 
contrast, the model

   y x x= + + +β β β ε0 1 3
3  

  is not hierarchical. Peixoto [ 1987, 1990 ] points out that only hierarchical 
models are invariant under linear transformation and suggests that all poly-
nomial models should have this property (the phrase  “ a hierarchically well -
 formulated model ”  is frequently used). We have mixed feelings about this as 
a hard - and - fast rule. It is certainly attractive to have the model form preserved 
following a linear transformation (such as fi tting the model in coded variables 
and then converting to a model in the natural variables), but it is purely a 
mathematical nicety. There are many mechanistic models that are not hierar-
chical; for example, Newton ’ s law of gravity is an inverse square law, and the 
magnetic dipole law is an inverse cube law. Furthermore, there are many situ-
ations in using a polynomial regression model to represent the results of a 
designed experiment where a model such as

   y x x x= + + +β β β ε0 1 1 12 1 2  

  would be supported by the data, where the cross - product term represents a 
two - factor interaction. Now a hierarchical model would require the inclusion 
of the other main effect  x  2 . However, this other term could really be entirely 
unnecessary from a statistical signifi cance perspective. It may be perfectly 
logical from the viewpoint of the underlying science or engineering to have 
an interaction in the model without one (or even in some cases either) of the 
individual main effects. This occurs frequently when some of the variables 
involved in the interaction are categorical. The best advice is to fi t a model 
that has all terms signifi cant and to use discipline knowledge rather than an 
arbitrary rule as an additional guide in model formulation. Generally, a hier-
archical model is usually easier to explain to a  “ customer ”  that is not familiar 
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 Example 7.1   The Hardwood Data 

    Table  7.1  presents data concerning the strength of kraft paper and the percentage 
of hardwood in the batch of pulp from which the paper was produced. A scatter 
diagram of these data is shown in Figure  7.3 . This display and knowledge of the 
production process suggests that a quadratic model may adequately describe 
the relationship between tensile strength and hardwood concentration. Following 
the suggestion that centering the data may remove nonessential ill - conditioning, we 
will fi t the model

   y x x x x= + −( ) + −( ) +β β β ε0 1 2
2       

 Since fi tting this model is equivalent to fi tting a two - variable regression model, 
we can use the general approach in Chapter  3 . The fi tted model is

   ˆ . . . . .y x x= + −( ) − −( )45 295 2 546 7 2632 0 635 7 2632 2   

 The analysis of variance for this model is shown in Table  7.2 . The observed value of 
 F  0      =     79.434 and the  P  value is small, so the hypothesis  H  0 :   β   1      =       β   2     =    0 is rejected. We 

with statistical model - building, but a nonhierarchical model may produce 
better predictions of new data. 

 We now illustrate some of the analyses typically associated with fi tting a 
polynomial model in one variable.    

     

  TABLE 7.1    Hardwood Concentration in Pulp and Tensile 
Strength of Kraft Paper, Example  7.1  

   Hardwood 
Concentration,  x i   (%)  

   Tensile Strength, (psi) 
 y , (psi)  

  1    6.3  
  1.5    11.1  
  2    20.0  
  3    24.0  
  4    26.1  
  4.5    30.0  
  5    33.8  
  5.5    34.0  
  6    38.1  
  6.5    39.9  
  7    42.0  
  8    46.1  
  9    53.1  

  10    52.0  
  11    52.5  
  12    48.0  
  13    42.8  
  14    27.8  
  15    21.9  
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  TABLE 7.2    Analysis of Variance for the Qnadratic Model for Example  7.1  

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    3104.247    2    1552.123    79.434    4.91    ×    10  − 9   
  Residual    312.638    16    19.540          
  Total    3416.885    18              

     Figure 7.3     Scatterplot of data, Example  7.1 .  
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conclude that either the linear or the quadratic term (or both) contribute signifi -
cantly to the model. The other summary statistics for this model are  R  2      =     0.9085,

  se ˆ .β1 0 254( ) = , and   se ˆ .β2 0 062( ) = .   
 The plot of the residuals versus   ̂yi  is shown in Figure  7.4 . This plot does not reveal 

any serious model inadequacy. The normal probability plot of the residuals, shown 
in Figure  7.5 , is mildly disturbing, indicating that the error distribution has heavier 
tails than the normal. However, at this point we do not seriously question the nor-
mality assumption.   

 Now suppose that we wish to investigate the contribution of the quadratic term 
to the model. That is, we wish to test

   H H0 2 1 20 0: , :β β= ≠   

 We will test these hypotheses using the extra - sum - of - squares method. If   β   2     =    0, then 
the reduced model is the straight line   y x x= + −( ) +β β ε0 1 . The least - squares fi t is

   ˆ . . .y x= + −( )34 184 1 771 7 2632   
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     Figure 7.4     Plot of residuals  e i  , versus 
fi tted values   ̂yi, Example  7.1 .  
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   7.2.2    Piecewise Polynomial Fitting (Splines) 

 Sometimes we fi nd that a low - order polynomial provides a poor fi t to the data, and 
increasing the order of the polynomial modestly does not substantially improve the 
situation. Symptoms of this are the failure of the residual sum of squares to stabilize 
or residual plots that exhibit remaining unexplained structure. This problem may 
occur when the function behaves differently in different parts of the range of  x.  
Occasionally transformations on  x  and/or  y  eliminate this problem. The usual 
approach, however, is to divide the range of  x  into segments and fi t an appropriate 

 The summary statistics for this model are  MS  Res     =    139.615,  R  2      =     0.3054,   se ˆ .β1 0 648( ) = , 
and  SS  R (  β   1 |  β   0 )     =     1043.427. We note that deleting the quadratic term has 
substantially affected  R  2  , MS  Res , and   se β̂1( ). These summary statistics are much
worse than they were for the quadratic model. The extra sum of squares for testing 
 H  0 :   β   2      =     0 is

   

SS SS SSR R Rβ β β β β β β β2 1 0 1 2 0 1 0

3104 247 1043 427

2060

, ,

. .

( ) = ( ) − ( )
= −
= ..820

 

  with one degree of freedom. The  F  statistic is

   F
SS

MS
0

2 1 0 1 2060 820 1
19 540

105 47= ( ) = =R

Res

β β β, .
.

.  

  and since  F  0.01,1,16     =    8.53. we conclude that   β   2     ≠    0. Thus, the quadratic term contrib-
utes signifi cantly to the model.        ■   

     Figure 7.5     Normal probability plot of the 
residuals, Example  7.1 .  
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curve in each segment.  Spline functions  offer a useful way to perform this type of 
 piecewise polynomial fi tting . 

 Splines are piecewise polynomials of order  k.  The joint points of the pieces are 
usually called  knots . Generally we require the function values and the fi rst  k     −    1 
derivatives to agree at the knots, so that the spline is a continuous function with 
 k     −    1 continuous derivatives. The  cubic spline  ( k     =    3) is usually adequate for most 
practical problems. 

 A cubic spline with  h  knots,  t  1     <     t  2     <     ·     ·     ·     <     t   h  , with continuous fi rst and second 
derivatives can be written as

    E y S x x x tj
j

j

i i

i

h

( ) = ( ) = + −( )
=

+
=

∑ ∑β β0

0

3
3

1

    (7.3)  

  where

   x t
x t x t

x t
i

i i

i

−( ) =
−( ) − >

− ≤
⎧
⎨
⎩+

if 

if 

0

0 0
  

 We assume that the positions of the knots are known. If the knot positions are 
parameters to be estimated, the resulting problem is a nonlinear regression problem. 
When the knot positions are known, however, fi tting Eq.  (7.3)  can be accomplished 
by a straightforward application of linear least squares. 

 Deciding on the number and position of the knots and the order of the polyno-
mial in each segment is not simple. Wold [ 1974 ] suggests that there should be as few 
knots as possible, with at least four or fi ve data points per segment. Considerable 
caution should be exercised here because the great fl exibility of spline functions 
makes it very easy to  “ overfi t ”  the data. Wold also suggests that there should be no 
more than one extreme point (maximum or minimum) and one point of infl ection 
per segment. Insofar as possible, the extreme points should be centered in the 
segment and the points of infl ection should be near the knots. When prior informa-
tion about the data - generating process is available, this can sometimes aid in knot 
positioning. 

 The basic cubic spline model  (7.3)  can be easily modifi ed to fi t polynomials of 
different order in each segment and to impose different continuity restrictions at 
the knots. If all  h     +    1 polynomial pieces are of order 3, then a cubic spline model 
with no continuity restrictions is

    E y S x x x tj
j

j

ij i
j

ji

h

( ) = ( ) = + −( )
=

+
==

∑ ∑∑β β0

0

3

0

3

1

    (7.4)  

  where   x t−( )+
0 equals 1 if  x     >     t  and 0 if  x     ≤     t . Thus, if a term   βij i

jx t−( )+ is in the model, 
this forces a discontinuity at  t i   in the  j th derivative of  S ( x ). If this term is absent, the 
 j th derivative of  S ( x ) is continuous at  t i   The fewer continuity restrictions required, 
the better is the fi t because more parameters are in the model, while the more 
continuity restrictions required, the worse is the fi t but the smoother the fi nal curve 
will be. Determining both the order of the polynomial segments and the continuity 
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restrictions that do not substantially degrade the fi t can be done using standard 
multiple regression hypothesis - testing methods. 

 As an illustration consider a cubic spline with a single knot at  t  and no continuity 
restrictions; for example,

   
E y S x x x x x t

x t x

( ) = ( ) = + + + + −( )
+ −( ) + −

+

+

β β β β β

β β
00 01 02

2
03

3
10

0

11
1

12 tt x t( ) + −( )+ +
2

13
3β

  

 Note that  S ( x ),  S  ′ ( x ), and  S  ″ ( x ) are not necessarily continuous at  t  because of the 
presence of the terms involving   β   10 ,   β   11 , and   β   12  in the model. To determine whether 
imposing continuity restrictions reduces the quality of the fi t, test the hypotheses 
 H  0 :   β   10     =    0 [continuity of  S ( x )] , H  0 :   β   10      =       β   11     =    0 [continuity of  S ( x ) and  S  ′ ( x )], and 
 H  0 :   β   10     =      β   11     =      β   12     =    0 [continuity of  S ( x ),  S  ′ ( x ), and  S  ″ ( x )]. To determine whether the 
cubic spline fi ts the data better than a single cubic polynomial over the range of  x,  
simply test  H  0 :   β   10      =       β   11     =      β   12     =      β   13     =    0. 

 An excellent description of this approach to fi tting splines is in Smith [ 1979 ]. A 
potential disadvantage of this method is that the  X ′ X  matrix becomes ill - conditioned 
if there are a large number of knots. This problem can be overcome by using a dif-
ferent representation of the spline called the  cubic   B   - spline . The cubic  B  - splines are 
defi ned in terms of divided differences

    B x
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  and

    E y S x B xi i

i

h

( ) = ( ) = ( )
=

+

∑γ
1

4

    (7.6)  

  where   γ  i  ,  i     =    1, 2,    . . .    ,  h     +    4, are parameters to be estimated. In Eq.  (7.5)  there are 
eight additional knots,  t   − 3     <     t   − 2     <     t   − 1     <     t  0  and  t  h + 1     <     t  h + 2     <     t  h + 3     <     t  h + 4 . We usually take 
 t  0     =     x  min  and  t  h + 1     =     x  min ; the other knots are arbitrary. For further reading on splines, 
see Buse and Lim [ 1977 ], Curry and Schoenberg [ 1966 ], Eubank [ 1988 ], Gallant and 
Fuller [ 1973 ], Hayes [ 1970, 1974 ], Poirier [ 1973, 1975 ], and Wold [ 1974 ]. 

 Example 7.2   Voltage Drop Data 

    The battery voltage drop in a guided missile motor observed over the time of missile 
fl ight is shown in Table  7.3 . The scatterplot in Figure  7.6  suggests that voltage drop 
behaves differently in different segments of time, and so we will model the data with 
a cubic spline using two knots at  t  1     =    6.5 and  t  2     =    13 seconds after launch, respec-
tively. This placement of knots roughly agrees with course changes by the missile 
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  TABLE 7.3    Voltage Drop Data 

   Observation,  i   
   Time,  x  i  

(seconds)  
   Voltage 
Drop,  y i       Observation,  i   

   Time,  x  i  
(seconds)  

   Voltage 
Drop,  y i    

  1    0.0    8.33    21    10.0    14.48  
  2    05    823    22    105    14.92  
  3    1.0    7.17    23    11.0    14.37  
  4    1.5    7.14    24    11.5    14.63  
  5    2.0    7.31    25    12.0    15.18  
  6    2.5    7.60    26    12.5    14.51  
  7    3.0    7.94    27    13.0    14.34  
  8    3.5    8.30    28    13.5    13.81  
  9    4.0    8.76    29    14.0    13.79  

  10    4.5    8.71    30    14.5    13.05  
  11    5.0    9.71    31    15.0    13.04  
  12    5.5    10.26    32    15.5    12.60  
  13    6.0    10.91    33    16.0    12.05  
  14    6.5    11.67    34    16.5    11.15  
  15    7.0    11.76    35    17.0    11.15  
  16    7.5    12.81    36    17.5    10.14  
  17    8.0    13.30    37    18.0    10.08  
  18    8.5    13.88    38    18.5    9.78  
  19    9.0    14.59    39    19.0    9.80  
  20    95    14.05    40    19.5    9.95  
              41    20.0    9.51  

     Figure 7.6     Scatterplot of voltage drop data.  
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(with associated changes in power requirements), which are known from trajectory 
data. The voltage drop model is intended for use in a digital - analog simulation 
model of the missile.     

 The cubic spline model is

   y x x x x x= + + + + −( ) + −( ) ++ +β β β β β β ε00 01 02
2

03
3

1
3

2
36 5 13.  
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  TABLE 7.4    Summary Statistics for the Cubic Spline Model of the Voltage Drop Data 

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    260.1784    5    52.0357    725.52     < 0.0001  
  Residual    2.5102    35    0.0717          
  Total    262.6886    40              

    Parameter     Estimate     Standard Error      t  Value for  H  0 :   β      =    0      P  Value  

    β   00     8.4657    0.2005    42.22     < 0.0001  
    β   01      − 1.4531    0.1816     − 8.00     < 0.0001  
    β   02     0.4899    0.0430    11.39     < 0.0001  
    β   03      − 0.0295    0.0028     − 10.54     < 0.0001  
    β   1     0.0247    0.0040    6.18     < 0.0001  
    β   2     0.0271    0.0036    7.53     < 0.0001  

   R  2     =    0.9904  

  and the least - squares fi t is

   ˆ . . . . . . .y x x x x= − + − + −( ) ++8 4657 1 4531 0 4899 0 0295 0 0247 6 5 0 02712 3 3 xx −( )+13 3   

 The model summary statistics are displayed in Table  7.4 . A plot of the residuals 
versus   ̂y is shown in Figure  7.7 . This plot (and other residual plots) does not reveal 
any serious departures from assumptions, so we conclude that the cubic spline model 
is an adequate fi t to the voltage drop data.        ■       

     Figure 7.7     Plot of residuals  e i  , versus fi tted 
values   ŷi  for the cubic spline model.  
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     Figure 7.8     Plot of residuals  e i  , versus 
fi tted values   ŷi  for the cubic polynomial 
model.  
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 We may easily compare the cubic spline model fi t from Example  7.2  with a 
sample cubic polynomial over the entire time of missile fl ight; for example,

   ˆ . . . .y x x x= + + −6 4910 0 7032 0 0340 0 00332 3  

    This is a simpler model containing fewer parameters and would be preferable to 
the cubic spline model if it provided a satisfactory fi t. The residuals from this cubic 
polynomial are plotted versus   ̂y in Figure  7.8 . This plot exhibits strong indication of 
curvature, and on the basis of this remaining unexplained structure we conclude 
that the simple cubic polynomial is an inadequate model for the voltage drop data. 

 We may also investigate whether the cubic spline model improves the fi t by 
testing the hypothesis  H  0 :   β   1     =      β   2     =    0 using the extra - sum - of - squares method. The 
regression sum of squares for the cubic polynomial is

   SSR β β β β01 02 03 00 230 4444, , .( ) =     

 with three degrees of freedom. The extra sum of squares for testing  H  0 :   β   1     =      β   2     
=    0 is

   

SS SS SSR R Rβ β β β β β β β β β β β β1 2 00 01 02 03 01 02 03 2 2 00 01, , , , , , , ,( ) = ( ) − ,, ,

. .

.

β β β02 03 00

260 1784 230 4444

29 7340

( )
= −
=

 

  with two degrees of freedom. Since

   F
SS

MS
0

1 2 00 01 02 03 2 29 7340 2
0 0717

207 35= ( ) = =R

Res

β β β β β β, , , , .
.

.  

  which would be referred to the  F  2, 35  distribution, we reject the hypothesis that 
 H  0 :   β   1     =      β   2     =    0. We conclude that the cubic spline model provides a better fi t.    

 Example 7.3   Piecewise Linear Regression 

    An important special case of practical interest involves fi tting piecewise linear 
regression models. This can be treated easily using  linear splines . For example, 
suppose that there is a single knot at  t  and that there could be both a slope change 
and a discontinuity at the knot. The resulting linear spline model is

   E y S x x x t x t( ) = ( ) = + + −( ) + −( )+ +β β β β00 01 10
0

11
1   

 Now if  x     ≤     t , the straight - line model is

   E y x( ) = +β β00 01  

  and if  x     >     t , the model is

   
E y x x t

t x

( ) = + + ( ) + −( )
= + −( ) + +( )

β β β β
β β β β β
00 01 10 11

00 10 11 01 11

1
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 That is, if  x     ≤     t , the model has intercept   β   00  and slope   β   01 , while if  x     >     t , the intercept 
is   β   00     +      β   10     −      β   11  t  and the slope is   β   01     +      β   11 . The regression function is shown in Figure 
 7.9  a . Note that the parameter   β   10  represents the difference in mean response at the 
knot  t.    

 A smoother function would result if we required the regression function to be 
continuous at the knot. This is easily accomplished by deleting the term   β10

0x t−( )+ 
from the original model, giving

   E y S x x x t( ) = ( ) = + + −( )+β β β00 01 11
1   

 Now if  x     ≤     t , the model is

   E y x( ) = +β β00 01  

  and if  x     >     t , the model is

   
E y x x t

t x

( ) = + + −( )
= −( ) + +( )

β β β
β β β β
00 01 11

00 11 01 11

  

 The two regression functions are shown in Figure  7.9  b .        ■   

     Figure 7.9     Piecewise linear regression: ( a ) discontinuity at the knot; ( b ) continuous piece-
wise linear regression model.  
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   7.2.3    Polynomial and Trigonometric Terms 

 It is sometimes useful to consider models that combine both polynomial and trigo-
nometric terms as alternatives to models that contain polynomial terms only. In 
particular, if the scatter diagram indicates that there may be some periodicity or 
cyclic behavior in the data, adding trigonometric terms to the model may be very 
benefi cial, in that a model with fewer terms may result than if only polynomial terms 
were employed. This benefi t has been noted by both Graybill [ 1976 ] and Eubank 
and Speckman [ 1990 ]. 

 The model for a single regressor  x  is

   y x jx jxi
i

i

d

j j

j

r

= + + ( ) + ( )[ ] +
= =
∑ ∑β β δ γ ε0

1 1

sin cos   
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 If the regressor  x  is equally spaced, then the pairs of terms sin(  jx ) and cos(  jx ) are 
orthogonal. Even without exactly equal spacing, the correlation between these terms 
will usually be quite small. 

 Eubank and Speckman [ 1990 ] use the voltage drop data of Example  7.2  to illus-
trate fi tting a polynomial - trigonometric regression model. They fi rst rescale the 
regressor  x  (time) so that all of the observations are in the interval (0, 2  π  ) and fi t 
the model above with  d     =    2 and  r     =    1 so that the model is quadratic in time and has 
a pair of sine - cosine terms. Thus, their model has only four terms, whereas our 
spline regression model had fi ve. Eubank and Speckman obtain  R  2     =    0.9895 and 
 MS  Res     =    0.0767, results that are very similar to those found for the spline model 
(refer to Table  7.4 ). Since the voltage drop data exhibited some indication of peri-
odicity in the scatterplot (Figure  7.6 ), the polynomial - trigonometric regression 
model is certainly a good alternative to the spline model. It has one fewer term 
(always a desirable property) but a slightly larger residual mean square. Working 
with a rescaled version of the regressor variable might also be considered a potential 
disadvantage by some users.   

   7.3    NONPARAMETRIC REGRESSION 

 Closely related to piecewise polynomial regression is  nonparametric regression . The 
basic idea of nonparametric regression is to develop a  model - free  basis for predict-
ing the response over the range of the data. The early approaches to nonparametric 
regression borrow heavily from nonparametric density estimation. Most of the 
nonparametric regression literature focuses on a single regressor; however, many of 
the basic ideas extend to more than one. 

 A fundamental insight to nonparametric regression is the nature of the predicted 
value. Consider standard ordinary least squares. Recall
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 As a result,

   ŷ h yi ij j

j

n

=
=

∑
1

  

 In other words, the predicted value for the  i th response is simply a linear combina-
tion of the original data. 
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   7.3.1    Kernel Regression 

 One of the fi rst alternative nonparametric approaches is the  kernel  smoother, which 
uses a weighted average of the data. Let   �yi be the kernel smoother estimate of the 
 i th response. For a kernel smoother,

   �y w yi ij j

j

n

=
=

∑
1

 

  where   ∑ ==j
n

ij1 1w . As a result,

   y Sy=  

  where  S     =    [ w ij  ] is the  “ smoothing ”  matrix. Typically, the weights are chosen such that 
 w ij      ≅    0 for all  y i   ’ s outside of a defi ned  “ neighborhood ”  of the specifi c location of 
interest. These kernel smoothers use a bandwidth,  b , to defi ne this neighborhood of 
interest. A large value for  b  results in more of the data being used to predict the 
response at the specifi c location. Consequently, the resulting plot of predicted values 
becomes much smoother as  b  increases. Conversely, as  b  decreases, less of the data 
are used to generate the prediction, and the resulting plot looks more  “ wiggly ”  or 
bumpy. 

 This approach is called a kernel smoother because it uses a kernel function, 
 K , to specify the weights. Typically, these kernel functions have the following 
properties:

    •       K ( t )    ≥    0 for all  t   

   •        ∫ ( ) =
−∞

∞

K t dt 1   

   •       K ( −  t )    =     K ( t ) (symmetry)    

 These are also the properties of a symmetric probability density function, which 
emphasizes the relationship back to nonparametric density estimation. The specifi c 
weights for the kernel smoother are given by

   w
K

x x
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K
x x
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ij

i j
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 Table  7.5  summarizes the kernels used in S - PLUS. The properties of the kernel 
smoother depend much more on the choice of the bandwidth than the actual kernel 
function.  

   7.3.2    Locally Weighted Regression (Loess) 

 Another nonparametric alternative is  locally weighted regression , often called  loess . 
Like kernel regression, loess uses the data from a neighborhood around the specifi c 
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location. Typically, the neighborhood is defi ned as the  span , which is the fraction of 
the total points used to form neighborhoods. A span of 0.5 indicates that the closest 
half of the total data points is used as the neighborhood. The loess procedure then 
uses the points in the neighborhood to generate a weighted least - squares estimate 
of the specifi c response. The weighted least - squares procedure uses a low - order 
polynomial, usually simple linear regression or a quadratic regression model. The 
weights for the weighted least - squares portion of the estimation are based on the 
distance of the points used in the estimation from the specifi c location of interest. 
Most software packages use the  tri - cube  weighting function as its default. Let  x  0  be 
the specifi c location of interest, and let  Δ ( x  0 ) be the distance the farthest point in 
the neighborhood lies from the specifi c location of interest. The tri - cube weight 
function is

   W
x x

x
j0

0

−
( )

⎡
⎣⎢

⎤
⎦⎥Δ

 

  where

   W t
t t( ) = −( ) ≤ <⎧

⎨
⎩

1 0 1

0

3 3
for

elsewhere
  

 We can summarize the loess estimation procedure by

   y Sy=  

  where  S  is the smoothing matrix created by the locally weighted regression. 
 The concept of sum of squared residuals carries over to nonparametric regression 

directly. In particular,

  TABLE 7.5    Snmmary of the Kernel Functions Used in  S  -  PLUS  
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 Asymptotically, these smoothing procedures are unbiased. As a result, the asymp-
totic expected value for  SS  Res  is
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 It is important to note that  S  is a square  n     ×     n  matrix. As a result, trace[ S  ′ ]    =    
trace[ S ]; thus,

   E SS nRes trace trace( ) = − ( ) + ′( )[ ]σ 2 2 S S S   

 In some sense, [2 trace( S )    −    trace( S ′ S )] represents the degrees of freedom associ-
ated with the total model. In some packages, [2 trace( S )    −    trace( S ′ S )] is called the 
equivalent number of parameters and represents a measure of the complexity of 
the estimation procedure. A common estimate of   σ   2  is
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 Finally, we can defi ne a version of  R  2  by

   R
SS SS

SS
2 =

−T Res

T

 

  whose interpretation is the same as before in ordinary least squares. All of this 
extends naturally to the multiple regression case, and S - PLUS has this capability.    

 Example 7.4   Applying Loess Regression to the Windmill Data 

    In Example  5.2 , we discussed the data collected by an engineer who investigated 
the relationship of wind velocity and the DC electrical output for a windmill. Table 
 5.5  summarized these data. Ultimately in this example, we developed a simple linear 
regression model involving the inverse of the wind velocity. This model provided a 
nice basis for modeling the fact that there is a true upper bound to the DC output 
the windmill can generate. 

 An alternative approach to this example uses loess regression. The appropriate 
SAS code to analyze the windmill data is: 
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  proc loess; 
 model output  =  velocity / degree  =  2 dfmethod  =  exact 
residual;  

 Figure  7.10  gives the loess fi t to the data using SAS ’ s default settings, and Table  7.6  
summarizes the resulting SAS report. Figure  7.11 , which gives the residuals versus 
fi tted values, shows no real problems. Figure  7.12  gives the normal probability plot, 
which, although not perfect, does not indicate any serious problems.     

     Figure 7.10     The loess fi t to the windmill 
data.  
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     Figure 7.11     The residuals versus fi tted 
values for the loess fi t to the windmill data.  
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  TABLE 7.6     SAS  Output for Loess Fit to Windmill Data 

   The LOESS Procedure   
   Selected Smoothing Parameter: 0.78   

   Dependent Variable: output   

   Fit Summary   
   Fit Method      kd Tree   
   Blending      Linear   
   Number of Observations      25   
   Number of Fitting Points      10   
   kd Tree Bucket Size      3   
   Degree of Local Polynomials      2   
   Smoothing Parameter      0.78000   
   Points in Local Neighborhood      19   
   Residual Sum of Squares      0.22112   
   Trace[L]      4.56199   
   GCV      0.00052936   
   AICC       − 3.12460   
   AICC1       − 77.85034   
   Deltal      20.03324   
   Delta2      19.70218   
   Equivalent Number of Parameters      4.15723   
   Lookup Degrees of Freedom      20.36986   
   Residual Standard Error      0.10506   
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     Figure 7.12     The normal probability plot of the residuals for the loess fi t to the windmill 
data.  
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 The loess fi t to the data is quite good and compares favorably with the fi t we 
generated earlier using ordinary least squares and the inverse of the wind 
velocity. 

 The report indicates an  R 2   of 0.98, which is the same as our fi nal simple linear 
regression model. Although the two  R 2   values are not directly comparable, they both 
indicate a very good fi t. The loess  MS  Res  is 0.1017, compared to a value of 0.0089 for 
the simple linear regression model. Clearly, both models are competitive with one 
another. Interestingly, the loess fi t requires an equivalent number of parameters of 
4.4, which is somewhere between a cubic and quartic model. On the other hand, the 
simple linear model using the inverse of the wind velocity requires only two param-
eters; hence, it is a much simpler model. Ultimately, we prefer the simple linear 
regression model since it is simpler and corresponds to known engineering 
theory. The loess model, on the other hand, is more complex and somewhat of a 
 “ black box. ”       ■  

 The R code to perform the analysis of these data is: 

  windmill  <  −  read.table( " windmill_loess.txt " , header = TRUE, 
sep =  "   " ) wind.model  <  −  loess(output  ∼  velocity, 
data = windmill) 
 summary(wind.model) 
 yhat  <  -  predict(wind.model) 
 plot(windmill$velocity,yhat)   

   7.3.3    Final Cautions 

 Parametric and nonparametric regression analyses each have their advantages and 
disadvantages. Often, parametric models are guided by appropriate subject area 
theory. Nonparametric models almost always refl ect pure empiricism. 
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 One should always prefer a simple parametric model when it provides a reason-
able and satisfactory fi t to the data. The complexity issue is not trivial. Simple models 
provide an easy and convenient basis for prediction. In addition, the model terms 
often have important interpretations. There are situations, like the windmill data, 
where transformations of either the response or the regressor are required to 
provide an appropriate fi t to the data. Again, one should prefer the parametric 
model, especially when subject area theory supports the transformation used. 

 On the other hand, there are many situations where no simple parametric model 
yields an adequate or satisfactory fi t to the data, where there is little or no subject 
area theory to guide the analyst, and where no simple transformation appears 
appropriate. In such cases, nonparametric regression makes a great deal of sense. 
One is willing to accept the relative complexity and the black - box nature of the 
estimation in order to give an adequate fi t to the data.   

   7.4    POLYNOMIAL MODELS IN TWO OR MORE VARIABLES 

 Fitting a polynomial regression model in two or more regressor variables is a 
straightforward extension of the approach in Section  7.2.1 . For example, a second -
 order polynomial model in two variables would be

    y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 11 1
2

22 2
2

12 1 2     (7.7)   

 Note that this model contains two linear effect parameters   β   1  and   β   2  two quadratic 
effect parameters   β   11  and   β   21  and an interaction effect parameter   β   12 . 

 Fitting a second - order model such as Eq.  (7.7)  has received considerable atten-
tion, both from researchers and from practitioners. We usually call the regression 
function

   E y x x x x x x( ) = + + + + +β β β β β β0 1 1 2 2 11 1
2

22 2
2

12 1 2  

  a  response surface . We may represent the two - dimensional response surface graphi-
cally by drawing the  x  1  and  x  2  axes in the plane of the paper and visualizing the  E (  y ) 
axis perpendicular to the plane of the paper. Plotting contours of constant expected 
response  E ( y ) produces the response surface. For example, refer to Figure  3.3 , which 
shows the response surface

   E y x x x x x x( ) = + + − − +800 10 7 8 5 5 41 2 1
2

2
2

1 2.   

 Note that this response surface is a hill, containing a point of maximum response. 
Other possibilities include a valley containing a point of minimum response and a 
saddle system.  Response surface methodology  (RSM) is widely applied in industry 
for modeling the output response(s) of a process in terms of the important control-
lable variables and then fi nding the operating conditions that optimize the response. 
For a detailed treatment of response surface methods see Box and Draper [ 1987 ], 
Box, Hunter, and Hunter [ 1978 ], Khuri and Cornell [ 1996 ], Montgomery [ 2009 ], and 
Myers, Montgomery and Anderson Cook [ 2009 ]. 

 We now illustrate fi tting a second - order response surface in two variables. Panel 
A of Table  7.7  presents data from an experiment that was performed to study the 
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effect of two variables, reaction temperature ( T  ) and reactant concentration ( C ), 
on the percent conversion of a chemical process ( y ). The process engineers had used 
an approach to improving this process based on  designed experiments . The fi rst 
experiment was a screening experiment involving several factors that isolated tem-
perature and concentration as the two most important variables. Because the experi-
menters thought that the process was operating in the vicinity of the optimum, they 
elected to fi t a quadratic model relating yield to temperature and concentration.   

 Panel A of Table  7.7  shows the levels used for  T  and  C  in the natural units of 
measurements. Panel B shows the levels in terms of coded variables  x  1  and  x  2 . 

 Figure  7.13  shows the experimental design in Table  7.5  graphically. This design is 
called a  central composite design , and it is widely used for fi tting a second - order 

  TABLE 7.7    Central Composite Design for Chemical Process Example 

   Observation     Run Order  

   A     B  

   Temperature ( ° C)  T      Cone. (%)  C       x  1       x  2       y   

  1    4    200    15     − 1     − 1    43  
  2    12    250    15    1     − 1    78  
  3    11    200    25     − 1    1    69  
  4    5    250    25    1    1    73  
  5    6    189.65    20     − 1.414    0    48  
  6    7    260.35    20    1.414    0    76  
  7    1    225    12.93    0     − 1.414    65  
  8    3    225    27.07    0    1.414    74  
  9    8    225    20    0    0    76  

  10    10    225    20    0    0    79  
  11    9    225    20    0    0    83  
  12    2    225    20    0    0    81  

     Figure 7.13     Central composite design for the chemical process example.  
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response surface. Notice that the design consists of four runs at the comers of a 
square plus four runs at the center of this square plus four axial runs, In terms of 
the coded variables the comers of the square are ( x  1 ,  x  2 )    =    ( − 1,  − 1), (1,  − 1), ( − 1, 1), 
(1, 1); the center points are at ( x  1 ,  x  2 )    =    (0, 0); and the axial runs are at ( x  1 ,  x  2 )   
 =    ( − 1.414, 0), (1.414, 0), (0,  − 1.414), (0, 1.414). 

 We fi t the second - order model

   y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 11 1
2

22 2
2

12 1 2     

 using the coded variables, as that is the standard practice in RSM work. The  X  matrix 
and  y  vector for this model are

     

x x x x x x1 2 1
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2
2

1 2
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 Notice that we have shown the variables associated with each column above that 
column in the  X  matrix. The entries in the columns associated with   x1

2 and   x2
2  are 

found by squaring the entries in columns  x  1  and  x  2 , respectively, and the entries in 
the  x  1  x  2  column are found by multiplying each entry from  x  1  by the corresponding 
entry from  x  2 . The  X ′ X  matrix and  X ′ y  vector are

   ′ =
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  and from   b̂ = ′( ) ′−X X X y1  we obtain
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   ˆ

.

.

.

.

.
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−
−
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⎣

⎢
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⎢
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⎥
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79 75

9 83

4 22

8 88

5 13

7 75

  

 Therefore, the fi tted model for percent conversion is

   ˆ . . . . . .y x x x x x x= + + − − −79 75 9 83 4 22 8 88 5 13 7 751 2 1
2

2
2

1 2   

 In terms of the natural variables, the model is

   ˆ . . . . . .y T C T C TC= − + + + + +1105 56 8 0242 22 994 0 0142 0 20502 0 0622 2   

 Table  7.8  shows the analysis of variance for this model. Because the experimental 
design has four replicate runs, the residual sum of squares can be partitioned into 
pure - error and lack - of - fi t components. The lack - of - fi t test in Table  7.8  is testing the 
lack of fi t for the quadratic model. The  P  value for this test is large ( P     =    0.8120), 
implying that the quadratic model is adequate. Therefore, the residual mean square 
with six degrees of freedom is used for the remaining analysis. The  F  test for signifi -
cance of regression is  F  0     =    58.86; and because the  P  value is very small, we would 
reject the hypothesis  H  0 :   β   1     =      β   2     =      β   11     =      β   22     =      β   12     =    0, concluding that at least some 
of these parameters are nonzero. This table also shows the sum of squares for testing 
the contribution of only the linear terms to the model [ SS  R (  β   1 ,   β   2 |  β   0 )    =    918.4 
with two degrees of freedom] and the sum of squares for testing the contribution 
of the quadratic terms given that the model already contains the linear terms 
[ SS  R (  β   11 ,   β   22 ,   β   12 |  β   0 ,   β   1 ,   β   2 )    =    819.2 with three degrees of freedom]. Comparing both 
of the corresponding mean squares to the residual mean square gives the 
following  F  statistics

  TABLE 7.8    Analysis of Variance for the Chemical Process Example 

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    1733.6    5    346.71    58.86     < 0.0001  
     SS R (  β   1 ,   β   2 |  β   0 )    (914.4)    (2)    (457.20)          
     SS R (  β   11 ,   β   22 , 

  β   12 |  β   0 ,   β   1 ,   β   2 )  
  (819.2)    (3)    (273.10)          

  Residual    35.3    6    5.89          
     Lack of fi t    (8.5)    (3)    (2.83)    0.3176    0.8120  
     Pure error    (26.8)    (3)    (8.92)          
  Total    1768.9    11              
   R  2     =    0.9800      Radj

2 0 9634= .     PRESS    =    108.7  
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 for which  P     =    5.2    ×    10  − 5  and

   F
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46= ( ) = = =R
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β β β β β β, , , , .
.

.
.

.337  

  for which  P     =    0.0002. Therefore, both the linear and quadratic terms contribute 
signifi cantly to the model. 

 Table  7.9  shows  t  tests on each individual variable. All  t  values are large enough 
for us to conclude that there are no nonsignifi cant terms in the model. If some of 
these  t  statistics had been small, some analysts would drop the nonsignifi cant vari-
ables for the model, resulting in a reduced quadratic model for the process. Gener-
ally, we prefer to fi t the full quadratic model whenever possible, unless there are 
large differences between the full and reduced model in terms of PRESS and 
adjusted  R  2 . Table  7.8  indicates that the  R  2  and adjusted  R  2  values for this model 
are satisfactory.   Rprediction

2 , based on PRESS, is

    R
SST

prediction
PRESS2 1 1

108 7
1768 9

0 9385= − = − =.
.

.  

  indicating that the model will probably explain a high percentage (about 94%) of 
the variability in new data. 

 Table  7.10  contains the observed and predicted values of percent conversion, the 
residuals, and other diagnostic statistics for this model. None of the studentized 
residuals or the values of  R  - student are large enough to indicate any potential 
problem with outliers. Notice that the hat diagonals  h ii   take on only two values, 
either 0.625 or 0.250. The values of  h ii      =    0.625 are associated with the four runs at 
the corners of the square in the design and the four axial runs. All eight of these 
points are equidistant from the center of the design; this is why all of the  h ii   values 
are identical. The four center points all have  h ii      =    0.250. Figures  7.14, 7.15 , and  7.16  
show a normal probability plot of the studentized residuals, a plot of the studentized 
residuals versus the predicted values   ̂yi, and a plot of the studentized residuals 
versus run order. None of these plots reveal any model inadequacy.     

  TABLE 7.9    Tests on the Individual Variables, Chemical Process Quadratic Model 

   Variable  
   Coeffi cient 
Estimate     Standard Error  

    t  for  H  0  
Coeffi cient    =    0      P  Value  

  Intercept    79.75    1.21    65.72      
   x  l     9.83    0.86    11.45    0.0001  
   x  2     4.22    0.86    4.913    0.0027  

    x1
2     − 8.88    0.96     − 9.250    0.0001  

    x2
2      − 5.13    0.96     − 5.341    0.0018  

   x  l  x  2      − 7.75    1.21     − 6.386    0.0007  
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  TABLE 7.10    Observed Values, Predicted Values, Residuals, and Other Diagnostics 
for the Cbemical Process Example 

   Observed 
Value  

   Actual 
Value  

   Predicted 
Value     Residual      h ii    

   Studentized 
Residual     Cook ’ s  D       R  - Student  

  1    43.00    43.96     − 0.96    0.625     − 0.643    0.115     − 0.609  
  2    78.00    79.11     − 1.11    0.625     − 0.745    0.154     − 0.714  
  3    69.00    67.89    1.11    0.625    0.748    0.155    0.717  
  4    73.00    72.04    0.96    0.625    0.646    0.116    0.612  
  5    48.00    48.11     − 0.11    0.625     − 0.073    0.001     − 0.067  
  6    76.00    75.90    0.10    0.625     − 0.073    0.001     − 0.067  
  7    65.00    63.54    1.46    0.625    0.982    0.268    0.979  
  8    74.00    75.46     − 1.46    0.625     − 0.985    0.269     − 0.982  
  9    76.00    79.75     − 3.75    0.250     − 1.784    0.177     − 2.377  

  10    79.00    79.75     − 0.75    0.250     − 0.357    0.007     − 0.329  
  11    83.00    79.75    3.25    0.250    1.546    0.133    1.820  
  12    81.00    79.75    1.25    0.250    0.595    0.020    0.560  

     Figure 7.14     Normal probability plot 
of the studentized residuals, chemical 
process example.  
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     Figure 7.15     Plot of studentized residu-
als versus predicted conversion, chemi-
cal process example.  
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     Figure 7.16     Plot of the studentized residuals run order, chemical process example.  
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     Figure 7.17     ( a ) Response surface of predicted conversion. ( b ) Contour plot of predicted 
conversion.  
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 Plots of the conversion response surface and the contour plot, respectively, for 
the fi tted model are shown in panels  a  and  b  of Figure  7.17 . The response surface 
plots indicate that the maximum percent conversion occurs at about 245 ° C and 20% 
concentration. 

 In many response surface problems the experimenter is interested in predicting 
the response y or estimating the mean response at a particular point in the process 
variable space. The response surface plots in Figure  7.17  give a graphical display of 
these quantities. Typically, the variance of the prediction is also of interest, because 
this is a direct measure of the likely error associated with the point estimate pro-
duced by the model. Recall that the variance of the estimate of the mean response 
at the point  x  0  is given by   Var ŷ x x X X x0

2
0

1
0( )[ ] = ′ ′( )−σ . Plots of   Var ŷ x0( )[ ], with 

  σ   2  estimated by the residual mean square  MS  Res     =    5.89 for this model for all values 
of  x  0  in the region of experimentation, are presented in panels  a  and  b  of Figure 
 7.18 . Both the response surface in Figure  7.18  a  and the contour plot of constant 
  Var ŷ x0( )[ ]  in Figure  7.18  b  show that the   Var ŷ x0( )[ ]  is the same for all points 
 x  0  that are the same distance from the center of the design. This is a result of the 
spacing of the axial runs in the central composite design at 1.414 units from the 
origin (in the coded variables) and is a design property called  rotatability . This is a 
very important property for a second - order response surface design and is discussed 
in detail in the references given on RSM.    

   7.5    ORTHOGONAL POLYNOMIALS 

 We have noted that in fi tting polynomial models in one variable, even if nonessential 
ill - conditioning is removed by centering, we may still have high levels of multicol-
linearity. Some of these diffi culties can be eliminated by using  orthogonal polynomi-
als  to fi t the model. 
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 Suppose that the model is

    y x x x i ni i i k i
k

i= + + + + + =β β β β ε0 1 2
2 1 2� …, , , ,     (7.8)   

 Generally the columns of the  X  matrix will not be orthogonal. Furthermore, if 
we increase the order of the polynomial by adding a term   β  k    + 1  x k    + 1 , we must 
recompute ( X  ′  X )  − 1  and the estimates of the lower order parameters   ˆ , ˆ , , ˆβ β β0 1 … k will 
change. 

 Now suppose that we fi t the model

    y P x P x P x P x i ni i i i k k i i= ( ) + ( ) + ( ) + ( ) + =α α α α ε0 0 1 1 2 2 1 2� …, , , ,     (7.9)  

  where  P u  ( x i  ) is a  u th - order orthogonal polynomial defi ned such that

   P x P x r s r s kr i s i

i
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1

0 0 1 2, , , , , , ,…  

    P xi0 1( ) =   

 Then the model becomes  y     =     X   α      +      ε  , where the  X  matrix is
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     Figure 7.18     ( a ) Response surface plot of   Var ŷ x0( )[ ]. ( b ) Contour plot of   Var ŷ x0( )[ ].  
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 Since this matrix has orthogonal columns, the  X ′ X  matrix is
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 The least - squares estimators of   α   are found from ( X ′ X )  − 1  X  ′  y  as

    ˆ , , , ,α j

j i i
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 Since  P  0 ( x i  ) is a polynomial of degree zero, we can set  P  0 ( x i  )    =    1, and 
consequently

   ˆ ˆα0 = y   

 The residual sum of squares is
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    (7.11)   

 The regression sum of squares for any model parameter does not depend on the 
other parameters in the model. This regression sum of squares is

    SS P x yj j j i i

i

n

R α α( ) = ( )
=
∑ˆ

1

    (7.12)   

 If we wish to assess the signifi cance of the highest order term, we should test  H  0 : 
  α  k      =    0 [this is equivalent to testing  H  0 :   β  k      =    0 in Eq.  (7.4) ]; we would use
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  as the  F  statistic. Furthermore, note that if the order of the model is changed to 
 k     +     r , ouly the  r  new coeffi cients must be computed. The coeffi cients   ˆ , ˆ , , ˆα α α0 1 … k 
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do not change due to the orthogonality property of the polynomials. Thus, sequential 
fi tting of the model is computationally easy. 

 The orthogonal polynomials  P j  ( x i  ) are easily constructed for the case where the 
levels of  x  are equally spaced. The fi rst fi ve orthogonal polynomials are
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  where  d  is the spacing between the levels of  x  and the {  λ    j  } are constants chosen so 
that the polynomials will have integer values. A brief table of the numerical values 
of these orthogonal polynomials is given in Table  A.5 . More extensive tables are 
found in DeLury [ 1960 ] and Pearson and Hartley [ 1966 ]. Orthogonal polynomials 
can also be constructed and used in cases where the  x  ’ s are not equally spaced. A 
survey of methods for generating orthogonal polynomials is in Seber [ 1977 , Ch. 8].    

 Example 7.5   Orthogonal Polynomials 

    An operations research analyst has developed a computer simulation model of a 
single item inventory system. He has experimented with the simulation model to 
investigate the effect of various reorder quantities on the average annual cost of 
the inventory. The data are shown in Table  7.11 .   

  TABLE 7.11    Inventory Simnlatian Ontpnt far Example  7.5  

   Reorder Quantity,  x i    
   Average Annual 

Cost,  y i    

  50    $335  
  75    326  

  100    316  
  125    313  
  150    311  
  175    314  
  200    318  
  225    328  
  250    337  
  275    345  
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 Since we know that average annual inventory cost is a convex function of the 
reorder quantity, we suspect that a second - order polynomial is the highest order 
model that must be considered. Therefore, we will fi t

   y P x P x P x ii i i i i= ( ) + ( ) + ( ) + =α α α ε0 0 1 1 2 2 1 2 10, , , ,…   

 The coeffi cients of the orthogonal polynomials  P  0 ( x i  ),  P  1 ( x i  ), and  P  2 ( x i  ), obtained 
from Table  A.5 , are shown in Table  7.12 .   

 Thus,
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  TABLE 7.12    Coeffi cients of Orthogonal Polynomials for Example  7.5  

    i       P  0 ( x i  )      P  1 ( x i  )      P  2 ( x i  )  

  1    1     − 9    6  
  2    1     − 7    2  
  3    1     − 5     − 1  
  4    1     − 3     − 3  
  5    1     − 1     − 4  
  6    1    1     − 4  
  7    1    3     − 3  
  8    1    5     − 1  
  9    1    7    2  

  10    1    9    6  

    

    

P xi

i

0
2

1

10

10( ) =
=
∑

  
    P xi

i

1
2

1

10

330( ) =
=
∑       P xi

i

2
2

1
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132( ) =
=
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            λ   1     =    2      λ2
1
2=   
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  and

   b̂ = ′( ) ′ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
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⎢

⎤
−X X X y1

1
10

1
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1
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⎥
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=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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324 3000

0 7424

2 7955

.

.

.

  

 The fi tted model is

   ˆ . . .y P x P x= + ( ) + ( )324 30 0 7424 2 79551 2   

 The regression sum of squares is

   
SS P x yj j i i

ij

R ,α α α1 2

1

10

1

2

0 7424 245 2 7955

( ) = ( )⎡

⎣
⎢

⎤

⎦
⎥

= ( ) +
==
∑∑ ˆ

. . 3369

181 89 1031 54 1213 43

( )
= + =. . .

  

 The analysis of variance is shown in Table  7.13 . Both the linear and quadratic terms 
contribute signifi cantly to the model. Since these terms account for most of the 
variation in the data, we tentatively adopt the quadratic model subject to a satisfac-
tory residual analysis.   

 We may obtain a fi tted equation in terms of the original regressor by substituting 
for  P j  ( x i  ) as follows:

   

ˆ . . .

. .
.

y P x P x

x

= + ( ) + ( )

= + ( ) −

324 30 0 7424 2 7955

324 30 0 7424 2
162 5
2

1 2

55
2 7955

1
2

162 5
25

10 1
12

312 7686

2 2
⎛
⎝⎜

⎞
⎠⎟ +

−⎛
⎝⎜

⎞
⎠⎟ − ( ) −⎡

⎣
⎢

⎤

⎦
⎥

=

.
.

.

x

++ −( ) + −( )0 0594 162 5 0 0022 162 5 2. . . .x x

  

 This form of the model should be reported to the user.        ■   

  TABLE 7.13    Analysis of Variance for the Quadratic Model in Example  7.5  

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    1213.43    2    606.72    159.24     < 0.0001  
     Linear,   α   1     (181.89)    1    181.89    47.74     < 0.0002  
     Quadratic,   α   2     (1031.54)    1    1031.54    270.75     < 0.0001  
  Residual    26.67    7    3.81          
  Total    1240.10    9              
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   Months since 
Production,  x   

   Weight Loss, 
 y  (kg)  

  0.25    1.42  
  0.50    1.39  
  0.75    1.55  
  1.00    1.89  
  1.25    2.43  
  1.50    3.15  
  1.75    4.05  
  2.00    5.15  
  2.25    6.43  
  2.50    7.89  

    x       y       x       y   

  4.00    24.60    6.50    67.11  
  4.00    24.71    6.50    67.24  
  4.00    23.90    6.75    67.15  
  5.00    39.50    7.00    77.87  
  5.00    39.60    7.10    80.11  
  6.00    57.12    7.30    84.67  

 PROBLEMS 

       7.1    Consider the values of  x  shown below:

   x = 1 00 1 70 1 25 1 20 1 45 1 85 1 60 1 50 1 95 2 00. , . , . , . , . , . , . , . , . , .  

  Suppose that we wish to fi t a second - order model using these levels for the 
regressor variable  x.  Calculate the correlation between  x  and  x  2 . Do you see 
any potential diffi culties in fi tting the model?   

    7.2    A solid - fuel rocket propellant loses weight after it is produced. The following 
data are available:

      a.     Fit a second - order polynomial that expresses weight loss as a function of 
the number of months since production.  

  b.     Test for signifi cance of regression.  
  c.     Test the hypothesis  H  0 :   β   2     =    0. Comment on the need for the quadratic term 

in this model.  
  d.     Are there any potential hazards in extrapolating with this model?      

    7.3    Refer to Problem 7.2. Compute the residuals for the second - order model.
Analyze the residuals and comment on the adequacy of the model.   

    7.4    Consider the data shown below:

      a.     Fit a second - order polynomial model to these data.  
  b.     Test for signifi cance of regression.  
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  c.     Test for lack of fi t and comment on the adequacy of the second - order 
model.  

  d.     Test the hypothesis  H  0 :   β   2     =    0. Can the quadratic term be deleted from this 
equation?      

    7.5    Refer to Problem 7.4. Compute the residuals from the second - order model.
Analyze the residuals and draw conclusions about the adequacy of the model.   

    7.6    The carbonation level of a soft drink beverage is affected by the temperature 
of the product and the fi ller operating pressure. Twelve observations were 
obtained and the resulting data are shown below. 

   Carbonation,  y      Temperature,  x  1      Pressure,  x  2   

  2.60    31.0    21.0  
  2.40    31.0    21.0  

  17.32    31.5    24.0  
  15.60    31.5    24.0  
  16.12    31.5    24.0  
  5.36    30.5    22.0  
  6.19    31.5    22.0  

  10.17    30.5    23.0  
  2.62    31.0    21.5  
  2.98    30.5    21.5  
  6.92    31.0    22.5  
  7.06    30.5    22.5  

       a.     Fit a second - order polynomial.  
  b.     Test for signifi cance of regression.  
  c.     Test for lack of fi t and draw conclusions.  
  d.     Does the interaction term contribute signifi cantly to the model?  
  e.     Do the second - order terms contribute signifi cantly to the model?      

    7.7    Refer to Problem 7.6. Compute the residuals from the second - order model.
Analyze the residuals and comment on the adequacy of the model.   

    7.8    Consider the data in Problem 7.2.
   a.     Fit a second - order model to these data using orthogonal polynomials.  
  b.     Suppose that we wish to investigate the addition of a third - order term to 

this model. Comment on the necessity of this additional term. Support your 
conclusions with an appropriate statistical analysis.      

    7.9    Suppose we wish to fi t the piecewise quadratic polynomial with a knot at  x     =     t :

   E y S x x x x t x t x t( ) = ( ) = + + + −( ) + −( ) + −( )+ + +β β β β β β00 01 02
2

10
0

11
1

12
2  

   a.     Show how to test the hypothesis that this quadratic spline model fi ts the 
data signifi cantly better than an ordinary quadratic polynomial.  
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  b.     The quadratic spline polynomial model is not continuous at the knot  t . 
 How can the model be modifi ed so that continuity at  x     =     t  is obtained?  

  c.     Show how the model can be modifi ed so that both  E ( y ) and  dE ( y )/ dx  are 
continuous at  x     =     t .  

  d.     Discuss the signifi cance of the continuity restrictions on the model in parts 
b and c. In practice, how would you select the type of continuity restrictions 
to impose?      

    7.10    Consider the delivery time data in Example  3.1 . Is there any indication that 
a complete second - order model in the two regressions cases and distance is 
preferable to the fi rst - order model in Example  3.1 ?   

    7.11    Consider the patient satisfaction data in Section  3.6 . Fit a complete second -
 order model to those data. Is there any indication that adding these terms to 
the model is necessary?   

    7.12    Suppose that we wish to fi t a piecewise polynomial model with three seg-
ments: if  x     <     t  1 , the polynomial is linear; if  t  1     ≤     x     <     t  2 , the polynomial is qua-
dratic; and if  x     >     t  2 , the polynomial is linear. Consider the model

   
E y S x x x x t x t

x t

( ) = ( ) = + + + −( ) + −( )
+ −( )

+ +β β β β β

β
00 01 02

2
10 1

0
11 1

1

12 1 ++ + + ++ −( ) + −( ) + −( )2
20 2

2
21 2

1
22 2

2β β βx t x t x t
 

   a.     Does this segmented polynomial satisfy our requirements? If not, show 
how it can be modifi ed to do so.  

  b.     Show how the segmented model would be modifi ed to ensure that  E ( y ) is 
continuous at the knots  t  1  and  t  2 .  

  c.     Show how the segmented model would be modifi ed to ensure that both 
 E ( y ) and  dE ( y )/ dx  are continuous at the knots  t  1  and  t  2 .      

    7.13    An operations research analyst is investigating the relationship between pro-
duction lot size  x  and the average production cost per unit  y . A study of recent 
operations provides the following data:

    
   x     100    120    140    160    180    200    220    240    260    280    300  
   y     $9.73    9.61    8.15    6.98    5.87    4.98    5.09    4.79    4.02    4.46    3.82  

 The analyst suspects that a piecewise linear regression model should be fi t to 
these data. Estimate the parameters in such a model assuming that the slope 
of the line changes at  x     =    200 units. Do the data support the use of this model?   

    7.14    Modify the model in Problem 7.13 to investigate the possibility that a discon-
tinuity exists in the regression function at  x     =    200 units. Estimate the param-
eters in this model. Test appropriate hypotheses to determine if the regression 
function has a change in both the slope and the intercept at  x     =    200 units.   

    7.15    Consider the polynomial model in Problem 7.13. Find the variance infl ation 
factors and comment on multicollinearity in this model.   
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    7.16    Consider the data in Problem 7.2.
   a.     Fit a second - order model  y     =      β   0     +      β   1  x     +      β   11  x  2     +      ε   to the data. Evaluate the 

variance infl ation factors.  
  b.     Fit a second - order model   y x x x= + −( ) + −( ) +β β β ε0 1 11

2x  to the data. 
Evaluate the variance infl ation factors.  

  c.     What can you conclude about the impact of centering the  x  ’ s in a polyno-
mial model on multicollinearity?      

    7.17    Chemical and mechanical engineers often need to know the vapor pressure 
of water at various temperatures (the  “ infamous ”  steam tables can be used 
for this). Below are data on the vapor pressure of water ( y ) at various 
temperatures. 

   Vapor Pressure,  y  
(mmHg)  

   Temperature,  x  
( ° C)  

  9.2    10  
  17.5    20  
  31.8    30  
  55.3    40  
  92.5    50  

  149.4    60  

       a.     Fit a fi rst - order model to the data. Overlay the fi tted model on the scat-
terplot of  y  versus  x . Comment on the apparent fi t of the model.  

  b.     Prepare a scatterplot of predicted  y  versus the observed  y.  What does this 
suggest about model fi t?  

  c.     Plot residuals versus the fi tted or predicted  y . Comment on model 
adequacy.  

  d.     Fit a second - order model to the data. Is there evidence that the quadratic 
term is statistically signifi cant?  

  e.     Repeat parts a – c using the second - order model. Is there evidence that the 
second - order model provides a better fi t to the vapor pressure data?      

    7.18    An article in the  Journal of Pharmaceutical Sciences  ( 80 , 971 – 977, 1991) pres-
ents data on the observed mole fraction solubility of a solute at a constant 
temperature, along with  x  1     =    dispersion partial solubility,  x  2     =    dipolar partial 
solubility, and  x  3     =    hydrogen bonding Hansen partial solubility. The response 
 y  is the negative logarithm of the mole fraction solubility.
   a.     Fit a complete quadratic model to the data.  
  b.     Test for signifi cance of regression, and construct  t  statistics for each model 

parameter. Interpret these results.  
  c.     Plot residuals and comment on model adequacy.  
  d.     Use the extra - sum - of - squares method to test the contribution of all second -

 order terms to the model.    
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    7.19    Consider the quadratic regression model from Problem 7.18. Find the vari-
ance infl ation factors and comment on multicollinearity in this model.   

    7.20    Consider the solubility data from Problem 7.18. Suppose that a point of inter-
est is  x  1     =    8.0,  x  2     =    3.0, and  x  3     =    5.0.
   a.     For the quadratic model from Problem 7.18, predict the response at the 

point of interest and fi nd a 95% confi dence interval on the mean response 
at that point.  

  b.     Fit a model that includes only the main effects and two - factor interactions 
to the solubility data. Use this model to predict the response at the point 
of interest. Find a 95% confi dence interval on the mean response at that 
point.  

  c.     Compare the lengths of the confi dence intervals in parts a and b. Can you 
draw any conclusions about the best model from this comparison?      

    7.21    Below are data on  y     =    green liquor (g/l) and  x     =    paper machine speed 
(ft/min) from a kraft paper machine. (The data were read from a graph in an 
article in the  Tappi Journal , March 1986.) 

   Observation 
Number      y       x  1       x  2       x  3   

  1    0.22200    7.3    0.0    0.0  
  2    0.39500    8.7    0.0    0.3  
  3    0.42200    8.8    0.7    1.0  
  4    0.43700    8.1    4.0    0.2  
  5    0.42800    9.0    0.5    1.0  
  6    0.46700    8.7    1.5    2.8  
  7    0.44400    9.3    2.1    1.0  
  8    0.37800    7.6    5.1    3.4  
  9    0.49400    10.0    0.0    0.3  

  10    0.45600    8.4    3.7    4.1  
  11    0.45200    9.3    3.6    2.0  
  12    0.11200    7.7    2.8    7.1  
  13    0.43200    9.8    4.2    2.0  
  14    0.10100    7.3    2.5    6.8  
  15    0.23200    8.5    2.0    6.6  
  16    0.30600    9.5    2.5    5.0  
  17    0.09230    7.4    2.8    7.8  
  18    0.11600    7.8    2.8    7.7  
  19    0.07640    7.7    3.0    8.0  
  20    0.43900    10.3    1.7    4.2  
  21    0.09440    7.8    3.3    8.5  
  22    0.11700    7.1    3.9    6.6  
  23    0.07260    7.7    4.3    9.5  
  24    0.04120    7.4    6.0    10.9  
  25    0.25100    7.3    2.0    5.2  
  26    0.00002    7.6    7.8    20.7  
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       a.     Fit the model  y     =      β   0     +      β   1  x     +      β   2  x  2     +      ε   to the data.  
  b.     Test for signifi cance of regression using   α      =    0.05. What are your 

conclusions?  
  c.     Test the contribution of the quadratic term to the model, the contribution 

of the linear term, using an  F  statistic. If   α      =    0.05, what conclusion can you 
draw?  

  d.     Plot the residuals from the model. Does the model fi t seem satisfactory?      

    7.22    Reconsider the data from Problem 7.21. Suppose that it is important to 
predict the response at the points  x     =    1750 and  x     =    1775.
   a.     Find the predicted response at these points and the 95% prediction inter-

vals for the future observed response at these points.  
  b.     Suppose that a fi rst - order model is also being considered. Fit this model 

and fi nd the predicted response at these points. Calculate the 95% predic-
tion intervals for the future observed response at these points. Does this 
give any insight about which model should be preferred?           

 
 

 

 

   y     16.0    15.8    15.6    15.5    14.8  

   x     1700    1720    1730    1740    1750  

   y     14.0    13.5    13.0    12.0    11.0  

   x     1760    1770    1780    1790    1795  
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  CHAPTER 8 

INDICATOR VARIABLES     

    8.1    GENERAL CONCEPT OF INDICATOR VARIABLES 

 The variables employed in regression analysis are often  quantitative variables , that 
is, the variables have a well - defi ned scale of measurement. Variables such as tem-
perature, distance, pressure, and income are quantitative variables. In some situa-
tions it is necessary to use  qualitative  or  categorical variables  as predictor variables 
in regression. Examples of qualitative or categorical variables are operators, employ-
ment status (employed or unemployed), shifts (day, evening, or night), and sex (male 
or female). In general, a qualitative variable has no natural scale of measurement. 
We must assign a set of levels to a qualitative variable to account for the effect that 
the variable may have on the response. This is done through the use of  indicator 
variables . Sometimes indicator variables are called  dummy variables . 

 Suppose that a mechanical engineer wishes to relate the effective life of a cutting 
tool (  y ) used on a lathe to the lathe speed in revolutions per minute ( x  1 ) and the 
type of cutting tool used. The second regressor variable, tool type, is qualitative and 
has two levels (e.g., tool types A and B). We use an indicator variable that takes on 
the values 0 and 1 to identify the classes of the regressor variable  “ tool type. ”  Let

   
x2

0

1
=

if the observation is from tool type A

if the observatiion is from tool type B
⎧
⎨
⎩   

 The choice of 0 and 1 to identify the levels of a qualitative variable is arbitrary. Any 
two distinct values for  x  2  would be satisfactory, although 0 and 1 are usually best. 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 Assuming that a fi rst - order model is appropriate, we have

    y x x= + + +β β β ε0 1 1 2 2     (8.1)   

 To interpret the parameters in this model, consider fi rst tool type A, for which  x  2     =    0. 
The regression model becomes

    
y x

x

= + + ( ) +
= + +

β β β ε
β β ε

0 1 1 2

0 1 1

0
    (8.2)   

 Thus, the relationship between tool life and lathe speed for tool type A is a straight 
line with intercept   β   0  and slope   β   1 . For tool type B, we have  x  2     =    1, and

    

y x

x

= + + ( ) +
= +( ) + +

β β β ε
β β β ε
0 1 1 2

0 2 1 1

1

    (8.3)   

 That is, for tool type B the relationship between tool life and lathe speed is also a 
straight line with slope   β   1  but intercept   β   0     +      β   2 . 

 The two response functions are shown in Figure  8.1 . The models  (8.2)  and  (8.3)  
describe two  parallel  regression lines, that is, two lines with a common slope   β   1  and 
different intercepts. Also the variance of the errors   ε   is assumed to be the same for 
both tool types A and B. The parameter   β   2  expresses the difference in heights 
between the two regression lines, that is,   β   2  is a measure of the difference in mean 
tool life resulting from changing from tool type A to tool type B.   

 We may generalize this approach to qualitative factors with any number of levels. 
For example, suppose that three tool types, A, B, and C, are of interest. Two indicator 

     Figure 8.1     Response functions for the tool life example.  
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variables, such as  x  2  and  x  3 , will be required to incorporate the three levels of tool 
type into the model. The levels of the indicator variables are 

    x  2       x  3        

  0    0    if the observation is from tool type A  
  1    0    if the observation is from tool type B  
  0    1    if the observation is from tool type C  

 and the regression model is

   y x x x= + + + +β β β β ε0 1 1 2 2 3 3   

 In general, a qualitative variable with  a  levels is represented by  a     −    1 indicator 
variables, each taking on the values 0 and 1. 

 Example 8.1   The Tool Life Data 

    Twenty observations on tool life and lathe speed are presented in Table  8.1 , and the 
scatter diagram is shown in Figure  8.2 . Inspection of this scatter diagram indicates 
that two different regression lines are required to adequately model these data, with 
the intercept depending on the type of tool used. Therefore, we fi t the model

   y x x= + + +β β β ε0 1 1 2 2       

  TABLE 8.1    Data, Fitted Values, and Residuals for Example  8.1  

    i       y i   (hours)      X i   1  (rpm)     Tool Type       ŷi       e i    

  1    18.73    610    A    20.7552     − 2.0252  
  2    14.52    950    A    11.7087    2.8113  
  3    17.43    720    A    17.8284     − 0.3984  
  4    14.54    840    A    14.6355     − 0.0955  
  5    13.44    980    A    10.9105    2.5295  
  6    24.39    530    A    22.8838    1.5062  
  7    13.34    680    A    18.8927     − 5.5527  
  8    22.71    540    A    22.6177    0.0923  
  9    12.68    890    A    13.3052     − 0.6252  

  10    19.32    730    A    17.5623    1.7577  
  11    30.16    670    B    34.1630     − 4.0030  
  12    27.09    770    B    31.5023     − 4.4123  
  13    25.40    880    B    28.5755     − 3.1755  
  14    26.05    1000    B    25.3826    0.6674  
  15    33.49    760    B    31.7684    1.7216  
  16    35.62    590    B    36.2916     − 0.6716  
  17    26.07    910    B    27.7773     − 1.7073  
  18    36.78    650    B    34.6952    2.0848  
  19    34.95    810    B    30.4380    4.5120  
  20    43.67    500    B    38.6862    4.9838  
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 where the indicator variable  x  2     =    0 if the observation is from tool type A and  x  2     =    1 
if the observation is from tool type B. The  X  matrix and  y  vector for fi tting this 
model are

   

X =
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     Figure 8.2     Plot of tool life  y  versus lathe 
speed  x  1  for tool types A and B.  
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     Figure 8.3     Plot of externally studentized 
residuals  t  versus fi tted values   ̂yi, Example 
 8.1 .  
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 The least - squares fi t is

   ˆ . . .y x x= − +36 986 0 027 15 0041 2   

 The analysis of variance and other summary statistics for this model are shown in 
Table  8.2 . Since the observed value of  F  0  has a very small  P  value, the hypothesis 
of signifi cance of regression is rejected, and since the  t  statistics for   β   1  and   β   2  have 
small  P  values, we conclude that both regressors  x  1  (rpm) and  x  2  (tool type) con-
tribute to the model. The parameter   β   2  is the change in mean tool life resulting from 
a change from tool type A to tool type B. The 95 % confi dence interval on   β   2  is

   
ˆ ˆ ˆ ˆ

. , . ,β β β β β2 0 025 17 2 2 2 0 025 17 2− ( ) ≤ ≤ + ( )t tse se
 

   15 004 2 110 1 360 15 004 2 110 1 3602. . . . . .− ( ) ≤ ≤ + ( )β  

  or

   12 135 17 8732. .≤ ≤β     

 Therefore, we are 95% confi dent that changing from tool type A to tool type B 
increases the mean tool life by between 12.135 and 17.873 hours. 

 The fi tted values   ̂yi and the residuals  e i   from this model are shown in the last two 
columns of Table  8.1 . A plot of the residuals versus   ̂yi is shown in Figure  8.3 . The 
residuals in this plot are identifi ed by tool type (A or B). If the variance of the errors 
is not the same for both tool types, this should show up in the plot. Note that 
the  “ B ”  residuals in Figure  8.3  exhibit slightly more scatter than the  “ A ”  residuals, 
implying that there may be a mild inequality - of - variance problem. Figure  8.4  is the 
normal probability plot of the residuals. There is no indication of serious model 
inadequacies.        ■     

  TABLE 8.2    Summary Statistics for the Regression Model in Example  8.1  

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom  

   Mean 
Square      F  0       P  Value  

  Regression    1418.034    2    709.017    76.75    3.12    ×    10  − 9   
  Residual    157.055    17    9.239          
  Total    1575.089    19              

   Coeffi cient     Estimate      Standard Error      t  0       P  Value  

    β   0     36.986              
    β   1      − 0.027    0.005     − 5.887    8.97    ×    10  − 6   
    β   2     15.004    1.360    11.035    1.79    ×    10  − 9   
       R  2     =    0.9003          
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 Since two different regression lines are employed to model the relationship 
between tool life and lathe speed in Example  8.1 , we could have initially fi t two 
separate straight - line models instead of a single model with an indicator variable. 
However, the single - model approach is preferred because the analyst has only one 
fi nal equation to work with instead of two, a much simpler practical result. Further-
more, since both straight lines are assumed to have the same slope, it makes sense 
to combine the data from both tool types to produce a single estimate of this 
common parameter. This approach also gives one estimate of the common error 
variance   σ    2  and more residual degrees of freedom than would result from fi tting 
two separate regression lines.   

 Now suppose that we expect the regression lines relating tool life to lathe speed 
to differ in both intercept and slope. It is possible to model this situation with a 
single regression equation by using indicator variables. The model is

    y x x x x= + + + +β β β β ε0 1 1 2 2 3 1 2     (8.4)   

 Comparing Eq.  (8.4)  with Eq.  (8.1)  we observe that a cross product between lathe 
speed  x  1  and the indicator variable denoting tool type  x  2  has been added to the 
model. To interpret the parameters in this model, fi rst consider tool type A, for which 
 x  2     =    0. Model  (8.4)  becomes

    
y x x

x

= + + ( ) + ( ) +
= + +

β β β β ε
β β ε

0 1 1 2 3 1

0 1 1

0 0
    (8.5)  

  which is a straight line with intercept   β   0  and slope   β   1 . For tool type B, we have  x  2     
=    1, and

    

y x x

x

= + + ( ) + ( ) +
= +( ) + +( ) +

β β β β ε
β β β β ε
0 1 1 2 3 1

0 2 1 3 1

1 1

    (8.6)   

     Figure 8.4     Normal probability plot of externally studentized residuals, Example  8.1 .  
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 This is a straight - line model with intercept   β   0     +      β   2  and slope   β   1     +      β   3 . Both regression 
functions are plotted in Figure  8.5 . Note that Eq.  (8.4)  defi nes two regression lines 
with different slopes and intercepts. Therefore, the parameter   β   2  refl ects the change 
in the intercept associated with changing from tool type A to tool type B (the classes 
0 and 1 for the indicator variable  x  2 ), and   β   3  indicates the change in the slope associ-
ated with changing from tool type A to tool type B.   

 Fitting model  (8.4)  is equivalent to fi tting two separate regression equations. An 
advantage to the use of indicator variables is that tests of hypotheses can be per-
formed directly using the extra - sum - of - squares method. For example, to test whether 
or not the two regression models are identical, we would test

   H0 2 3 0: β β= =  

   H1 2 30 0: β β≠ ≠and or   

 If  H  0 :   β   2     =      β   3     =    0 is not rejected, this would imply that a single regression model can 
explain the relationship between tool life and lathe speed. To test that the two 
regression lines have a common slope but possibly different intercepts, the hypoth-
eses are

   H H0 3 1 30 0: , :β β= ≠   

 By using model  (8.4) , both regression lines can be fi tted and these tests performed 
with one computer run, provided the program produces the sums of squares 
 SS  R (  β   1 |  β   0 ),  SS  R  ( β   2 |  β   0 ,   β   1 ), and  SS  R (  β   3 |  β   0 ,   β   1 ,   β   2 ).   

 Indicator variables are useful in a variety of regression situations. We will now 
present three further typical applications of indicator variables.    

     Figure 8.5     Response functions for Eq.  (8.4) .  
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 Example 8.2   The Tool Life Data 

    We will fi t the regression model

   y x x x x= + + + +β β β β ε0 1 1 2 2 3 1 2  

  to the tool life data in Table  8.1 . The  X  matrix and  y  vector for this model are

     

x x x x1 2 1 2

1 610 0 0

1 950 0 0

1 720 0 0

1 840 0 0

1 980 0 0

1 530 0 0

1 680 0 0

1 540 0 0

X =

11 890 0 0

1 730 0 0

1 670 1 670

1 770 1 770

1 880 1 880

1 1000 1 1000

1 760 1 760

1 5900 1 590

1 910 1 910

1 650 1 650

1 810 1 810

1 500 1 500
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 The fi tted regression model is

   ˆ . . . .y x x x x= − + −32 775 0 021 23 971 0 0121 2 1 2   

 The summary analysis for this model is presented in Table  8.3 . To test the hypothesis 
that the two regression lines are identical ( H  0 :   β   2     =      β   3     =    0), use the statistic

   
F

SS
MS

0
2 3 1 0 2

= ( )R

Res

β β β β, ,
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 Since

   

SS SS SSR R Rβ β β β β β β β β β2 3 1 0 1 2 3 0 1 0

1434 112 293 005

, , , ,

. .

( ) = ( ) − ( )
= −
== 1141 107.  

  the test statistic is

   
F

SS
MS

0
2 3 1 0 2 1141 107 2

8 811
64 75= ( ) = =R

Res

β β β β, , .
.

.
 

  and since for this statistic  P     =    2.14    ×    10  − 8 , we conclude that the two regression lines 
are not identical. To test the hypothesis that the two lines have different intercepts 
and a common slope ( H  0 :   β   3     =    0), use the statistic

   
F

SS
MS

0
3 2 1 0 1 16 078

8 811
1 82= ( ) = =R

Res

β β β β, , .
.

.
 

  and since for this statistic  P     =    0.20, we conclude that the slopes of the two straight 
lines are the same. This can also be determined by using the  t  statistics for   β   2  and 
  β   3  in Table  8.3 .        ■   

  TABLE 8.3    Summary Analysis for the Tool Life Regression Model in Example  8.2  

   Source of 
Variation  

   Sum of 
Squares  

   Degrees of 
Freedom     Mean Square      F  0       P  Value  

  Regression    1434.112    3    478.037    54.25    1.32    ×    10  − 9   
  Error    140.976    16    8.811          
  Total    1575.008    19              

  Coeffi cient    Estimate    Standard Error     t  0     Sum of Squares  

    β   0     32.775                  
    β   1      − 0.021    0.0061     − 3.45     SS  R (  β   1 |  β   0 )    =    293.005  
    β   2     23.971    6.7690    3.45     SS  R  ( β   2 |  β   1 ,   β   0 )    =    1125.029  
    β   3      − 0.012    0.0088     − 1.35     SS  R (  β   3 |  β   2 ,   β   1 ,   β   0 )    =    16.078  
           R  2     =    0.9105          

 Example 8.3   An Indicator Variable with More Than 
Two Levels 

    An electric utility is investigating the effect of the size of a single - family house and 
the type of air conditioning used in the house on the total electricity consumption 
during warm - weather months. Let  y  be the total electricity consumption (in kilo-
watt - hours) during the period June through September and  x  1  be the size of the 
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house (square feet of fl oor space). There are four types of air conditioning systems: 
(1) no air conditioning, (2) window units, (3) heat pump, and (4) central air condi-
tioning. The four levels of this factor can be modeled by three indicator variables, 
 x  2 ,  x  3 , and  x  4 , defi ned as follows: 

   Type of Air Conditioning      x  2       x  3       x  4   

  No air conditioning    0    0    0  
  Window units    1    0    0  
  Heat pump    0    1    0  
  Central air conditioning    0    0    1  

 The regression model is

    y x x x x= + + + + +β β β β β ε0 1 1 2 2 3 3 4 4     (8.7)   

 If the house has no air conditioning, Eq.  (8.7)  becomes

   y x= + +β β ε0 1 1   

 If the house has window units, then

   y x= +( ) + +β β β ε0 2 1 1   

 If the house has a heat pump, the regression model is

   y x= +( ) + +β β β ε0 3 1 1  

  while if the house has central air conditioning, then

   y x= +( ) + +β β β ε0 4 1 1   

 Thus, model  (8.7)  assumes that the relationship between warm - weather electricity 
consumption and the size of the house is linear and that the slope does not depend 
on the type of air conditioning system employed. The parameters   β   2 ,   β   3 , and   β   4  
modify the height (or intercept) of the regression model for the different types of 
air conditioning systems. That is,   β   2 ,   β   3 , and   β   4  measure the effect of window units, 
a heat pump, and a central air conditioning system, respectively, compared to no air 
conditioning. Furthermore, other effects can be determined by directly comparing 
the appropriate regression coeffi cients. For example,   β   3     −      β   4  refl ects the relative 
effi ciency of a heat pump compared to central air conditioning. Note also the 
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assumption that the variance of energy consumption does not depend on the type 
of air conditioning system used. This assumption may be inappropriate. 

 In this problem it would seem unrealistic to assume that the slope of the regres-
sion function relating mean electricity consumption to the size of the house does 
not depend on the type of air conditioning system. For example, we would expect 
the mean electricity consumption to increase with the size of the house, but the rate 
of increase should be different for a central air conditioning system than for window 
units because central air conditioning should be more effi cient than window units 
for larger houses. That is, there should be an  interaction  between the size of 
the house and the type of air conditioning system. This can be incorporated into 
the model by expanding model  (8.7)  to include interaction terms. The resulting 
model is

    y x x x x x x x x x x= + + + + + + + +β β β β β β β β ε0 1 1 2 2 3 3 4 4 5 1 2 6 1 3 7 1 4     (8.8)   

 The four regression models corresponding to the four types of air conditioning 
systems are as follows:

    y x= + + ( )β β ε0 1 1 1 no air conditioning  

    y x= +( ) + +( ) + ( )β β β β ε0 2 1 5 1 window units  

    y x= +( ) + +( ) + ( )β β β β ε0 3 1 6 1 heat pump  

   y x= +( ) + +( ) + ( )β β β β ε0 4 1 7 1 central air conditioning   

 Note that model  (8.8)  implies that each type of air conditioning system can have a 
separate regression line with a unique slope and intercept.        ■   

 Example 8.4   More Than One Indicator Variable 

    Frequently there are several different qualitative variables that must be incorpo-
rated into the model. To illustrate, suppose that in Example  8.1  a second qualitative 
factor, the type of cutting oil used, must be considered. Assuming that this factor 
has two levels, we may defi ne a second indicator variable,  x  3 , as follows:

   
x3

0

1
=

if low-viscosity oil used

if medium-viscosity oil used
⎧⎧
⎨
⎩   

 A regression model relating tool life (  y ) to cutting speed ( x  1 ), tool type ( x  2 ), and 
type of cutting oil ( x  3 ) is

    y x x x= + + + +β β β β ε0 1 1 2 2 3 3     (8.9)   

 Clearly the slope   β   1  of the regression model relating tool life to cutting speed does 
not depend on either the type of tool or the type of cutting oil. The intercept of the 
regression line depends on these factors in an additive fashion. 
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 Various types of interaction effects may be added to the model. For example, 
suppose that we consider interactions between cutting speed and the two qualitative 
factors, so that model  (8.9)  becomes

    y x x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 3 3 4 1 2 5 1 3     (8.10)   

 This implies the following situation: 

   Tool Type     Cutting Oil     Regression Model  

  A    Low viscosity     y     =      β   0     +      β   1  x  1     +      ε    
  B    Low viscosity     y     =    (  β   0     +      β   2 )    +    (  β   1     +      β   4 ) x  1     +      ε    
  A    Medium viscosity     y     =    (  β   0     +      β   3 )    +    (  β   1     +      β   5 ) x  1     +      ε    
  B    Medium viscosity     y     =    (  β   0     +      β   2     +      β   3 )    +    (  β   1     +      β   4     +      β   5 ) x  1     +      ε    

 Notice that each combination of tool type and cutting oil results in a separate 
regression line, with different slopes and intercepts. However, the model is still addi-
tive with respect to the levels of the indicator variables. That is, changing from low -  
to medium - viscosity cutting oil changes the intercept by   β   3  and the slope by   β   5  
regardless of the type of tool used. 

 Suppose that we add a cross - product term involving the two indicator variables 
 x  2  and  x  3  to the model, resulting in

    y x x x x x x x x x= + + + + + + +β β β β β β β ε0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3     (8.11)   

 We then have the following: 

   Tool Type     Cutting Oil     Regression Model  

  A    Low viscosity     y     =      β   0     +      β   1  x  1     +      ε    
  B    Low viscosity     y     =    (  β   0     +      β   2 )    +    (  β   1     +      β   4 ) x  1     +      ε    
  A    Medium viscosity     y     =    (  β   0     +      β   3 )    +    (  β   1     +      β   5 ) x  1     +      ε    
  B    Medium viscosity     y     =    (  β   0     +      β   2     +      β   3     +      β   6 )    +    (  β   1     +      β   4     +      β   5 ) x  1     +      ε    

 The addition of the cross - product term   β   6  x  2  x  3  in Eq.  (8.11)  results in the effect of 
one indicator variable on the intercept depending on the level of the other indicator 
variable. That is, changing from low -  to medium - viscosity cutting oil changes the 
intercept by   β   3  if tool type A is used, but the same change in cutting oil changes 
the intercept by   β   3     +      β   6  if tool type B is used. If an interaction term   β   7  x  1  x  2  x  3  were 
added to model  (8.11) , then changing from low -  to medium - viscosity cutting oil 
would have an effect on  both  the intercept  and  the slope, which depends on the 
type of tool used. 

 Unless prior information is available concerning the anticipated effect of tool 
type and cutting oil viscosity on tool life, we will have to let the data guide us in 
selecting the correct form of the model. This may generally be done by testing 
hypotheses about individual regression coeffi cients using the partial  F  test. For 
example, testing  H  0 :   β   6     =    0 for model  (8.11)  would allow us to discriminate between 
the two candidate models  (8.11)  and  (8.10) .        ■   
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 Example 8.5   Comparing Regression Models 

    Consider the case of simple linear regression where the  n  observations can be 
formed into  M  groups, with the  m th group having  n m   observations. The most general 
model consists of  M  separate equations, such as

    y x m Mm m= + + =β β ε0 1 1 2, , , ,…     (8.12)   

 It is often of interest to compare this general model to a more restrictive one. Indi-
cator variables are helpful in this regard. We consider the following cases:  

   a.   Parallel Lines      In this situation all  M  slopes are identical,   β   11     =      β   12     =     ·  ·  ·     =      β   1   M  , 
but the intercepts may differ. Note that this is the type of problem encountered in 
Example  8.1  (where  M     =    2), leading to the use of an additive indicator variable. 
More generally we may use the extra - sum - of squares method to test the hypothesis 
 H  0 :   β   11     =      β   12     =     ·  ·  ·     =      β   1   M  . Recall that this procedure involves fi tting a  full model  ( FM ) 
and a  reduced model  ( RM ) restricted to the null hypothesis and computing the  F  
statistic:

    F
SS RM SS FM df df

SS FM df
RM FM

FM
0 = ( ) − ( )[ ] −( )

( )
Res Res

Res

    (8.13)   

 If the reduced model is as satisfactory as the full model, then  F  0  will be small com-
pared to   F df df dfRM FM FMα , ,− . Large values of  F  0  imply that the reduced model is 
inadequate. 

 To fi t the full model  (8.12) , sinIply fi t  M  separate regression equations. Then 
 SS  Res ( FM ) is found by adding the residual sums of squares from each separate 
regression. The degrees of freedom for  SS  Res ( FM ) is   df n n MFM m

M
m= ∑ −( ) = −=1 2 2 . 

To fi t the reduced model, defi ne  M     −    1 indicator variables  D  1 ,  D  2 ,    . . .    ,  D M    − 1  corre-
sponding to the  M  groups and fi t

   y x D D DM M= + + + + + +−β β β β β ε0 1 2 1 3 2 1�   

 The residual sum of squares from this model is  SS  Res ( RM ) with  df RM      =     n     −    ( M     +    1) 
degrees of freedom. 

 If the  F  test (8.13) indicates that the  M  regression models have a common slope, 
then   β̂1 from the reduced model is an estimate of this parameter found by pooling 
or combining all of the data. This was illustrated in Example  8.1 . More generally, 
 analysis of covariance  is used to pool the data to estimate the common slope. The 
analysis of covariance is a special type of linear model that is a combination of a 
regression model (with quantitative factors) and an analysis - of - variance model 
(with qualitative factors). For an introduction to analysis of covariance, see Mont-
gomery  [2009] .  

   b.   Concurrent Lines      In this section, all  M  intercepts are equal,   β   01     =      β   02     =     ·  ·  ·     =      β   0   M  , 
but the slopes may differ. The reduced model is

   y x Z Z DM M= + + + + + +−β β β β β ε0 1 2 1 2 2 1�  
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  where  Z k      =     xD k  ,  k     =    1, 2,    . . .    ,  M     −    1. The residual sum of squares from this model 
is  SS  Res ( RM ) with  df RM      =     n     −    ( M     +    1) degrees of freedom. Note that we are assum-
ing concurrence at the origin. The more general case of concurrence at an arbitrary 
point  x  0  is treated by Graybill [ 1976 ] and Seber [ 1977 ].  

   c.   Coincident Lines      In this case both the  M  slopes and the  M  intercepts are the 
same,   β   01     =      β   02     =     ·  ·  ·     =      β   0   M  , and   β   11     =      β   12     =     ·  ·  ·     =      β   1   M  . The reduced model is simply

   y x= + +β β ε0 1  

  and the residual sum of squares  SS  Res ( RM ) has  df RM      =     n     −    2 degrees of freedom. 
Indicator variables are not necessary in the test of coincidence, but we include this 
case for completeness.        ■   

   8.2    COMMENTS ON THE USE OF INDICATOR VARIABLES 

   8.2.1    Indicator Variables versus Regression on Allocated Codes 

 Another approach to the treatment of a qualitative variable in regression is to 
measure the levels of the variable by an allocated code. Recall Example  8.3 , where 
an electric utility is investigating the effect of size of house and type of air con-
ditioning system on residential electricity consumption. Instead of using three 
indicator variables to represent the four levels of the qualitative factor type of air 
conditioning system, we could use one quantitative factor,  x  2 , with the following 
allocated code: 

   Type of Air Conditioning System      x  2   

  No air conditioning    1  
  Window units    2  
  Heat pumps    3  
  Central air conditioning    4  

 We may now fi t the regression model

    y x x= + + +β β β ε0 1 1 2 2     (8.14)  

  where  x  1  is the size of the house. This model implies that

   E y x x1 0 1 1 2, no air conditioning( ) = + +β β β  

    E y x x1 0 1 1 22, window units( ) = + +β β β  

    E y x x1 0 1 1 23, heat pump( ) = + +β β β  

    E y x x1 0 1 1 24, central air conditioning( ) = + +β β β   
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 A direct consequence of this is that

   

E y x E y x

E y x
1 1

1

, ,

,

central air conditioning heat pump

heat

( ) − ( )
=   pump window units

window units no a

( ) − ( )
= ( ) −

E y x

E y x E y x
1

1 1

,

, , iir conditioning( )
= β2  

  which may be quite unrealistic. The allocated codes impose a particular metric on 
the levels of the qualitative factor. Other choices of the allocated code would imply 
different distances between the levels of the qualitative factor, but there is no guar-
antee that any particular allocated code leads to a spacing that is appropriate. 

 Indicator variables are more informative for this type problem because they do 
not force any particular metric on the levels of the qualitative factor. Furthermore, 
regression using indicator variables always leads to a larger  R  2  than does regression 
on allocated codes (e.g., see Searle and Udell [ 1970 ]).  

   8.2.2    Indicator Variables as a Substitute for a Quantitative Regressor 

 Quantitative regressors can also be represented by indicator variables. Sometimes 
this is necessary because it is diffi cult to collect accurate information on the quan-
titative regressor. Consider the electric power usage study in Example  8.3  and 
suppose that a second quantitative regressor, household income, is included in the 
analysis. Because it is diffi cult to obtain this information precisely, the quantitative 
regressor income may be collected by grouping income into classes such as

   $ $ ,0 19 999to  

   $ , $ ,20 000 39 999to  

   $ , $ ,40 000 59 999to  

   $ , $ ,60 000 79 999to  

   $ ,80 000 and over   

 We may now represent the factor  “ income ”  in the model by using four indicator 
variables. 

 One disadvantage of this approach is that more parameters are required to rep-
resent the information content of the quantitative factor. In general, if the quantita-
tive regressor is grouped into  a  classes,  a     −    1 parameters will be required, while only 
one parameter would be required if the original quantitative regressor is used. Thus, 
treating a quantitative factor as a qualitative one increases the complexity of the 
model. This approach also reduces the degrees of freedom for error, although if the 
data are numerous, this is not a serious problem. An advantage of the indicator 
variable approach is that it does not require the analyst to make any prior assump-
tions about the functional form of the relationship between the response and the 
regressor variable.   
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   8.3    REGRESSION APPROACH TO ANALYSIS OF VARIANCE 

 The  analysis of variance  is a technique frequently used to analyze data from  planned  
or  designed experiments . Although special computing procedures are generally 
used for analysis of variance, any analysis - of - variance problem can also be treated 
as a linear regression problem. Ordinarily we do not recommend that regression 
methods be used for analysis of variance because the specialized computing tech-
niques are usually quite effi cient. However, there are some analysis - of - variance 
situations, particularly those involving unbalanced designs, where the regression 
approach is helpful. Furthermore, many analysts are unaware of the close connec-
tion between the two procedures. Essentially, any analysis - of - variance problem can 
be treated as a regression problem in which all of the regressors are indicator 
variables. 

 In this section we illustrate the regression alternative to the one - way classifi cation 
or single - factor analysis of variance. For further examples of the relationship 
between regression and analysis of variance, see Draper and Smith [ 1998 ], Mont-
gomery  [2009] , Schilling [ 1974a, b ], and Seber [ 1977 ]. 

 The model for the one - way classifi cation analysis of variance is

    y i k j nij i ij= + + = =μ τ ε , , , , , , , ,1 2 1 2… …     (8.15)  

  where  Y ij   is the  j th observation for the  i th  treatment  or  factor level ,   μ   is a parameter 
common to all  k  treatments (usually called the  grand mean ),   τ  i   is a parameter that 
represents the effect of the  i th treatment, and   ε    ij   is an NID(0,   σ    2 ) error component. 
It is customary to defi ne the treatment effects in the balanced case (i.e., an equal 
number of observations per treatment) as

   τ τ τ1 2 0+ + + =� k   

 Furthermore, the mean of the  i th treatment is   μ  i      =      μ      +      τ  i  ,  i     =    1, 2,    . . .    ,  k.  In the 
fi xed - effects (or model I) case, the analysis of variance is used to test the hypothesis 
that all  k  population means are equal, or equivalently,

    H

H i
k

i

0 1 2

1

0

0

:

:

τ τ τ
τ

= = = =
≠

�
for at least one 

    (8.16)   

 Table  8.4  displays the usual single - factor analysis of variance. We have a true 
error term in this case, as opposed to a residual term, because the replication allows 
a model - independent estimate of error. The test statistic  F  0  is compared to  F  α    ,   k    − 1,   k   (   n    − 1) . 
If  F  0  exceeds this critical value, the null hypothesis  H  0  in Eq.  (8.16)  is rejected; that 
is, we conclude that the  k  treatment means are not identical. Note that in Table  8.4  
we have employed the usual  “ dot subscript ”  notation associated with analysis of 
variance. That is, the average of the  n  observations in the  i th treatment is
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 and the grand average is
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 To illustrate the connection between the single - factor fi xed - effects analysis of 
variance and regression, suppose that we have  k     =    3 treatments, so that Eq.  (8.15)  
becomes

    y i j nij i ij= + + = =μ τ ε , , , , , , ,1 2 3 1 3 …     (8.17)   

 These three treatments may be viewed as three levels of a  qualitative factor , and 
they can be handled using indicator variables. Specifi cally a qualitative factor with 
three levels would require two indicator variables defi ned as follows:

   
x1

1 1

0
= ⎧

⎨
⎩

if the observation is from treatment 

otherwise  

   
x2

1 2

0
= ⎧

⎨
⎩

if the observation is from treatment 

otherwise   

 Therefore, the regression model becomes

    y x x i j nij j j ij= + + + = =β β β ε0 1 1 2 2 1 2 3 1 2, , , , , , ,…     (8.18)  

  where  x  1   j   is the value of the indicator variable  x  1  for observation  j  in treatment  i  
and  x  2   j   is the value of  x  2  for observation  j  in treatment  i . 

 The relationship between the parameter   β  u   ( u     =    0, 1, 2) in the regression model 
and the parameters   μ   and   τ  i   ( i     =    1, 2,    . . .    ,  k ) in the analysis - of - variance model is 
easily determined. Consider the observations from treatment 1, for which

   x xj j1 21 0= =and   

  TABLE 8.4    One - Way Analysis of Variance 
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 The regression model  (8.18)  becomes

   y j j j1 0 1 2 1 0 1 11 0= + ( ) + ( ) + = + +β β β ε β β ε   

 Since in the analysis - of - variance model an observation from treatment 1 is 
represented by  y  1   j      =      μ      +      τ   1     +      ε   1   j      =      μ   1     +      ε   1   j  , this implies that

   β β μ0 1 1+ =   

 Similarly, if the observations are from treatment 2, then  x  1   j      =    0,  x  2   j      =    1, and

   y j j j2 0 1 2 2 0 2 20 1= + ( ) + ( ) + = + +β β β ε β β ε   

 Considering the analysis - of - variance model,  y  2   j      =      μ      +      τ   2     +      ε   2   j      =      μ   2     +      ε   2   j  , so

   β β μ0 2 2+ =   

 Finally, consider observations from treatment 3. Since  x  1   j      =     x  2   j      =    0 the regression 
model becomes

   y j j j3 0 1 2 3 0 30 0= + ( ) + ( ) + = +β β β ε β ε   

 The corresponding analysis - of - variance model is  y  3   j      =      μ      +      τ   3     +      ε   3   j      =      μ   3     +      ε   3   j  , so that

   β μ0 3=   

 Thus, in the regression model formulation of the single - factor analysis of variance, 
the regression coeffi cients describe comparisons of the fi rst two treatment means   μ   1  
and   μ   2  with the third treatment mean   μ   3 . That is,

   β μ β μ μ β μ μ0 3 1 1 3 2 2 3= = − = −, ,   

 In general, if there are  k  treatments, the regression model for the single - factor 
analysis of variance will require  k     −    1 indicator variables, for example,

    y x x x i k j nij j j k k j ij= + + + + + = =− −β β β β ε0 1 1 2 2 1 1 1 2 1 2� … …, , , , , , , ,     (8.19)  

  where

   
x

j i
ij = ⎧

⎨
⎩

1

0

if observation is from treatment

otherwise   

 The relationship between the parameters in the regression and analysis - of - variance 
models is

    β μ0 = k  

   β μ μi i k i k= − = −, , , ,1 2 1…   
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 Thus,   β   0  always estimates the mean of the  k th treatment and   β  i   estimates the differ-
ences in means between treatment  i  and treatment  k.  

 Now consider fi tting the regression model for the one - way analysis of variance. 
Once again, suppose that we have  k     =    3 treatments and now let there be  n     =    3 
observations per treatment. The  X  matrix and  y  vector are as follows:
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 Notice that the  X  matrix consists entirely of 0 ’ s and 1 ’ s. This is a characteristic 
of the regression formulation of any analysis - of - variance model. The least - squares 
normal equations are

   ′( ) = ′X X X yb̂  
  or
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  where  y i   .  is the total of all observations in treatment  i  and  y ..   is the grand total of all 
nine observations (i.e.,  y  ..     =     y  1.     +     y  2.     +     y  3. ). The solution to the normal equations is

   
ˆ , ˆ , ˆ

.. . . . . . . .β β β0 1 2 3 1 1 3 2 2 3= − − = = − = −y y y y y y y y   

 The extra - sum - of - squares method may be used to test for differences in treatment 
means. For the full model the regression sum of squares is
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  with three degrees of freedom. The residual error sum of squares for the full 
model is
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  with 9    −    3    =    6 degrees of freedom. Note that Eq.  (8.20)  is the error sum of squares 
in the analysis - of - variance table (Table  8.4 ) for  k     =     n     =    3. 

 Testing for differences in treatment means is equivalent to testing

   H0 1 2 3 0: τ τ τ= = =  

   H i1 0: at least one τ ≠   

 If  H  0  is true, the parameters in the regression model become

   β μ β β0 1 20 0= = =, ,   

 Therefore, the reduced model contains only one parameter, that is,

   yij ij= +β ε0   

 The estimate of   β   0  in the reduced model is   ˆ ..β0 = y , and the single - degree - of - freedom 
regression sum of squares for this model is
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 The sum of squares for testing for equality of treatment means is the difference in 
regression sums of squares between the full and reduced models, or
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 This sum of squares has 3    −    1    =    2 degrees of freedom. Note that Eq.  (8.21)  is the 
treatment sum of squares in Table  8.4  assuming that  k     =     n     =    3. The appropriate test 
statistic is
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 If  H  0 :   τ   1     =      τ   2     =      τ   3     =    0 is true, then  F  0  follows the  F  2,6  distribution. This is the same 
test statistic given in the analysis - of - variance table (Table  8.4 ). Therefore, the regres-
sion approach is identical to the one - way analysis - of - variance procedure outlined 
in Table  8.4 . 

  PROBLEMS 

       8.1    Consider the regression model  (8.8)  described in Example  8.3 . Graph the 
response function for this model and indicate the role the model parameters 
play in determining the shape of this function.   

    8.2    Consider the regression models described in Example  8.4 .
   a.     Graph the response function associated with Eq.  (8.10) .  
  b.     Graph the response function associated with Eq.  (8.11) .      

    8.3    Consider the delivery time data in Example  3.1 . In Section  4.2.5  noted that 
these observations were collected in four cities, San Diego, Boston, Austin, 
and Minneapolis.
   a.     Develop a model that relates delivery time  y  to cases  x  1 , distance  x  2 , and 

the city in which the delivery was made. Estimate the parameters of the 
model.  

  b.     Is there an indication that delivery site is an important variable?  
  c.     Analyze the residuals from this model. What conclusions can you draw 

regarding model adequacy?      

    8.4    Consider the automobile gasoline mileage data in Table  B.3 .
   a.     Build a linear regression model relating gasoline mileage  y  to engine dis-

placement  x  1  and the type of transmission  x  11 . Does the type of transmis-
sion signifi cantly affect the mileage performance?  

  b.     Modify the model developed in part a to include an interaction between 
engine displacement and the type of transmission. What conclusions can 
you draw about the effect of the type of transmission on gasoline mileage? 
Interpret the parameters in this model.      
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    8.5    Consider the automobile gasoline mileage data in Table  B.3 .
   a.     Build a linear regression model relating gasoline mileage  y  to vehicle 

weight  x  10  and the type of transmission  x  11 . Does the type of transmission 
signifi cantly affect the mileage performance?  

  b.     Modify the model developed in part a to include an interaction between 
vehicle weight and the type of transmission. What conclusions can you 
draw about the effect of the type of transmission on gasoline mileage? 
Interpret the parameters in this model.      

    8.6    Consider the National Football League data in Table  B.1 . Build a linear 
regression model relating the number of games won to the yards gained 
rushing by opponents  x  8 , the percentage of rushing plays  x  7 , and a modifi ca-
tion of the turnover differential  x  5 . Specifi cally let the turnover differential 
be an indicator variable whose value is determined by whether the actual 
turnover differential is positive, negative, or zero. What conclusions can you 
draw about the effect of turnovers on the number of games won?   

    8.7     Piecewise Linear Regression.  In Example  7.3  we showed how a linear regres-
sion model with a change in slope at some point  t  ( x  min     <     t     <     x  max ) could be 
fi tted using splines. Develop a formulation of the piecewise linear regression 
model using indicator variables. Assume that the function is continuous at 
point  t.    

    8.8     Continuation of Problem 8.7.  Show how indicator variables can be used to 
develop a piecewise linear regression model with a discontinuity at the join 
point  t.    

    8.9    Suppose that a one - way analysis of variance involves four treatments but that 
a different number of observations (e.g.,  n i  ) has been taken under each treat-
ment. Assuming that  n  1     =    3,  n  2     =    2,  n  3     =    4, and  n  4     =    3, write down the  y  vector 
and  X  matrix for analyzing these data as a multiple regression model. Are 
any complications introduced by the unbalanced nature of these data?   

    8.10     Alternate Coding Schemes for tbe Regression Approach to Analysis of 
Variance.  Consider Eq.  (8.18) , which represents the regression model corre-
sponding to an analysis of variance with three treatments and  n  observations 
per treatment. Suppose that the indicator variables  x  1  and  x  2  are defi ned as

      

x1

1 1

1= −
if observation is from treatment 

if observation is ffrom treatment 

otherwise

2

0

⎧
⎨
⎪

⎩⎪  

      

x2

1 2

1= −
if observation is from treatment 

if observation is ffrom treatment 

otherwise

3

0

⎧
⎨
⎪

⎩⎪  

   a.     Show that the relationship between the parameters in the regression and 
analysis - of - variance models is
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β μ μ μ μ0

1 2 3

3
=

+ +
=

    

β μ μ β μ μ1 1 2 2= − = −,    

  b.     Write down the  y  vector and  X  matrix.  
  c.     Develop an appropriate sum of squares for testing the hypothesis 

 H  0 :   τ   1     =      τ   2     =      τ   3     =    0. Is this the usual treatment sum of squares in the one -
 way analysis of variance?      

    8.11    Montgomery  [2009]  presents an experiment concerning the tensile strength 
of synthetic fi ber used to make cloth for men ’ s shirts: The strength is thought 
to be affected by the percentage of cotton in the fi ber. The data are shown 
below. 

   Percentage of Cotton      Tensile Strength  

  15    7    7    15    11    9  
  20    12    17    12    18    18  
  25    14    18    18    19    19  
  30    19    25    22    19    23  
  35    7    10    11    15    11  

    a.     Write down the  y  vector and  X  matrix for the corresponding regression 
model.  

  b.     Find the least - squares estimates of the model parameters.  
  c.     Find a point estimate of the difference in mean strength between 15% and 

25% cotton.  
  d.     Test the hypothesis that the mean tensile strength is the same for all fi ve 

cotton percentages.      

    8.12     Two - Way Analysis of Variance.  Suppose that two different sets of treatments 
are of interest. Let  y ijk   be the  k th observation level  i  of the fi rst treatment 
type and level  j  of the second treatment type. The two - way analysis - of - 
variance model is

    
yijk i j ij ijk= + + + ( ) +μ τ γ τγ ε

 

   i a j b k n= = =1 2 1 2 1 2, , , , , , , , , , ,… … …  

  where   τ   1  is the effect of level  i  of the fi rst treatment type,   γ  j   is the effect of 
level  j  of the second treatment type, (  τ  γ  )  ij   is an interaction effect between the 
two treatment types, and   ε    ijk   is an NID(0,   σ    2 ) random - error component.
   a.     For the case  a     =     b     =     n     =    2, write down a regression model that corresponds 

to the two - way analysis of variance.  
  b.     What are the  y  vector and  X  matrix for this regression model?  
  c.     Discnss how the regression model could be used to test the hypotheses 

 H  0 :   τ   1     =      τ   2     =    0 (treatment type 1 means are equal),  H  0 :   γ   1     =      γ   2     =    0 (treatment 
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type 2 means are equal), and  H  0 : (  τ  γ   ) 11     =    (  τ  γ   ) 12     =    (  τ  γ   ) 22     =    0 (no interaction 
between treatment types).      

    8.13    Table  B.11  presents data on the quality of Pinot Noir wine.
   a.     Build a regression model relating quality  y  to fl avor  x  4  that incorporates 

the region information given in the last column. Does the region have an 
impact on wine quality?  

  b.     Perform a residual analysis for this model and comment on model 
adequacy.  

  c.     Are there any outliers or infl uential observations in this data set?  
  d.     Modify the model in part a to include interaction terms between fl avor and 

the region variables. Is this model superior to the one you found in part a?      

    8.14    Using the wine quality data from Table  B.11 , fi t a model relating wine quality 
 y  to fl avor  x  4  using region as an allocated code, taking on the values shown 
in the table (1,2,3). Discuss the interpretation of the parameters in this 
model. Compare the model to the one you built using indicator variables in 
Problem 8.13.   

    8.15    Consider the life expectancy data given in Table  B.16 . Create an indicator 
variable for gender. Perform a thorough analysis of the overall average life 
expectancy. Discuss the results of this analysis relative to your previous analy-
ses of these data.   

    8.16    Smith et al.  [1992]  discuss a study of the ozone layer over the Antarctic. These 
scientists developed a measure of the degree to which oceanic phytoplankton 
production is inhibited by exposure to ultraviolet radiation (UVB). The 
response is INHIBIT. The regressors are UVB and SURFACE, which is depth 
below the ocean ’ s surface from which the sample was taken. 

 The data follow. 

   Location     INHIBIT     UVB     SURFACE  

  1    0.00    0.00    Deep  
  2    1.00    0.00    Deep  
  3    6.00    0.01    Deep  
  4    7.00    0.01    Surface  
  5    7.00    0.02    Surface  
  6    7.00    0.03    Surface  
  7    9.00    0.04    Surface  
  8    9.50    0.01    Deep  
  9    10.00    0.00    Deep  

  10    11.00    0.03    Surface  
  11    12.50    0.03    Surface  
  12    14.00    0.01    Deep  
  13    20.00    0.03    Deep  
  14    21.00    0.04    Surface  
  15    25.00    0.02    Deep  
  16    39.00    0.03    Deep  
  17    59.00    0.03    Deep  

 Perform an analysis of these data. Discuss your results.   
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    8.17    Table  B.17  contains hospital patient satisfaction data. Fit an appropriate 
regression model to the satisfaction response using age and severity as the 
regressors and account for the medical versus surgical classifi cation of each 
patient with an indicator variable. Has adding the indicator variable improved 
the model? Is that any evidence to support a claims that medical and surgical 
patients differ in their satisfaction?   

    8.18    Consider the fuel consumption data in Table  B.18 . Regressor  x  1  is an indicator 
variable. Perform a thorough analysis of these data. What conclusions do you 
draw from this analysis?   

    8.19    Consider the wine quality of young red wines data in Table  B.19 . Regressor 
 x  1  is an indicator variable. Perform a thorough analysis of these data. What 
conclusions do you draw from this analysis?   

    8.20    Consider the methanol oxidation data in Table  B.20 . Perform a thorough 
analysis of these data. What conclusions do you draw from this analysis?        
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  CHAPTER 9 

MULTICOLLINEARITY     

    9.1    INTRODUCTION 

 The use and interpretation of a multiple regression model often depends explicitly 
or implicitly on the estimates of the individual regression coeffi cients. Some exam-
ples of inferences that are frequently made include the following:

   1.     Identifying the relative effects of the regressor variables  
  2.     Prediction and/or estimation  
  3.     Selection of an appropriate set of variables for the model    

 If there is no linear relationship between the regressors, they are said to be 
 orthogonal . When the regressors are orthogonal, inferences such as those illustrated 
above can be made relatively easily. Unfortunately, in most applications of regres-
sion, the regressors are not orthogonal. Sometimes the lack of orthogonality is not 
serious. However, in some situations the regressors are nearly perfectly linearly 
related, and in such cases the inferences based on the regression model can be 
misleading or erroneous. When there are  near - linear dependencies  among the 
regressors, the problem of  multicollinearity  is said to exist. 

 This chapter will extend the preliminary discussion of multicollinearity begun in 
Chapter  3  and discuss a variety of problems and techniques related to this problem. 
Specifi cally we will examine the causes of multicollinearity, some of its specifi c 
effects on inference, methods of detecting the presence of multicollinearity, and 
some techniques for dealing with the problem.  

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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   9.2    SOURCES OF MULTICOLLINEARITY 

 We write the multiple regression model as

   y X= +b e  

  where  y  is an  n     ×    1 vector of responses,  X  is an  n     ×     p  matrix of the regressor vari-
ables,   β   is a  p     ×    1 vector of unknown constants, and  ε  is an  n     ×    1 vector of random 
errors, with  ε   i      ∼    NID(0,   σ   2 ). It will be convenient to assume that the regressor vari-
ables and the response have been centered and scaled to unit length, as in Section 
 3.9 . Consequently,  X ′ X  is a  p     ×     p  matrix of correlations  †   between the regressors and 
 X ′ y  is a  p     ×    1 vector of correlations between the regressors and the respouse. 

 Let the  j th column of the  X  matrix be denoted  X   j  , so that  X     =    [ X  1 ,  X  2 ,    . . .    ,  X   p  ]. 
Thus,  X   j   contains the  n  levels of the  j th regressor variable. We may formally defi ne 
multicollinearity in terms of the linear dependence of the columns of  X . The vectors 
 X  1 ,  X  2 ,    . . .    ,  X   p   are linearly dependent if there is a set of constants  t  1 ,  t  2 ,    . . .    ,  t p  , not 
all zero, such that  ‡  

    t j j

j

p

X 0
=

∑ =
1

    (9.1)   

 If Eq.  (9.1)  holds exactly for a subset of the columns of  X , then the rank of the  X ′ X  
matrix is less than  p  and ( X  ′  X )  − 1  does not exist. However, suppose that Eq.  (9.1)  is 
approximately true for some subset of the columns of  X . Then there will be a near -
 linear dependency in  X  ′  X  and the problem of multicollinearity is said to exist. Note 
that multicollinearity is a form of ill - conditioning in the  X  ′  X  matrix. Furthermore, 
the problem is one of degree, that is, every data set will suffer from multicollinearity 
to some extent unless the columns of  X  are orthogonal ( X  ′  X  is a diagonal matrix). 
Generally this will happen only in a designed experiment. As we shall see, the pres-
ence of multicollinearity can make the usual least - squares analysis of the regression 
model dramatically inadequate. 

 There are four primary  sources of multicollinearity :

   1.     The data collection method employed  
  2.     Constraints on the model or in the population  
  3.     Model specifi cation  
  4.     An overdefi ned model    

 It is important to understand the differences among these sources of multicol-
linearity, as the recommendations for analysis of the data and interpretation of 
the resulting model depend to some extent on the cause of the problem (see 
Mason, Gunst, and Webster [ 1975 ] for further discussion of the source of 
multicollinearity). 

   ‡       If the regressors are not centered, then 0 in Eq.  (9.1)  becomes a vector of constants  m , not all necessarily 
equal to 0. 

   †       It is customary to refer to the off - diagonal elements of  X  ′  X  as correlation coeffi cients, although the 
regressors are not necessarily random variables. 
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 The  data collection method  can lead to multicollinearity problems when the 
analyst samples only a subspace of the region of the regressors defi ned (approxi-
mately) by Eq.  (9.1) . For example, consider the soft drink delivery time data dis-
cussed in Example 3.1. The space of the regressor variables  “ cases ”  and  “ distance, ”  
as well as the subspace of this region that has been sampled, is shown in the matrix 
of scatterplots, Figure  3.4 . Note that the sample (cases, distance) pairs fall approxi-
mately along a straight line. In general, if there are more than two regressors, the 
data will lie approximately along a hyperplace defi ned by Eq.  (9.1) . In this example, 
observations with a small number of cases generally also have a short distance, while 
observations with a large number of cases usually also have a long distance. Thus, 
cases and distance are positively correlated, and if this positive correlation is strong 
enough, a multicollinearity problem will occur. Multicollinearity caused by the 
sampling technique is not inherent in the model or the population being sampled. 
For example, in the delivery time problem we could collect data with a small number 
of cases and a long distance. There is nothing in the physical structure of the problem 
to prevent this.. 

  Constraints  on the model or in the population being sampled can cause multicol-
linearity. For example, suppose that an electric utility is investigating the effect of 
family income ( x  1 ) and house size ( x  2 ) on residential electricity consumption. The 
levels of the two regressor variables obtained in the sample data are shown in Figure 
 9.1 . Note that the data lie approximately along a straight line, indicating a potential 
multicollinearity problem. In this example a physical constraint in the population 
has caused this phenomenon, namely, families with higher incomes generally have 
larger homes than families with lower incomes. When physical constraints such as 
this are present, multicollinearity will exist  regardless  of the sampling method 
employed. Constraints often occur in problems involving production or chemical 
processes, where the regressors are the components of a product, and these compo-
nents add to a constant.   

       Figure 9.1     Levels of family income and house size for a study on residential electricity 
consumption.  

1,000
0

4,000

8,000

12,000

16,000

20,000

24,000

28,000

32,000

36,000

40,000

44,000

48,000

52,000

2,000

House size, x2 (square feet)

 F
a
m

ily
 i
n
c
o
m

e
, 
x 1

 (
$
/y

e
a
r)

3,000 4,000



288  MULTICOLLINEARITY

 Multicollinearity may also be induced by the  choice of model . For example, we 
know from Chapter  7  that adding polynomial terms to a regression model causes 
ill - conditioning in  X  ′  X . Furthermore, if the range of  x  is small, adding an  x  2  term 
can result in signifi cant multicollinearity. We often encounter situations such as these 
where two or more regressors are nearly linearly dependent, and retaining all these 
regressors may contribute to multicollinearity. In these cases some subset of the 
regressors is usually preferable from the standpoint of multicollinearity. 

 An  overdefi ned model  has more regressor variables than observations. These 
models are sometimes encountered in medical and behavioral research, where there 
may be only a small number of subjects (sample units) available, and information 
is collected for a large number of regressors on each subject. The usual approach to 
dealing with multicollinearity in this context is to eliminate some of the regressor 
variables from consideration. Mason, Gunst, and Webster [ 1975 ] give three specifi c 
recommendations: (1) redefi ne the model in terms of a smaller set of regressors, 
(2) perform preliminary studies using only subsets of the original regressors, and 
(3) use principal - component - type regression methods to decide which regressors to 
remove from the model. The fi rst two methods ignore the interrelationships between 
the regressors and consequently can lead to unsatisfactory results. Principal -
 component regression will be discussed in Section  9.5.4 , although not in the context 
of overdefi ned models.  

   9.3    EFFECTS OF MULTICOLLINEARITY 

 The presence of multicollinearity has a number of potentially serious effects on the 
least - squares estimates of the regression coeffi cients. Some of these effects may be 
easily demonstrated. Suppose that there are ouly two regressor variables,  x  1  and  x  2 . 
The model, assuming that  x  1 ,  x  2 , and  y  are scaled to unit length, is

   y x x= + +β β ε1 1 2 2  

  and the least - squares normal equations are

   ′( ) = ′X X X yb̂  

   
1

1
12

12
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  where  r  12  is the simple correlation between  x  1  and  x  2  and  r jy   is the simple correlation 
between  x j   and  y ,  j     =    1, 2. Now the inverse of ( X  ′  X ) is

    C X X= ′( ) =
−
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    (9.2)  

  and the estimates of the regression coeffi cients are
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 If there is strong multicollinearity between  x  1  and  x  2 , then the correlation coeffi cient 
 r  12  will be large. From Eq.  (9.2)  we see that as | r  12 |    →    1,   Var β̂ σj jjC( ) = → ∞2  and 
  Cov ˆ , ˆβ β σ1 2 12

2( ) = → ±∞C  depending on whether  r  12     →     + 1 or  r  12     →     − 1. Therefore, 
strong multicollinearity between  x  1  and  x  2  results in  large variances and covariances  
for the least - squares estimators of the regression coeffi cients.  †   This implies that dif-
ferent samples taken at the same  x  levels could lead to widely different estimates 
of the model parameters. 

 When there are more than two regressor variables, multicollinearity produces 
similar effects. It can be shown that the diagonal elements of the  C     =    ( X  ′  X )  − 1  
matrix are

    C
R

j pjj
j

=
−

=
1

1
1 2

2
, , , ,…     (9.3)  

  where   Rj
2 is the coeffi cient of multiple determination from the regression of  x j   on 

the remaining  p     −    1 regressor variables. If there is strong multicollinearity between 
 x j   and any subset of the other  p     −    1, regressors, then the value of   Rj

2 will be close 
to unity. Since the variance of   β̂ j is   Var β̂ σ σj jj jC R( ) = = −( )−2 2 1 21 , strong multicol-
linearity implies that the variance of the least - squares estimate of the regression 
coeffi cient   β  j   is very large. Generally, the covariance of   β̂i and   β̂ j will also be large 
if the regressors  x i   and  x j   are involved in a multicollinear relationship. 

 Multicollinearity also tends to produce least - squares estimates   β̂ j that are  too 
large  in absolute value. To see this, consider the squared distance from   b̂  to the true 
parameter vector   β  , for example,

   L1
2 = −( )′ −( )ˆ ˆb b b b   

 The expected squared distance,   E L1
2( ), is

    

E L E E j j

j

p

j

j

p

1
2

2

1

1

2

( ) = −( )′ −( ) = −( )

= ( ) = ′

=

=

∑

∑

ˆ ˆ ˆ

ˆ

b b b b β β

β σVar Tr X XX( )−1

    

(9.4)  

  where the trace of a matrix (abbreviated Tr) is just the sum of the main diagonal 
elements. When there is multicollinearity present, some of the eigenvalues of  X  ′  X  
will be small. Since the trace of a matrix is also equal to the sum of its eigenvalues, 
Eq.  (9.4)  becomes

    E L
jj

p

1
2 2

1

1( ) =
=

∑σ
λ

    (9.5)  

   †       Multlcollinearity is not the only cause of large variances and covariances of regression coeffi cients. 
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  where   λ  j      >    0,  j     =    1, 2,    . . .    ,  p , are the eigenvalues of  X  ′  X . Thus, if the  X  ′  X  matrix is 
ill - conditioned because of multicollinearity, at least one of the   λ  j   will be small, and 
Eq.  (9.5)  implies that the distance from the least - squares estimate   b̂ to the true 
parameters   β   may be large. Equivalently we can show that

   E L E E1
2 2( ) = −( )′ −( ) = ′ − ′ + ′( )ˆ ˆ ˆ ˆ ˆb b b b b b b b b b  

  or

   E ˆ ˆ′( ) = ′ + ′( )−b b b b σ 2 1Tr X X   

 That is, the vector   b̂ is generally longer than the vector   β  . This implies that the 
method of least squares produces estimated regression coeffi cients that are too large 
in absolute value. 

 While the method of least squares will generally produce poor estimates of the 
individual model parameters when strong multicollinearity is present, this does not 
necessarily imply that the fi tted model is a poor predictor. If predictions are confi ned 
to regions of the  x  space where the multicollinearity holds approximately, the fi tted 
model often produces satisfactory predictions. This can occur because the linear 
combination   ∑ =j

p
j ijx1 β  may be estimated quite well, even though the individual 

parameters   β  j   are estimated poorly. That is, if the original data lie approximately 
along the hyperplane defi ned by Eq.  (9.1) , then future observations that also lie near 
this hyperplane can often be precisely predicted despite the inadequate estimates 
of the individual model parameters.  

 Example 9.1   The Acetylene Data 

    Table  9.1  presents data concerning the percentage of conversion of  n  - heptane to 
acetylene and three explanatory variables (Himmelblau [ 1970 ], Kunugi, Tamura, 
and Naito [ 1961 ], and Marquardt and Snee [ 1975 ]). These are typical chemical 
process data for which a full quadratic response surface in all three regressors is 
often considered to be an appropriate tentative model. A plot of contact time versus 
reactor temperature is shown in Figure  9.2 . Since these two regressors are highly 
correlated, there are potential multicollinearity problems in these data.     

 The full quadratic model for the acetylene data is

   
P T H C TH TC HC

T H C

= + + + + + +
+ + + +
γ γ γ γ γ γ γ

γ γ γ ε
0 1 2 3 12 13 23

11
2

22
2

33
2

 

  where

   P = percentage of conversion  

   T =
−temperature 1212 50

80 623
.

.
 

   H
n

= ( ) −H -heptane2 12 44
5 662

.
.
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  TABLE 9.1    Acetylene Data for Example  9.1  

   Observation  

   Conversion of 
 n  - Heptane to 

Acetylene (%)  
   Reactor 

Temperature ( ° C)  

   Ratio of H 2  to 
 n  - Heptane 

(mole ratio)  
   Contact Time 

(sec)  

  1    49.0    1300    7.5    0.0120  
  2    50.2    1300    9.0    0.0120  
  3    50.5    1300    11.0    0.0115  
  4    48.5    1300    13.5    0.0130  
  5    47.5    1300    17.0    0.0135  
  6    44.5    1300    23.0    0.0120  
  7    28.0    1200    5.3    0.0400  
  8    31.5    1200    7.5    0.0380  
  9    34.5    1200    11.0    0.0320  

  10    35.0    1200    13.5    0.0260  
  11    38.0    1200    17.0    0.0340  
  12    38.5    1200    23.0    0.0410  
  13    15.0    1100    5.3    0.0840  
  14    17.0    1100    7.5    0.0980  
  15    20.5    1100    11.0    0.0920  
  16    29.5    1100    17.0    0.0860  

       Figure 9.2     Contact time versus reactor temperature, acetylene data.  (From Marquardt and 
Snee [ 1975 ], with permission of the publisher.)   
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  and

   C =
−contact time 0 0403

0 03164
.

.
  

 Each of the original regressors has been scaled using the unit normal scaling of 
Section  3.9  [subtracting the average (centering) and dividing by the standard devia-
tion. The squared and cross - product terms are generated from the scaled linear 
terms. As we noted in Chapter  7 , centering the linear terms is helpful in removing 
nonessential ill - conditioning when fi tting polynomials. The least - squares fi t is

   
ˆ . . . . . .

.

P T H C TH TC

HC

= + + − − −
− −
35 897 4 019 2 781 8 031 6 457 26 982

3 768 12.. . .54 0 973 11 5942 2 2T H C− −
  

 The summary statistics for this model are displayed in Table  9.2 . The regression 
coeffi cients are reported in terms of both the original centered regressors and stan-
dardized regressors.   

 The fi tted values for the six points ( A ,  B ,  E ,  F ,  I , and  J ) that defi ne the boundary 
of the regressor variable hull of contact time and reactor temperature are shown in 
Figure  9.3  along with the corresponding observed values of percentage of conver-
sion. The predicted and observed values agree very closely; consequently, the model 
seems adequate for interpolation within the range of the original data. Now consider 
using the model for extrapolation. Figure  9.3  (points  C ,  D ,  G , and  H ) also shows 
predictions made at the corners of the region defi ned by the range of the original 
data. These points represent relatively mild extrapolation, since the original ranges 
of the regressors have not been exceeded. The predicted conversions at three of the 
four extrapolation points are negative, an obvious impossibility. It seems that the 
least - squares model fi ts the data reasonably well but extrapolates very poorly. A 
likely cause of this in view of the strong apparent correlation between contact time 
and reactor temperature is multicollinearity. In general, if a model is to extrapolate 
well, good estimates of the individual coeffi cients are required. When multicollinear-
ity is suspected, the least - squares estimates of the regression coeffi cients may be 
very poor. This may seriously limit the usefulness of the regression model for infer-
ence and prediction.        ■      

   9.4    MULTICOLLINEARITY DIAGNOSTICS 

 Several techniques have been proposed for  detecting multicollinearity . We will now 
discuss and illustrate some of these diagnostic measures. Desirable characteristics 
of a diagnostic procedure are that it directly refl ect the degree of the multicollinear-
ity problem and provide information helpful in determining which regressors are 
involved. 

   9.4.1    Examination of the Correlation Matrix 

 A very simple measure of multicollinearity is inspection of the off - diagonal ele-
ments  r ij   in  X ′ X . If regressors  x i   and  x j   are nearly linearly dependent, then | r ij  | will 
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  TABLE 9.2    Summary Statistics for the Least - Squares Acetylene Model 

  Term  
  Regression 
Coeffi cient    Standard Error     t  0   

  Standardized 
Regression Coeffi cient  

   Intercept     35.8971     1.0903     32.93       
   T     4.0187    4.5012    0.89    0.3377  
   H     2.7811    0.3074    9.05    0.2337  
   C      − 8.0311    6.0657     − 1.32     − 0.6749  
   TH      − 6.4568    1.4660     − 4.40     − 0.4799  
   TC      − 26.9818    21.0224     − 1.28     − 2.0344  
   HC      − 3.7683    1.6554     − 2.28     − 0.2657  
   T  2      − 12.5237    12.3239     − 1.02     − 0.8346  
   H  2      − 0.9721    0.3746     − 2.60     − 0.0904  
   C  2      − 11.5943    7.7070     − 1.50     − 1.0015  

    MS  Res     =    0.8126,  R  2     =    0.998,  F  0     =    289.72.  
  When the response is standardized,  MS  Res     =    0.00038 for the least - squares model.   

       Figure 9.3     Predictions of percentage of conversion within the range of the data and extrapo-
lation for the least - squares acetylene model.  (Adapted from Marquardt and Snee [ 1975 ], with 
permission of the publisher.)   
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be near unity. To illustrate this procedure, consider the acetylene data from Example 
 9.1 . Table  9.3  shows the nine regressor variables and the response in standardized 
form; that is, each of the variables has been centered by subtracting the mean for 
that variable and dividing by the square root of the corrected sum of squares for 
that variable. The  X  ′  X  matrix in correlation form for the acetylene data is

      ′ =

− − − −

X X
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 The  X  ′  X  matrix reveals the high correlation between reactor temperature ( x  1 ) and 
contact time ( x  3 ) suspected earlier from inspection of Figure  9.2 , since  r  13     =     − 0.958. 
Furthermore, there are other large correlation coeffi cients between  x  1  x  2  and  x  2  x  3 , 
 x  1  x  3  and   x1

2, and   x1
2 and   x3

2. This is not surprising as these variables are generated 
from the linear terms and they involve the highly correlated regressors  x  1  and  x  3 . 
Thus, inspection of the correlation matrix indicates that there are several near - linear 
dependencies in the acetylene data. 

 Examining the simple correlations  r ij   between the regressors is helpful in detect-
ing near - linear dependence between  pairs of regressors  only. Unfortunately, when 
more than two regressors are involved in a near - linear dependence, there is no 
assurance that any of the pairwise correlations  r ij   will be large. As an illustration, 
consider the data in Table  9.4 . These data were artifi cially generated by Webster, 
Gunst, and Mason [ 1974 ]. They required that   ∑ ==j ijx1

4 10 for observations 2 – 12, 
while   ∑ ==j jx1

4
1 11 for observation 1. Regressors 5 and 6 were obtained from a table 

of normal random numbers. The responses  y i   were generated by the relationship

   y x x x x x xi i i i i i i i= + + + − + + +10 2 0 1 0 0 2 2 0 3 0 10 01 2 3 4 5 6. . . . . . ε    

where  ε   i      ∼     N (0, 1). The  X  ′  X  matrix in correlation form for these data is
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 None of the pairwise correlations  r ij   are suspiciously large, and consequently we 
have no indication of the near - linear dependence among the regressors. Generally, 
inspection of the  r ij   is not suffi cient for detecting anything more complex than pair-
wise multicollinearity.  

   9.4.2    Variance Infl ation Factors 

 We observed in Chapter  3  that the diagonal elements of the  C     =    ( X ′ X )  − 1  matrix are 
very useful in detecting multicollinearity. Recall from Eq.  (9.3)  that  C jj  , the  j th 
diagonal element of  C , can be written as   C Rjj j= −( )−

1 2 1
, where   Rj

2 is the coeffi cient 
of determination obtained when  x j   is regressed on the remaining  p     −    1 regressors. 
If  x j   is nearly orthogonal to the remaining regressors,   Rj

2 is small and  C jj   is close to 
unity, while if  x j   is nearly linearly dependent on some subset of the remaining regres-
sors,   Rj

2  is near unity and  C jj   is large. Since the variance of the  j th regression 
coeffi cients is  C jj  σ   2 , we can view  C jj   as the factor by which the variance of   β̂ j is 
increased due to near - linear dependences among the regressors. In Chapter  3  we 
called

   VIFj jj jC R= = −( )−
1 2 1  

  the  variance infl ation factor . This terminology is due to Marquardt [ 1970 ]. The VIF 
for each term in the model measures the combined effect of the dependences among 
the regressors on the variance of that term. One or more large VIFs indicate mul-
ticollinearity. Practical experience indicates that if any of the VIFs exceeds 5 or 10, 
it is an indication that the associated regression coeffi cients are poorly estimated 
because of multicollinearity. 

 The VIFs have another interesting interpretation. The length of the normal 
theory confi dence interval on the  j th regression coeffi cient may be written as

   L C tj jj n p= ( ) − −2 2 1 2
2 1σ α ,  

  TABLE 9.4    Unstandardized Regressor and Response Variables from Webster, Gunst, 
and Mason [ 1974 ] 

   Observation,  i       y i        x i   1       x i   2       x i   3       x i   4       x i   5       x i   6   

  1    10.006    8.000    1.000    1.000    1.000    0.541     − 0.099  
  2    9.737    8.000    1.000    1.000    0.000    0.130    0.070  
  3    15.087    8.000    1.000    1.000    0.000    2.116    0.115  
  4    8.422    0.000    0.000    9.000    1.000     − 2.397    0.252  
  5    8.625    0.000    0.000    9.000    1.000     − 0.046    0.017  
  6    16.289    0.000    0.000    9.000    1.000    0.365    1.504  
  7    5.958    2.000    7.000    0.000    1.000    1.996     − 0.865  
  8    9.313    2.000    7.000    0.000    1.000    0.228     − 0.055  
  9    12.960    2.000    7.000    0.000    1.000    1.380    0.502  

  10    5.541    0.000    0.000    0.000    10.000     − 0.798     − 0.399  
  11    8.756    0.000    0.000    0.000    10.000    0.257    0.101  
  12    10.937    0.000    0.000    0.000    10.000    0.440    0.432  
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  and the length of the corresponding interval based on an  orthogonal reference 
design  with the same sample size and root - mean - square (rms) values [i.e., 
  rms = ∑ −( )=i

n
ij jx x n1

2  is a measure of the spread of the regressor  x j  ] as the original 
design is

   L t n p* ,= − −2 2 1σ α   

 The ratio of these two confi dence intervals is   L L Cj jj* = 1 2. Thus, the square root of 
the  j th VIF indicates how much longer the confi dence interval for the  j th regression 
coeffi cient is because of multicollinearity. 

 The VIFs for the acetylene data are shown in panel A of Table  9.5 . These VIFs 
are the main diagonal elements of ( X  ′  X )  − 1 , assuming that the linear terms in the 
model are centered and the second - order terms are generated directly from the 
linear terms. The maximum VIF is 6565.91, so we conclude that a multicollinearity 
problem exists. Furthermore, the VIFs for several of the other cross - product and 
squared variables involving  x  1  and  x  3  are large. Thus, the VIFs can help identify 
which regressors are involved in the multicollinearity. Note that the VIFs in poly-
nomial models are affected by centering the linear terms. Panel B of Table  9.5  shows 
the VIFs for the acetylene data, assuming that the linear terms are not centered. 
These VIFs are much larger than those for the centered data. Thus centering the 
linear terms in a polynomial model removes some of the nonessential ill - conditioning 
caused by the choice of origin for the regressors.   

 The VIFs for the Webster, Gunst, and Mason data are shown in panel C of Table 
 9.5 . Since the maximum VIF is 297.14, multicollinearity is clearly indicated. Once 
again, note that the VIFs corresponding to the regressors involved in the multicol-
linearity are much larger than those for  x  5  and  x  6 .  

   9.4.3    Eigensystem Analysis of  X  ′  X  

 The characteristic roots or  eigenvalues  of  X  ′  X , say   λ   1 ,   λ   2 ,    . . .    ,   λ  p  , can be used 
to measure the extent of multicollinearity in the data.  †   If there are one or more 

   †       Recall that the eigenvalues of a  p     ×     p  matrix  A  are the  p  roots of the equation | A     −      λ  I|    =    0. Eigenvalues 
are almost always calculated by computer routines. Methods for computing eigenvalues and eigenvectors 
are discussed in Smith et al. [ 1974 ], Stewart [ 1973 ], and Wilkinson [ 1965 ]. 

  TABLE 9.5     VIF  s  for Acetylene Data and Webster, Gunst, and Mason Data 

   Data, (A) 
Acetylene Centered 
Term VIF  

   Data, (B) 
Acetylene Uncentered 

Term VIF  

   Data, (C) 
Webster, Gunst, and 

Mason Term VIF  

   x  1     =    374     x  1     =    2,856,749     x  1     =    181.83  
   x  2     =    1.74     x  2     =    10,956.1     x  2     =    161.40  
   x  3     =    679.11     x  3     =    2,017,163     x  3     =    265.49  

   x  1  x  2     =    31.03     x  1  x  2     =    2,501,945     x  4     =    297.14  
   x  1  x  3     =    6565.91     x  1  x  3     =    65.73     x  5     =    1.74  
   x  2  x  3     =    35.60     x  2  x  3     =    12,667.1     x  6     =    1.44  

    x1
2 1762 58= .       x1

2 9802 9= .       
    x2

2 3 17= .       x2
2 1 428 092= , ,       

    x3
2 1158 13= .       x3

2 240 36= .       

  Maximum VIF    =    6565.91    Maximum VIF    =    2,856,749    Maximum VIF    =    297.14  
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near - linear dependences in the data, then one or more of the characteristic roots 
will be small. One or more small eigenvalues imply that there are near - linear depen-
dences among the columns of  X . Some analysts prefer to examine the  condition 
number  of  X  ′  X , defi ned as

    κ
λ
λ

= max

min

    (9.6)   

 This is just a measure of the spread in the eigenvalue spectrum of  X  ′  X . Generally, 
if the condition number is less than 100, there is no serious problem with multicol-
linearity. Condition numbers between 100 and 1000 imply moderate to strong mul-
ticollinearity, and if   κ   exceeds 1000, severe multicollinearity is indicated. 

 The  condition indices  of the  X  ′  X  matrix are

   κ
λ
λj

j

j p= =max , , , ,1 2 …   

 Clearly the largest condition index is the condition number defi ned in Eq.  (9.6) . The 
number of condition indices that are large (say    ≥    1000) is a useful measure of the 
number of near - linear dependences in  X  ′  X . 

 The eigenvalues of  X  ′  X  for the acetylene data are   λ   1     =    4.2048,   λ   2     =    2.1626, 
  λ   3     =    1.1384,   λ   4     =    1.0413,   λ   5     =    0.3845,   λ   6     =    0.0495,   λ   7     =    0.0136,   λ   8     =    0.0051, and 
  λ   9     =    0.0001. There are four very small eigenvalues, a symptom of seriously ill -
 conditioned data. The condition number is

   κ
λ
λ

= = =max

min

.

.
,

4 2048
0 0001

42 048  

  which indicates severe multicollinearity. The condition indices are

   κ κ κ1 2 3
4 2048
4 2048

1
4 2048
2 1626

1 94
4 2048
1 1384

3 6= = = = = =
.
.

,
.
.

. ,
.
.

. 99  

   κ κ κ4 5 6
4 2048
1 0413

4 04
4 2048
0 3845

10 94
4 2048
0 0495

= = = = =
.
.

. ,
.
.

. ,
.
.

== 84 

   κ κ κ7 8 9
4 2048
0 0136

309 18
4 2048
0 0051

824 47
4 2048
0 0

= = = = =
.
.

. ,
.
.

. ,
.
. 0001

42 048= ,   

 Since one of the condition indices exceeds 1000 (and two others exceed 100), we 
conclude that there is at least one strong near - linear dependence in the acetylene 
data. Considering that  x  1  is highly correlated with  x  3  and the model contains both 
quadratic and cross - product terms in  x  1  and  x  3 , this is, of course, not surprising. 

 The eigenvalues for the Webster, Gunst, and Mason data are   λ   1     =    2.4288, 
  λ   2     =    1.5462,   λ   3     =    0.9221,   λ   4     =    0.7940,   λ   5     =    0.3079, and   λ   6     =    0.0011. The small eigen-
value indicates the near - linear dependence in the data. The condition number is

   κ
λ
λ

= = =max

min

.

.
.

2 4288
0 0011

2188 11  
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  which also indicates strong multicollinearity. Only one condition index exceeds 1000, 
so we conclude that there is only one near - linear dependence in the data. 

  Eigensystem analysis  can also be used to identify the nature of the near - linear 
dependences in data. The  X  ′  X  matrix may be decomposed as

   ′ = ′X X T TL  

  where   Λ   is a  p     ×     p  diagonal matrix whose main diagonal elements are the  eigenval-
ues    λ  j   ( j     =    1, 2,    . . .    ,  p ) of  X  ′  X  and  T  is a  p     ×     p  orthogonal matrix whose columns are 
the eigenvectors of  X  ′  X . Let the columns of  T  be denoted by  t  1 ,  t  2 ,    . . .    ,  t   p  . If the 
eigenvalue   λ  j   is close to zero, indicating a near - linear dependence in the data, the 
elements of the associated eigenvector  t   j   describe the nature of this linear depen-
dence. Specifi cally the elements of the vector  t   j   are the coeffi cients  t  1 ,  t  2 ,    . . .    ,  t p   in 
Eq.  (9.1) . 

 Table  9.6  displays the eigenvectors for the Webster, Gunst, and Mason data. The 
smallest eigenvalue is   λ   6     =    0.0011, so the elements of the eigenvector  t  6  are the coef-
fi cients of the regressors in Eq.  (9.1) . This implies that

   − − − − − −0 44768 0 42114 0 54169 0 57337 0 00605 0 002171 2 3 4 5. . . . . .x x x x x xx6 0=     

 Assuming that  − 0.00605 and  − 0.00217 are approximately zero and rearranging terms 
gives

   x x x x1 2 3 40 941 1 120 1 281� − − −. . .   

 That is, the fi rst four regressors add approximately to a constant. Thus, the elements 
of  t  6  directly refl ect the relationship used to generate  x  1 ,  x  2 ,  x  3 , and  x  4 . 

 Belsley, Kuh, and Welsch [ 1980 ] propose a similar approach for diagnosing mul-
ticollinearity. The  n     ×     p   X  matrix may be decomposed as

   X UDT= ′  

  where  U  is  n     ×     p ,  T  is  p     ×     p ,  U  ′  U     =     I ,  T  ′  T     =     I , and  D  is a  p     ×     p  diagonal matrix with 
nonnegative diagonal elements   μ  ,  j     =    1, 2,    . . .    ,  p . The   μ  j   are called the  singular values  
of  X  and  X     =     UDT  ′  is called the  singular - value decomposition  of  X . The singular -
 value decomposition is closely related to the concepts of eigenvalues and eigenvec-
tors, since  X  ′  X     =    ( UDT  ′ ) ′  UDT  ′     =     TD  2  T  ′     =     T Λ T  ′ , so that the squares of the singular 
values of  X  are the eigenvalues of  X  ′  X . Here  T  is the matrix of eigenvectors of  X  ′  X  

  TABLE 9.6    Eigenvectors for the Webster, Gunst, and Mason Data 

    t  1       t  2       t  3       t  4       t  5       t  6   

   − .39072     − .33968    .67980    .07990     − .25104     − .44768  
   − .45560     − .05392     − .70013    .05769     − .34447     − .42114  

  .48264     − .45333     − .16078    .19103    .45364     − .54169  
  .18766    .73547    .13587     − .27645    .01521     − .57337  

   − .49773     − .09714     − .03185     − .56356    .65128     − .00605  
  .35195     − .35476     − .04864     − .74818     − .43375     − .00217  
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defi ned earlier, and  U  is a matrix whose columns are the eigenvectors associated 
with the  p  nonzero eigenvalues of  XX  ′ . 

 Ill - conditioning in  X  is refl ected in the size of the singular values. There will be 
one small singular value for each near - linear dependence. The extent of ill -
 conditioning depends on how small the singular value is relative to the maximum 
singular value   μ   max . SAS follows Belsley, Kuh, and Welsch [ 1980 ] and defi nes the 
 condition indices  of the  X  matrix as

   η
μ
μj

j

j p= =max , , , ,1 2 …   

 The largest value for   η  j   is the condition number of  X . Note that this approach deals 
directly with the data matrix  X , with which we are principally concerned, not the 
matrix of sums of squares and cross products  X  ′  X . A further advantage of this 
approach is that algorithms for generating the singular - value decomposition are 
more stable numerically than those for eigensystem analysis, although in practice 
this is not likely to be a severe handicap if one prefers the eigensystem approach. 

 The covariance matrix of   b̂  is

   Var b̂( ) = ′( ) = ′− −σ σ2 1 2 1X X T TL  

  and the variance of the  j th regression coeffi cient is the  j th diagonal element of this 
matrix, or

   Var β̂ σ
μ

σ
λj

ji

ii

p
ji

ii

pt t( ) = =
= =
∑ ∑2

2

2
1

2
2

1

  

 Note also that apart from   σ   2 , the  j th diagonal element of  T Λ    − 1  T  ′  is the  j th VIF, so

   VIFj
ji

ii

p
ji

ii

pt t
= =

= =
∑ ∑

2

2
1

2

1μ λ
  

 Clearly, one or more small singular values (or small eigenvalues) can dramatically 
infl ate the variance of   β̂ j. Belsley, Kuh, and Welsch suggest using  variance decom-
position proportions , defi ned as

   π
μ

ij
ji i

j

t
j p= =

2 2

1 2
VIF

, , , ,…  

  as measures of multicollinearity. If we array the   π  ij   in a  p     ×     p  matrix   π  , then the ele-
ments of each column of   π   are just the proportions of the variance of each   β̂ j (or 
each VIF) contributed by the  i th singular value (or eigenvalue). If a high proportion 
of the variance for two or more regression coeffi cients is associated with one small 
singular value, multicollinearity is indicated. For example, if   π   32  aud   π   34  are large, the 
third singular value is associated with a multicollinearity that is infl ating the vari-
ances of   β̂2 and   β̂4 Condition indices greater than 30 and variance decomposition 
proportions greater than 0.5 are recommended guidelines. 
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 Table  9.7  displays the condition indices of  X  (  η  j  ) and the variance - decomposition 
proportions (the   π  ij  ) for the Webster, Gunst, and Mason data. In panel A of this 
table we have centered the regressors so that these variables are (  x xij j− ),  j     =    1, 
2,    . . .    ,6. In Section  9.4.2  we observed that the VIFs in a polynomial model are 
affected by centering the linear terms in the model before generating the higher 
order polynomial terms. Centering will also affect the variance decomposition pro-
portions (and also the eigenvalues and eigenvectors). Essentially, centering removes 
any nonessential ill - conditioning resulting from the intercept.   

 Notice that there is only one large condition index (  η   6     =    46.86    >    30), so there is 
one dependence in the columns of  X . Furthermore, the variance decomposition 
proportions   π   61 ,   π   62 ,   π   63 , and   π   64  all exceed 0.5, indicating that the fi rst four regressors 
are involved in a multicollinear relationship. This is essentially the same information 
derived previously from examining the eigenvalues. 

 Belsley, Kuh, and Welsch [ 1980 ] suggest that the regressors should be scaled to 
unit length but not centered when computing the variance decomposition propor-
tions so that the role of the intercept in near - linear dependences can be diagnosed. 
This option is displayed in panel B of Table  9.7 . Note that the effect of this is to 
increase the spread in the eigenvalues and make the condition indices larger. 

 There is some controversy about whether regression data should be centered 
when diagnosing multicollinearity using either the eigensystem analysis or the vari-
ance decomposition proportion approach. Centering makes the intercept orthogo-
nal to the other regressors, so we can view centering as an operation that removes 
ill - conditioning that is due to the model ’ s constant term. If the intercept has no 
physical interpretation (as is the case in many applications of regression in engineer-
ing and the physical sciences), then ill - conditioning caused by the constant term is 
truly  “ nonessential, ”  and thus centering the regressors is entirely appropriate. 

  TABLE 9.7    Variance Decomposition Proportions for the Webster, Gunst, and Mason 
[ 1974 ] Data 

   Number     Eigenvalue  
   Condition 

Indices       

   Variance Decomposition Proportions  

    X  1       X  2       X  3       X  4       X  5       X  6   

   A. Regressors Centered   

  1    2.42879    1.00000        0.0003    0.0005    0.0004    0.0000    0.0531    0.0350  
  2    1.54615    1.25334        0.0004    0.0000    0.0005    0.0012    0.0032    0.0559  
  3    0.92208    1.62297        0.0028    0.0033    0.0001    0.0001    0.0006    0.0018  
  4    0.79398    1.74900        0.0000    0.0000    0.0002    0.0003    0.2083     004845   
  5    0.30789    2.80864        0.0011    0.0024    0.0025    0.0000    0.7175    004199  
  6    0.00111    46.86052        0.9953    0.9937    0.9964    0.9984    0.0172    0.0029  

   B. Regressors Not Centered   

  1    2.63287    1.00000    0.0001    0.0003    0.0003    0.0001    0.0001    0.0217    0.0043  
  2    1.82065    1.20255    0.0000    0.0001    0.0002    0.0005    0.0000    0.0523    0.0949  
  3    1.03335    159622    0.0000    0.0002    0.0000    0.0002    0.0013    0.0356    0.1010  
  4    0.65826    1.99994    0.0000    0.0005    0.0000    0.0005    0.0003    0.1906    0.3958  
  5    0.60573    2.08485    0.0000    0.0025    0.0035    0.0001    0.0001    0.0011    0.0002  
  6    0.24884    3.25280    0.0000    0.0012    0.0023    0.0028    0.0000    0.6909    0.4003  
  7    0.00031    92.25341    0.9999    0.9953    0.9936    0.9959    0.9983    0.0178    0.0034  
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However, if the intercept has interpretative value, then centering is not the best 
approach. Clearly the answer to this question is problem specifi c. For excellent 
discussions of this point, see Brown [ 1977 ] and Myers [ 1990 ].  

   9.4.4    Other Diagnostics 

 There are several other techniques that are occasionally useful in diagnosing mul-
ticollinearity. The  determinant  of  X  ′  X  can be used as an index of multicollinearity. 
Since the  X  ′  X  matrix is in correlation form, the possible range of values of the 
determinant is 0    ≤    | X  ′  X |    ≤    1. If | X  ′  X |    =    1, the regressors are orthogonal, while if 
| X  ′  X |    =    0, there is an exact linear dependence among the regressors. The degree of 
multicollinearity becomes more severe as | X  ′  X | approaches zero. While this measure 
of multicollinearity is easy to apply, it does not provide any information on the 
source of the multicollinearity. 

 Willan and Watts [ 1978 ] suggest another interpretation of this diagnostic. The 
joint 100(1    −      α  ) percent confi dence region for   β   based on the observed data is

   b b b b−( )′ ′ −( ) ≤ − −
ˆ ˆ ˆ , ,X X p F p n pσ α

2
1
 

  while the corresponding confi dence region for   b̂  based on the orthogonal reference 
design described earlier is

   b b b b−( )′ −( ) ≤ − −
ˆ ˆ ˆ , ,p F p n pσ α

2
1   

 The orthogonal reference design produces the smallest joint confi dence region for 
fi xed sample size and rms values and a given   α  . The ratio of the volumes of the two 
confi dence regions is | X  ′  X | 1/2 , so that | X  ′  X | 1/2  measures the loss of estimation power 
due to multicollinearity. Put another way, 100(| X  ′  X | 1/2     −    1) refl ects the percentage 
increase in the volume of the joint confi dence region for   β   because of the near - linear 
dependences in  X . For example, if | X  ′  X |    =    0.25, then the volume of the joint confi -
dence region is 100[(0.25)  − 1/2     −    1]    =    100% larger than it would be if an orthogonal 
design had been used. 

 The  F  statistic for signifi cance of regression and the individual  t  (or partial  F ) 
statistics can sometimes indicate the presence of multicollinearity. Specifi cally, if the 
overall  F  statistic is signifi cant but the individual  t  statistics are all nonsignifi cant, 
multicollinearity is present. Unfortunately, many data sets that have signifi cant 
multicollinearity will not exhibit this behavior, and so the usefulness of this measure 
of multicollinearity is questionable. 

 The  signs  and  magnitudes  of the regression coeffi cients will sometimes provide 
an indication that multicollinearity is present. In particular, if adding or removing 
a regressor produces large changes in the estimates of the regression coeffi cients, 
multicollinearity is indicated. If the deletion of one or more data points results in 
large changes in the regression coeffi cients, there may be multicollinearity present. 
Finally, if the signs or magnitudes of the regression coeffi cients in the regression 
model are contrary to prior expectation, we should be alert to possible multicol-
linearity. For example, the least - squares model for the acetylene data has large 
standardized regression coeffi cients for the  x  1  x  3  interaction and for the squared 
terms   x1

2 and   x3
2. It is somewhat unusual for quadratic models to display large regres-
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sion coeffi cients for the higher order terms, and so this may be an indication of 
multicollinearity. However, one should be cautious in using the signs and magni-
tudes of the regression coeffi cients as indications of multicollinearity, as many seri-
ously ill - conditioned data sets do not exhibit behavior that is obviously unusual in 
this respect. 

 We believe that the VIFs and the procedures based on the eigenvalues of  X  ′  X  
are the best currently available multicollinearity diagnostics. They are easy to 
compute, straightforward to interpret, and useful in investigating the specifi c nature 
of the multicollinearity. For additional information on these and other methods of 
detecting multicollinearity, see Belsley, Kuh, and Welsch [ 1980 ], Farrar and Glauber 
[1997], and Willan and Watts [ 1978 ].  

   9.4.5     SAS  and R Code for Generating Multicollinearity Diagnostics 

 The appropriate SAS code for generating the multicollinearity diagnostics for the 
acetylene data is

 proc reg;
model conv  =  t h c t2 h2 · c2 th tc hc / corrb vif collin;  

 The corrb option prints the variance – covariance matrix of the estimated coeffi cients 
in correlation form. The vif option prints the VIFs. The collin option prints the 
singular - value analysis including the condition numbers and the variance decompo-
sition proportions. SAS uses the singular values to compute the condition numbers. 
Some other software packages use the eigenvalues, which are the squares of the sin-
gular values. The collin option includes the effect of the intercept on the diagnostics. 
The option collinoint performs the singular - value analysis excluding the intercept. 

 The collinearity diagnostics in R require the packages  “ perturb ”  and  “ car ” . The 
R code to generate the collinearity diagnostics for the delivery data is:

 deliver.model  <  -  lm(time ∼ cases + dist, data = deliver)
print(vif(deliver.model))
print(colldiag(deliver.model))    

   9.5    METHODS FOR DEALING WITH MULTICOLLINEARITY 

 Several techniques have been proposed for dealing with the problems caused by 
multicollinearity. The general approaches include collecting additional data, model 
respecifi cation, and the use of estimation methods other than least squares that are 
specifi cally designed to combat the problems induced by multicollinearity. 

   9.5.1    Collecting Additional Data 

 Collecting additional data has been suggested as the best method of combating 
multicollinearity (e.g., see Farrar and Glauber [ 1967 ] and Silvey [ 1969 ]). The addi-
tional data should be collected in a manner designed to break up the multicollinear-
ity in the existing data. For example, consider the delivery time data fi rst introduced 
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Example 3.1. A plot of the regressor cases ( x  1 ) versus distance ( x  2 ) is shown in the 
matrix of scatterplots, Figure  3.4 . We have remarked previously that most of these 
data lie along a line from low values of cases and distance to high values of cases 
and distance, and consequently there may be some problem with multicollinearity. 
This could be avoided by collecting some additional data at points designed to break 
up any potential multicollinearity, that is, at points where cases are small and dis-
tance is large and points where cases are large and distance is small. 

 Unfortunately, collecting additional data is not always possible because of  eco-
nomic constraints  or because the process being studied is  no longer available  for 
sampling. Even when additional data are available it may be inappropriate to use 
if the new data extend the range of the regressor variables far beyond the analyst ′ s 
region of interest. Furthermore, if the new data points are unusual or atypical of the 
process being studied, their presence in the sample could be highly infl uential on 
the fi tted model. Finally, note that collecting additional data is not a viable solution 
to the multicollinearity problem when the multicollinearity is due to constraints on 
the model or in the population. For example, consider the factors family income ( x  1 ) 
and house size ( x  2 ) plotted in Figure  9.1 . Collection of additional data would be of 
little value here, since the relationship between family income and house size is a 
structural characteristic of the population. Virtually all the data in the population 
will exhibit this behavior.  

   9.5.2    Model Respecifi cation 

 Multicollinearity is often caused by the choice of model, such as when two highly 
correlated regressors are used in the regression equation. In these situations some 
 respecifi cation  of the regression equation may lessen the impact of multicollinearity. 
One approach to model respecifi cation is to redefi ne the regressors. For example, if 
 x  1 ,  x  2 , and  x  3  are nearly linearly dependent, it may be possible to fi nd some function 
such as  x     =    ( x  1     +     x  2 )/ x  3  or  x     =     x  1  x  2  x  3  that preserves the information content in the 
original regressors but reduces the ill - conditioning. 

 Another widely used approach to model respecifi cation is  variable elimination . 
That is, if  x  1 ,  x  2  and  x  3  are nearly linearly dependent, eliminating one regressor (say 
 x  3 ) may be helpful in combating multicollinearity. Variable elimination is often a 
highly effective technique. However, it may not provide a satisfactory solution if the 
regressors dropped from the model have signifi cant explanatory power relative to 
the response  y . That is, eliminating regressors to reduce multicollinearity may 
damage the predictive power of the model. Care must be exercised in variable selec-
tion because many of the selection procedures are seriously distorted by multicol-
linearity, and there is no assurance that the fi nal model will exhibit any lesser degree 
of multicollinearity than was present in the original data. We discuss appropriate 
variable elimination techniques in Chapter  10 .  

   9.5.3    Ridge Regression 

 When the method of least squares is applied to nonorthogonal data, very poor 
estimates of the regression coeffi cients can be obtained. We saw in Section  9.3  that 
the variance of the least - squares estimates of the regression coeffi cients may 
be considerably infl ated, and the length of the vector of least - squares parameter 
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       Figure 9.4     Sampling distribution of ( a ) nnbiased and ( b ) biased estimators of   β  .  (Adapted 
from Marquardt and Snee [ 1975 ], with permission of the publisher.)   

β ββ

› β *›

E (β) = β (unbiased)

›

V (β) large

› E (β *) ≠ β (biased)

›

V (β *) small

›

E (β *)

(a) (b)

estimates is too long on the average. This implies that the absolute value of the 
least - squares estimates are too large and that they are very unstable, that is, their 
magnitudes and signs may change considerably given a different sample. 

 The problem with the method of least squares is the requirement that   b̂  be an 
 unbiased estimator  of   β  . The Gauss - Markov property referred to in Section  3.2.3  
assures us that the least - squares estimator has minimum variance in the class of 
unbiased linear estimators, but there is no guarantee that this variance will be small. 
The situation is illustrated in Figure  9.4  a , where the sampling distribution of   b̂ , 
the unbiased estimator of   β  , is Shown. The variance of   b̂ is large, implying that 
confi dence intervals on   β   would be wide and the point estimate   b̂ is very unstable.   

 One way to alleviate this problem is to drop the requirement that the estimator 
of   β   be unbiased. Suppose that we can fi nd a  biased estimator  of   β  , say   b̂*, that has 
a smaller variance than the unbiased estimator   b̂ . The mean square error of the 
estimator   b̂* is defi ned as

   MSE * * Var * *ˆ ˆ ˆ ˆb b b b b b( ) = −( ) = ( ) + ( ) −⎡⎣ ⎤⎦E E
2 2

 

  or

   MSE * Var * bias in *ˆ ˆ ˆb b b( ) = ( ) + ( )2
  

 Note that the MSE is just the expected squared distance from   b̂* to   β   [see Eq.  (9.4) ]. 
By allowing a small amount of bias in   b̂*, the variance of   b̂* can be made small such 
that the MSE of   b̂* is less than the variance of the unbiased estimator   β  . Figure  9.4  b  
illustrates a situation where the variance of the biased estimator is considerably 
smaller than the variance of the unbiased estimator (Figure  9.4  a ). Consequently, 
confi dence intervals on   β   would be much narrower using the biased estimator. The 
small variance for the biased estimator also implies that   b̂* is a more stable estima-
tor of   β   than is the unbiased estimator   b̂ . 

 A number of procedures have been developed for obtaining biased estimators 
of regression coeffi cients. One of these procedures is  ridge regression , originally 
proposed by Hoerl and Kennard [ 1970a, b ]. The ridge estimator is found by solving 
a slightly modifi ed version of the normal equations. Specifi cally we defi ne the ridge 
estimator   b̂R as the solution to

   ′ +( ) = ′X X I X yk b̂R  
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  or

   b̂R = ′ +( ) ′−X X I X yk 1  

  where  k     ≥    0 is a constant selected by the analyst. The procedure is called ridge 
regression because the underlying mathematics are similar to the method of ridge 
analysis used earlier by Hoerl [ 1959 ] for describing the behavior of second - order 
response surfaces. Note that when  k     =    0, the ridge estimator is the least - squares 
estimator. 

 The ridge estimator is a linear transformation of the least - squares estimator since

   ˆ ˆ ˆb b bR = ′ +( ) ′ = ′ +( ) ′( ) =− −X X I X y X X I X X Zk k k
1 1   

 Therefore, since   E E k k
ˆ ˆb b bR( ) = ( ) =Z Z ,   b̂R is a biased estimator of   β  . We usually 

refer to the constant  k  as the  biasing parameter . The covariance matrix of   b̂R is

   Var Rb̂( ) = ′ +( ) ′ ′ +( )− −σ 2 1 1X X I X X X X Ik k   

 The mean square error of the ridge estimator is

   

MSE Var bias in

Tr

R R R
ˆ ˆ ˆb b b( ) = ( ) + ( )

= ′ +( ) ′ ′ +( )− −

2

2 1σ X X I X X X X Ik k 11 2 2

2
2

1

2 2
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=
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+ ′ ′ +( )

−

=

−∑
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k kj

jj

p

b

b b

X X I

X X I

b
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λ

λ

 

  where   λ   1 ,   λ   2 ,    . . .    ,   λ  p   are the eigenvalues of  X  ′  X . The fi rst term on the right - hand side 
of this equation is the sum of variances of the parameters in   b̂R and the second term 
is the square of the bias. If  k     >    0, note that the bias in   b̂R increases with  k . However, 
the variance decreases as  k  increases. 

 In using ridge regression we would like to choose a value of  k  such that the reduc-
tion in the variance term is greater than the increase in the squared bias. If this can 
be done, the mean square error of the ridge estimator   b̂R will be less than the variance 
of the least - squares estimator   b̂ . Hoerl and Kennard proved that there exists a 
nonzero value of  k  for which the MSE of   b̂R is less than the variance of the least -
 squares estimator   b̂, provided that   β    ′    β   is bounded. The residual sum of squares is

    
SSRes R R

R R

= −( )′ −( )
= −( )′ −( ) + −( )′ ′ −

y X y X

y X y X X X

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

b b

b b b b b b(( )
   

 (9.7)   

 Since the fi rst term on the right - hand side of Eq.  (9.7)  is the residual sum of squares 
for the least - squares estimates   b̂, we see that as  k  increases, the residual sum of 
squares increases. Consequently, because the total sum of squares is fi xed,  R  2  
decreases as  k  increases. Therefore, the ridge estimate will not necessarily provide 
the best  “ fi t ”  to the data, but this should not overly concern us, since we are more 
interested in obtaining a stable set of parameter estimates. The ridge estimates may 
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result in an equation that does a better job of predicting future observations than 
would least squares (although there is no conclusive  proof  that this will happen). 

 Hoed and Kennard have suggested that an appropriate value of  k  may be deter-
mined by inspection of the  ridge trace . The ridge trace is a plot of the elements of 
  b̂R versus  k  for values of  k  usually in the interval 0 – 1. Marquardt and Snee [ 1975 ] 
suggest using up to about 25 values of  k,  spaced approximately logarithmically over 
the interval [0, 1]. If multicollinearity is severe, the instability in the regression coef-
fi cients will be obvious from the ridge trace. As  k  is increased, some of the ridge 
estimates will vary dramatically. At some value of  k , the ridge estimates   b̂R will 
stabilize. The objective is to select a reasonably small value of  k  at which the ridge 
estimates   b̂R are stable. Hopefully this will produce a set of estimates with smaller 
MSE than the least - squares estimates.   

 Example 9.2   The Acetylene Data 

    To obtain the ridge solution for the acetylene data, we must solve the equations 
  ′ +( ) = ′X X I X yk b̂R  for several values 0    ≤     k     ≤    1, with  X ′ X  and  X ′ y  in correlation 
form. The ridge trace is shown in Figure  9.5 , and the ridge coeffi cients for several 
values of  k  are listed in Table  9.8 . This table also shows the residual mean square 
and  R  2  for each ridge model. Notice that as  k  increases,  MS  Res  increases and  R  2  
decreases. The ridge trace illustrates the instability of the least - squares solution, as 
there are large changes in the regression coeffi cients for small values of  k . However, 
the coeffi cients stabilize rapidly as  k  increases.     

 Judgment is required to interpret the ridge trace and select an appropriate value 
of  k.  We want to choose  k  large enough to provide stable coeffi cients, but not unnec-
essarily large ones, as this introduces additional bias and increases the residual mean 
square. From Figure  9.5  we see that reasonable coeffi cient stability is achieved in 
the region 0.008    <     k     <    0.064 without a severe increase in the residual mean square 
(or loss in  R  2 ). If we choose  k     =    0.032, the ridge regression model is

       Figure 9.5     Ridge trace for acetylene data using nine regressors.  
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ˆ . . . . .

.

y x x x x x x x= + − − −
+
0 5392 0 2117 0 3735 0 2329 0 0675

0 0123
1 2 3 1 2 1 3

xx x x x x2 3 1
2

2
2

3
20 1249 0 0481 0 0267+ − −. . .

  

 Note that in this model the estimates of   β   13 ,   β   11 , and   β   23  are considerably smaller 
than the least - squares estimates and the original negative estimates of   β   23  and   β   11  
are now positive. The ridge model expressed in terms of the original regressors is

   
ˆ . . . . . .

.

P T H C TH TC= + + − − −
+
0 7598 0 1392 0 0547 0 0965 0 0680 0 0194

0 0039CCH T H C+ − −0 0407 0 0112 0 00672 2 2. . .
  

 Figure  9.6  shows the performance of the ridge model in prediction for both 
interpolation (points  A ,  B ,  E ,  F ,  I , and  J ) and extrapolation (points  C ,  D ,  G , and  H ). 
Comparing Figures  9.6  and  9.3 , we note that the ridge model predicts as well as the 
nine - term least - squares model at the boundary of the region covered by the data. 
However, the ridge model gives much more realistic predictions when extrapolating 
than does least squares. We conclude that ridge regression has produced a model that 
is superior to the original least squares fi t.   

 The ridge regression estimates may be computed by using an ordinary least -
 squares computer program and augmenting the standardized data as follows:

   X
X

I
y

y

0A A=
⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣⎢
⎤
⎦⎥k p p

,  

  where   k pI  is a  p     ×     p  diagonal matrix with diagonal elements equal to the square 
root of the biasing parameter and  0   p   is a  p     ×    1 vector of zeros. The ridge estimates 
are then computed from

   b̂R A A A A= ′( ) ′ = ′ +( ) ′− −X X X y X X I X y1 1k p   

 Table  9.9  shows the augmented matrix  X A   and vector  y A   required to produce the 
ridge solution for the acetylene data with  k     =    0.032.        ■      

  Some Other Properties of Ridge Regression     Figure  9.7  illustrates the geom-
etry of ridge regression for a two - regressor problem. The point   b̂ at the center of 
the ellipses corresponds to the least - squares solution, where the residual sum of 
squares takes on its minimum value. The small ellipse represents the locus of points 
in the   β   1 ,   β   2  plane where the residual sum of squares is constant at some value 
greater than the minimum. The ridge estimate   b̂R is the shortest vector from the 
origin that produces a residual sum of squares equal to the value represented by 
the small ellipse. That is, the ridge estimate   b̂R produces the vector of regression 
coeffi cients with the smallest norm consistent with a specifi ed increase in the 
residual sum of squares. We note that the ridge estimator shrinks the least - squares 
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       Figure 9.6     Performance of the ridge model with  k     =    0.032 in prediction and extrapolation for the 
acetylene data.  (Adapted from Marquardt and Snee [ 1975 ], with permission of the publisher.)   
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estimator toward the origin. Consequently, ridge estimators (and other biased esti-
mators generally) are sometimes called  shrinkage  estimators. Hocking [ 1976 ] has 
observed that the ridge estimator shrinks the least - squares estimator with respect 
to the contours of  X ′ X . That is,   b̂R is the solution to

   Minimize
β

b b b b−( )′ ′ −( )ˆ ˆX X  

   subject to ′ ≤b b d2     

 where the radius  d  depends on  k.  
 Many of the properties of the ridge estimator assume that the value of  k  is fi xed. 

In practice, since  k  is estimated from the data by inspection of the ridge trace,  k  is 
 stochastic . It is of interest to ask if the optimality properties cited by Hoerl and 
Kennard hold if  k  is stochastic. Several authors have shown through simulations 
that ridge regression generally offers improvement in mean square error over least 
squares when  k  is estimated from the data. Theobald [ 1974 ] has generalized the 



311

  TA
B

L
E

 9
.9

  
  A

ug
m

en
te

d 
M

at
ri

x 
X

 A  
an

d 
V

ec
to

r 
y A

  f
or

 G
en

er
at

in
g 

th
e 

R
id

ge
 S

ol
ut

io
n 

fo
r 

th
e 

A
ce

ty
le

ne
 D

at
a 

w
it

h 
 k   

  =   
 0.

03
2 

   
 

x A

.2
80

22
4

.2
25

44
.2

31
06

.3
37

66
.0

20
85

30
95

25

.2
80

22
4

-.1
57

04

=

−
−

−
−

−−
−

−
−

−
−

.2
31

06
.2

53
71

.0
20

85
.2

36
58

8

.2
80

22
4

-.0
65

84
.2

35
14

.1
41

79
..0

25
79

.1
40

57
7

.2
80

22
4

.0
48

16
7

.2
22

9
.0

01
89

.0
10

98
.0

19
6

.2
80

2

−
−

−
224

.2
07

77
4

.2
18

82
.1

93
97

6
.0

06
05

.1
40

65

.2
80

22
4

.4
81

38
5

.2
31

0

−
−

−
−

66
.5

29
74

4
.0

20
85

.4
44

15

.0
40

03
.3

25
77

.0
02

55
.0

04
13

.2
58

94
9

−
−

−
−

−
−

..0
73

00
1

.0
40

03
.2

25
44

.0
18

87
.0

21
71

.2
61

76
9

.0
88

84
2

.0
40

03

−
−

−
−

−
−..

06
58

4
.0

67
84

.0
49

7
.2

70
23

1
.0

89
85

6

.0
40

03
.0

48
16

7
.1

16
8

.0

−
−

−
−

−
−

669
68

.2
78

69
3

.0
43

27
6

.0
40

03
.2

07
77

4
.0

51
52

.0
97

66
.2

67
41

1
.0

19
−

−
−

996
1

.0
40

03
.4

81
38

5
.0

05
60

9
.1

45
63

.2
57

53
9

.0
83

20
21

.3
60

29
.3

2

−
−

−
−

557
7

.3
56

52
8

.4
52

51
7

.2
96

15
.4

66
78

.3
60

29
.2

25
44

.4
70

78
1

.2
94

2

−
−

−
−

227
.4

73
84

.4
20

42

.3
60

29
.0

65
84

.4
21

81
5

.0
42

40
1

.3
97

69
.0

58
5

−
−

−
−

−
−

99

.3
60

29
.2

07
77

4
.3

72
85

.3
89

3
.3

21
53

.4
27

37
5

0
0

0
0

0

.1
78

−
−

−
.1

78
88

0
888

0
0

0
0

0
.1

78
88

0
0

0

0
0

.1
78

88
0

0

0
0

0
.1

78
88

0

0
0

0
0

.1
78

88

0
0

0
0

0

0 0 0 0 0 0
00

0
0

0
0

0
0

0
0

0

.0
78

27

0

88
.0

41
16

.0
34

52

.0
78

27
8

.1
32

7
.0

34
52

.0
78

27
8

.2
03

78
.0

27
35

.

−
−

−
−

−
−

007
82

78
.2

10
7

.0
48

47

.0
78

27
8

.0
67

45
.0

55
26

.0
78

27
8

.5
93

23
5

.0

−
− −

334
52

.2
97

46
.1

52
38

7
.2

35
48

.2
97

46
.0

41
16

.2
34

18

.2
97

46
.2

0
−

−
337

8
.2

18
22

.2
97

46
.2

10
7

.1
84

19

.2
97

46
.0

67
45

.2
25

54

.2
97

4

−

−
−

−
−

−
−

−

−
−

−
−

−
−

−
66

.5
93

23
5

.2
35

38

.3
28

76
8

.1
52

38
7

.2
43

74
2

.3
28

76
8

.0
41

16
.5

99
99

9

−

−
..3

28
76

8
.2

03
78

.4
35

27
1

.3
28

76
8

.0
67

45
.2

88
61

3

0
0

0
0

0
0

0
0

0
0− −

0 0 0 0 0

00
0

.1
78

88
0

0
.1

78
88

0
0

.1
78

88

0 0 0

  
   

   
 

y A

27
97

9

.3
05

82
9

.3
12

33
9

.2
68

94

.2
47

24

.1
82

14
1

.1
75

9

.0
99

95

.0

=

− − −.

334
86

.0
24

01

.0
41

09
4

.0
51

94
4

.0
45

8

.0
41

46

.3
38

65

.1
43

35

0 0 0 0 0− − − − − 00 0 0 0



312  MULTICOLLINEARITY

conditions under which ridge regression leads to smaller MSE than least squares. 
The expected improvement depends on the orientation of the   β   vector relative to 
the eigenvectors of  X ′ X . The expected improvement is greatest when   β   coincides 
with the eigenvector associated with the largest eigenvalue of  X ′ X . Other interesting 
results appear in Lowerre [ 1974 ] and Mayer and Willke [ 1973 ]. 

 Obenchain [ 1977 ] has shown that nonstochastically shrunken ridge estimators 
yield the same  t  and  F  statistics for testing hypotheses as does least squares. Thus, 
although ridge regression leads to biased point estimates, it does not generally 
require a new distribution theory. However, distributional properties are still 
unknown for stochastic choices of  k.  One would assume that when  k  is small, the 
usual normal - theory inference would be approximately applicable.  

  Relationship to Other Estimators     Ridge regression is closely related to  Bayes-
ian Estimation . Generally, if prior information about   β   can be described by a  p  -
 variate normal distribution with mean vector   β   0  and covariance matrix  V  0 , then the 
Bayes estimator of   β   is

   b̂ bB = ′ +⎛
⎝⎜

⎞
⎠⎟ ′ +⎛

⎝⎜
⎞
⎠⎟

−
−

−1 1
2 0

1
1

2 0
1

0σ σ
X X V X y V   

 The use of Bayesian methods in regression is discussed in Leamer [ 1973, 1978 ] and 
Zellner [ 1971 ]. Two major drawbacks of this approach are that the data analyst must 
make an explicit statement about the form of the prior distribution and the statisti-
cal theory is not widely understood. However, if we choose the prior mean   β   0     =     0  
and   V I0 0

2= σ , then we obtain

       Figure 9.7     A geometrical interpretation of ridge regression.  
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   ˆ ˆ ,b bB R+ ′ +( ) ′ ≡ =−X X I X yk k1
2

0
2

2
σ
σ

 

  the usual ridge estimator. In effect, the method of least squares can be viewed as a 
Bayes estimator using an unbounded uniform prior distribution for   β  . The ridge 
estimator results from a prior distribution that places weak boundedness conditions 
on   β  . Also see Lindley and Smith [ 1972 ].  

  Methods for Choosing  k      Much of the controversy concerning ridge regression 
centers around the choice of the biasing parameter  k.  Choosing  k  by inspection of 
the ridge trace is a subjective procedure requiring judgment on the part of the 
analyst. Several authors have proposed procedures for choosing  k  that are more 
analytical. Hoerl, Kennard, and Baldwin [ 1975 ] have suggested that an appropriate 
choice for  k  is

    k
p

=
′

ˆ
ˆ ˆ
σ 2

b b
    (9.8)  

  where   b̂  and   ̂σ 2 are found from the least - squares solution. They showed via simula-
tion that the resulting ridge estimator had signifi cant improvement in MSE over 
least squares. In a subsequent paper, Hoerl and Kennard [ 1976 ] proposed an itera-
tive estimation procedure based on Eq.  (11.8) . McDonald and Galarneau [ 1975 ] 
suggest choosing  k  so that

   ˆ ˆ ˆ ˆ′ = ′ −
⎛
⎝⎜

⎞
⎠⎟=

∑b b b bR R
jj

p

σ
λ

2

1

1
  

 A drawback to this procedure is that  k  may be negative, Mallows [ 1973 ] suggested 
a graphical procedure for selecting  k  based on a modifi cation of his  C p   statistic. 
Another approach chooses  k  to minimize a modifi cation of the PRESS statistic. 
Wahba, Golub, and Health [ 1979 ] suggest choosing  k  to minimize a cross - validation 
statistic. 

 There are many other possibilities for choosing  k.  For example, Marquardt [ 1970 ] 
has proposed using a value of  k  such that the maximum VIP is between 1 and 10, 
preferably closer to 1. Other methods of choosing  k  have been suggested by Demp-
ster, Schatzoff, and Wermuth [1971], Goldstein and Smith [ 1974 ], Lawless and Wang 
[ 1976 ], Lindley and Smith [ 1972 ], and Obenchain [ 1975 ]. Hoerl and Kennard [ 1970a ] 
proposed an extension of standard ridge regression that allows separate  k  ’ s for each 
regression. This is called  generalized ridge regression . There is no guarantee that 
these methods are superior to straightforward inspection of the ridge trace.   

   9.5.4    Principal - Component Regression 

 Biased estimators of regression coeffi cients can also be obtained by using a proce-
dure known as  principal - component regression . Consider the canonical form of the 
model,
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   y Z= +a e  

  where

   Z XT T T X XT Z Z= = ′ ′ ′ = ′ =, ,a Lb   

 Recall that   Λ      =    diag(  λ   1 ,   λ   2 ,    . . .    ,   λ  p  ) is a  p     ×     p  diagonal matrix of the eigenvalues of 
 X ′ X  and  T  is a  p     ×     p  orthogonal matrix whose columns are the eigenvectors associ-
ated with   λ   1 ,   λ   2 ,    . . .    ,   λ  p  . The columns of  Z , which defi ne a new set of orthogonal 
regressors, such as

   Z Z Z Z= [ ]1 2, , ,… p  

  are referred to as  principal components.  
 The least - squares estimator of   â is

   â L= ′( ) ′ = ′− −Z Z Z y Z y1 1  

  and the covariance matrix of   ̂a  is

   Var â L( ) = ′( ) =− −σ σ2 1 2 1Z Z   

 Thus, a small eigenvalue of  X ′ X  means that the variance of the corresponding 
orthogonal regression coeffi cient will be large. Since

   ′ = ′ =
==

∑∑Z Z Z Zi j

j

p

i

p

11

L  

  we often refer to the eigenvalue   λ  j   as the variance of the  j th principal component. If 
all the   λ  j   are equal to unity, the  original  regressors are orthogonal, while if a   λ  j   is 
exactly equal to zero, this implies a perfect linear relationship between the  original  
regressors. One or more of the   λ  j   near zero implies that multicollinearity is present. 
Note also that the covariance matrix of the standardized regression coeffi cients   b̂ is

   Var Varˆ ˆb( ) = ( ) = ′−T T Ta L 1 2σ   

 This implies that the variance of   β̂ j is   σ̂ λ2
1

2∑( )=j
p

ji it . Therefore, the variance of   β̂ j 
is a linear combination of the reciprocals of the eigenvalues. This demonstrates how 
one or more small eigenvalues can destroy the precision of the least - squares esti-
mate   β̂ j. 

 We have observed previously how the eigenvalues and eigenvectors of  X ′ X  provide 
specifi c information on the nature of the multicollinearity. Since  Z      =      XT , we have

    Z Xi ji j

j

p

t=
=

∑
1

    (9.9)  

  where  X   j   is the  j th column of the  X  matrix and  t ji   are the elements of the  i th 
column of  T  (the  i th eigenvector of  X ′ X ). If the variance of the  i th principal 
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component (  λ  j  ) is small, this implies that  Z   i   is nearly constant, and Eq.  (9.9)  
indicates that there is a linear combination of the  original regressors  that is nearly 
constant. This is the defi nition of multicollinearity, that is, the  t ji   are the constants 
in Eq.  (9.1) . Therefore, Eg. (9.9) explains why the elements of the eigenvector asso-
ciated with a smaIl eigenvalue of  X ′ X  identify the regressors involved in the 
multicollinearity. 

 The principal - component regression approach combats multicollinearity by using 
less than the full set of principal components in the model. To obtain the principal -
 component estimator, assume that the regressors are arranged in order of decreas-
ing eigenvalues,   λ   1     ≥      λ   2      ≥     ·  ·  ·     ≥      λ  p      >    0. Suppose that the last  s  of these eigenvalues 
are approximately equal to zero. In principal - component regression the principal 
components corresponding to near - zero eigenvalues are removed from the analysis 
and least squares applied to the remaining components. That is,

   ˆ ˆa aPC = B  

  where  b  l     =     b  2     =     ·  ·  ·     =     b p    −    s      =    1 and  b p    −    s    + 1     =     b p    −    s    + 2     =     ·  ·  ·     =     b p      =    0. Thus, the principal -
 component estimator is

     ˆ

ˆ

ˆ

ˆ
a

a
a

a
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  or in terms of the standardized regressors

    ˆ ˆb lPC PC= = ′ ′−

=

−

∑T t X yta j j j

j

p s
1

1

    (9.10)   

 A simulation study by Gunst and Mason [ 1977 ] showed that principal - component 
regression offers considerable improvement over least squares when the data are 
ill - conditioned. They also point out that another advantage of principal components 
is that exact distribution theory and variable selection procedures are available (see 
Mansfi eld, Webster, and Gunst [ 1977 ]). Some computer packages will perform 
principal - component regression.    

 Example 9.3   Principal - Component Regression for the Acetylene Data 

    We illustrate the use of principal - component regression for the acetylene data. We 
begin with the linear transformation  Z      =      XT  that transforms the original standard-
ized regressors into an orthogonal set of variables (the principal components). The 
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  TABLE 9.10    Matrix  T  of Eigenvectors and Eigenvalnes    λ     j     for the Acetylene Data 

    Eigenvectors  
   Eigenvalues 

   λ  j    

  .3387    .1057    .6495    .0073    .1428     − .2488     − .2077     − .5436    .1768    4.20480  
  .1324    .3391     − .0068     − .7243     − 5843    .0205     − .0102     − .0295     − .0035    2.16261  

   − .4137     − .0978     − .4696     − .0718     − .0182    .0160     − .1468     − .7172    .2390    1.13839  
   − .2191    .5403    .0897    .3612     − .1661    .3733     − .5885    .0909    .0003    1.04130  

  .4493    .0860     − .2863    .1912     − .0943    .0333    .0575    .1543    .7969    0.38453  
  .2524     −  − .5172     − .0570     − .3447    .2007    .3232     − .6209    .1280    .0061    0.04951  

   − .4056     − .0742    .4404     − .2230    .1443    .5393    .3233    .0565    .4087    0.01363  
  .0258    .5316     − .2240     − .3417    .7342     − .0705     − .0057    .0761    .0050    0.00513  

   − .4667     − .0969    .1421     − .1337     − .0350     − .6299     − .3089    .3631    .3309    0.00010  

eigenvalues   λ  j   and the  T  matrix for the acetylene data are shown in Table  9.10 . This 
matrix indicates that the relationship between  z  1  (for example) and the standardized 
regressors is

   
z x x x x x x x1 1 2 3 1 2 1 30 3387 0 1324 0 4137 0 2191 0 4493

0 2524

= + − − +
+
. . . . .

. xx x x x x2 3 1
2

2
2

3
20 4056 0 0258 0 4667− + −. . .

    

 The relationships between the remaining principal components  z  2 ,  z  3 ,    . . .    ,  z  9  and 
the standardized regressors are determined similarly. Table  9.11  shows the elements 
of the  Z  matrix (sometimes called the principal - component scores).   

 The principal - component estimator reduces the effects of multicollinearity by 
using a subset of the principal components in the model. Since there are four small 
eigenvalues for the acetylene data, this implies that there are four principal compo-
nents that should be deleted. We will exclude  z  6 ,  z  7 ,  z  8 , and  z  9  and consider regres-
sions involving only the fi rst fi ve principal components. 

 Suppose we consider a regression model involving only the fi rst principal com-
ponent, as in

   y z= +α ε1 1   

 The fi tted model is

   ˆ .y z= −0 35225 1  

  or   ˆ . , , , , , , , ,′ = −[ ]aPC 0 35225 0 0 0 0 0 0 0 0 . The coeffi cients in terms of the standardized 
regressors are found from   ˆ ˆbPC PC= Ta . Panel A of Table  9.11  shows the resulting 
standardized regression coeffi cients as well as the regression coeffi cients in terms 
of the original centered regressors. Note that even though only one principal com-
ponent is included, the model produces estimates for all nine standardized regres-
sion coeffi cients. 

 The results of adding the other principal components  z  2 ,  z  3 ,  z  4 , and  z  5  to the model 
one at a time are displayed in panels B, C, D, and E, respectively, of Table  9.12 . We 
see that using different numbers of principal components in the model produces 
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substantially different estimates of the regression coeffi cients. Furthermore, the 
principal - component estimates differ considerably from the least - squares estimates 
(e.g., see Table  9.8 ). However, the principal - component procedure with either four 
or fi ve components included results in coeffi cient estimates that do not differ dra-
matically from those produced by the other biased estimation metbods (refer to the 
ordinary ridge regression estimates in Table  9.9 . Principal - component analysis 
shrinks the large least - squares estimates of   β   13  and   β   33  and changes the sign of the 
original negative least - squares estimate of   β   11 . The fi ve - component model does not 
substantially degrade the fi t to the original data as there has been little loss in  R  2  
from the least - squares model. Thus, we conclude that the relationship based on the 
fi rst fi ve principal components provides a more plausible model for the acetylene 
data than was obtained via ordinary least squares.   

 Marquardt [ 1970 ] suggested a generalization of principal - component regression. 
He felt that the assumption of an integral rank for the  X  matrix is too restrictive 
and proposed a  “ fractional rank ”  estimator that allows the rank to be a piecewise 
continuous function. 

 Hawkins [ 1973 ] and Webster et al. [ 1974 ] developed latent root procedures fol-
lowing the same philosophy as principal components. Gunst, Webster, and Mason 
[ 1976 ] and Gunst and Masou [ 1977 ] indicate that latent root regression may provide 
considerable improvement in mean square error over least squares. Gunst [ 1979 ] 
points out that latent root regression can produce regression coeffi cients that are 
very sinillar to those found by principal components, particularly when there are 
only one or two strong multicollinearities in  X . A number of large - sample properties 
of latent root regression are in White and Gunst [ 1979 ].       ■   

   9.5.5    Comparison and Evaluation of Biased Estimators 

 A number of Monte Carlo simulation studies have been conducted to examine the 
effectiveness of biased estimators and to attempt to determine which procedures 
perform best. For example, see McDonald and Galarneau [ 1975 ], Hoerl and Kennard 
[ 1976 ], Hoerl, Kennard, and Baldwin [ 1975 ] (who compare least squares and ridge), 
Gunst et al. [ 1976 ] (latent root versus least squares), Lawless [ 1978 ], Hemmerle and 
Brantle [ 1978 ] (ridge, generalized ridge, and least squares), Lawless and Wang [ 1976 ] 
(least squares, ridge, and principal components), Wichern and Churchill [ 1978 ], 
Gibbons [ 1979 ] (various forms of ridge), Gunst and Mason [ 1977 ] (ridge, principal 
components, latent root, and others), and Dempster et al. [ 1977 ]. The Dempster et 
al. [ 1977 ] study compared 57 different estimators for 160 different model confi gura-
tions. While no single procedure emerges from these studies as best overall, there 
is considerable evidence indicating the superiority of biased estimation to least 
squares if multicollinearity is present. Our own preference in practice is for ordinary 
ridge regression with  k  selected by inspection of the ridge trace. The procedure 
is straightforward and easy to implement on a standard least - squares computer 
program, and the analyst can learn to interpret the ridge trace very quickly. It is 
also occasionally useful to fi nd the  “ optimum ”  value of  k  suggested by Hoerl, 
Kennard, and Baldwin [ 1975 ] and the iteratively estimated  “ optimum ”   k  of Hoed 
and Kennard [ 1976 ] and compare the resulting models with the one obtained via 
the ridge trace. 
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 The use of biased estimators in regression is not without controversy. Several 
authors have been critical of ridge regression and other related biased estimation 
techniques. Conniffe and Stone [ 1973, 1975 ] have criticized the use of the ridge trace 
to select the biasing parameter, since   b̂R  will change slowly and eventually stabilize 
as  k  increases even for orthogonal regressors. They also claim that if the data are 
not adequate to support a least - squares analysis, then it is unlikely that ridge regres-
sion will be of any substantive help, since the parameter estimates will be nonsensi-
cal. Marquardt and Snee [ 1975 ] and Smith and Goldstein [ 1975 ] do not accept these 
conclusions and feel that biased estimators are a valuable tool for the data analyst 
confronted by ill - conditioned data. Several authors have noted that while we can 
prove that there exists a  k  such that the mean square error of the ridge estimator 
is always less than the mean square error of the least - squares estimator, there is no 
assurance that the ridge trace (or any other method that selects the biasing param-
eter stochastically by analysis of the data) produces the optimal  k.  

 Draper and Van Nostrand [ 1977a, b, 1979 ] are also critical of biased estimators. 
They fi nd fault with a number of the technical details of the simulation studies used 
as the basis of claims of improvement in MSE for biased estimation, suggesting that 
the simulations have been designed to favor the biased estimators. They note that 
ridge regression is really only appropriate in situations where external information 
is added to a least - squares problem. This may take the form of either the Bayesian 
formulation and interpretation of the procedure or a constrained least - squares 
problem in which the constraints on   β   are chosen to refl ect the analyst ’ s knowledge 
of the regression coeffi cients to  “ improve the conditioning ”  of the data. 

 Smith and Campbell [ 1980 ] suggest using explicit Bayesian analysis or mixed 
estimation to resolve multicollinearity ·  problems. They reject ridge methods as weak 
and imprecise because they only loosely incorporate prior beliefs and information 
into the analysis. When explicit prior information is known, then Bayesian or mixed 
estimation should certainly be used. However, often the prior information is not 
easily reduced to a specifi c prior distribution, and ridge regression methods offer a 
method to incorporate, at least approximately, this knowledge. 

 There has also been some controversy surrounding whether the regressors 
and the response should be centered and scaled so that  X ′ X  and  X ′ y  are in correla-
tion form. This results in an artifi cial removal of the intercept from the model. 
Effectively the intercept in the ridge model is estimated by   y. Hoerl and Kennard 
[ 1970a, b ] use this approach, as do Marquardt and Snee [ 1975 ], who note that cen-
tering tends to minimize any nonessential ill - conditioning when fi tting polynomials. 
On the other hand, Brown [ 1977 ] feels that the variables should not be centered, as 
centering affects only the intercept estimate and not the slopes. Belsley, Kuh, and 
Welsch [ 1980 ] suggest not centering the regressors so that the role of the intercept 
in any near - linear dependences may be diagnosed. Centering and scaling allow the 
analyst to think of the parameter estimates as standardized regression coeffi cients, 
which is often intuitively appealing. Furthermore, centering the regressors can 
remove nonessential ill - conditioning, thereby reducing variance infl ation in the 
parameter estimates. Consequently, we recommend both centering and scaling 
the data. 

 Despite the objections noted, we believe that biased estimation methods are 
useful techniques that the analyst should consider when dealing with multicollinear-
ity. Biased estimation methods certainly compare very favorably to other methods 
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for handling multicollinearity, such as variable elimination. As Marquardt and Snee 
[ 1975 ] note, it is often better to use some of the information in all of the regressors, 
as ridge regression does, than to use all of the information in some regressors and 
none of the information in others, as variable elimination does. Furthermore, vari-
able elimination can be thought of as a form of biased estimation because subset 
regression models often produce biased estimates of the regression coeffi cients. In 
effect, variable elimination often shrinks the vector of parameter estimates, as does 
ridge regression. We do not recommend the mechanical or automatic use of ridge 
regression without thoughtful study of the data and careful analysis of the adequacy 
of the fi nal model. Properly used, biased estimation methods are a valuable tool in 
the data analyst ’ s kit.   

   9.6    USING  SAS  TO PERFORM RIDGE AND PRINCIPAL - COMPONENT 
REGRESSION 

 Table  9.14  gives the SAS code to perform ridge regression for the acetylene data. 
The lines immediately prior to the cards statement center and scale the linear 
terms. The other statements create the interaction and pure quadratic terms. The 
option  

 ridge  =  0.006 to 0.04 by .002  

 on the fi rst proc reg statement creates the series of  k  ’ s to be used for the ridge trace. 
Typically, we would start the range of values for  k  at 0, which would yield the ordi-
nary least - squares (OLS) estimates. Unfortunately, for the acetylene data the OLS 
estimates greatly distort the ridge trace plot to the point that it is very diffi cult to 
select a good choice for  k.  The statement

 plot / ridgeplot nomodel;  

 creates the actual ridge trace. The option

 ridge  =  .032  

 on the second proc reg statement fi xes the value of  k  to 0.032. 
 Table  9.15  gives the additional SAS code to perform principal - component regres-

sion. The statement  

 proc princomp data = acetylene out = pc_acetylene std,  

 sets up the principal - component analysis and creates an output data data set 
called

 pc_acetylene.  

 The std option standardizes the principal - component scores to unit variance. The 
statement
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  TABLE 9.14    SAS Code to Perform Ridge Regression for Acetylene Data 

   data acetylene;   
   input conv t h c;   
   t  = (t  -  1212.5) / 80.623;   
   h  = (h  -  12.44) / 5.662;   
   c  = (c  -  0.0403) / 0.03164;   
   th  =  t * h;   
   tc  =  t * c;   
   hc  =  h * c   ;   
   t2  =  t * t;   
   h2  =  h * h;   
   c2  =  c * c;   
   cards;   
   49.0 1300 7.5 0.0120   
   50.2 1300 9.0 0.0120   
   50.5 1300 11.0 0.0115   
   48.5 1300 13.5 0.0130   
   47.5 1300 17.0 0.0135   
   44.5 1300 23.0 0.0120   
   28.0 1200 5.3 0.0400   
   31.5 1200 7.5 0.0380   
   34.5 1200 11.0 0.0320   
   35.0 1200 13.5 0.0260   
   38.0 1200 17.0 0.0340   
   38.5 1200 23.0 0.0410   
   15.0 1100 5.3 0.0840   
   17.0 1100 7.5 0.0980   
   20.5 1100 11.0 0.0920   
   29.5 1100 17.0 0.0860   
   proc reg outest  =  b ridge  =  0.006 to 0.04 by .002;   
   model conv  =  t h c t2 h2 c2 th tc hc / noprint;   
   plot / ridgeplot nomodel;   
   run;   
   proc reg outest  =  b2 data  =  acetylene ridge  = .032;   
   model conv  =  t h c t2 h2 c2 th tc hc; run;proc print data  =  b2i   
   run;   

 var t h c th tc hc t2 h2 c2;  

 specifi es the specifi c variables from which to create the principal components. In 
this case, the variables are all of the regressors. The statement

 ods select eigenvectors eigenvalues;  

 creates the eigenvectors and eigenvalues. The other two ods statements set up 
the output. This procedure creates the principal component, names them 
prinl, prin2, and so on, and stores them in the output data set, which in this 
example is
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 pc_acetylene  

 The remainder of the code illustrates how to use proc reg with the principal com-
ponents as the regressors. SAS does not automatically convert the resulting regres-
sion equation in the principal components back to the original variables. The analyst 
must perform this calculation using the appropriate eigenvectors.           

 PROBLEMS 

       9.1    Consider the soft drink delivery time data in Example 3.1.
   a.     Find the simple correlation between cases ( x  1 ) an distance ( x  2 ).  
  b.     Find the variance infl ation factors.  
  c.     Find the condition number of  X ′ X . Is there evidence of multicollinearity 

in these data?      

    9.2    Consider the Hald cement data in Table B.21.
   a.     From the matrix of correlations between the regressors, would you suspect 

that multicollinearity is present?  
  b.     Calculate the variance infl ation factors.  
  c.     Find the eigenvalues of  X ′ X .  
  d.     Find the condition number of  X ′ X .      

    9.3    Using the Hald cement data (Example 10.1), fi nd the eigenvector associated 
with the smallest eigenvalue of  X ′ X . Interpret the elements of this vector. 
What can you say about the source of multicollinearity in these data?   

    9.4    Find the condition indices and the variance decomposition proportions for 
the Hald cement data (Table B.21), assuming centered regressors. What can 
you say about multicollinearity in these data?   

  TABLE 9.15     SAS  Code to Perform Principal - Component Regression for Acetylene Data 

   proc princomp data  =  acetylene out  =  pc_acetylene std;   
   var t h c th tc he t2 h2 c2;   
   ods select eigenvectors eigenvalues;   
   ods trace on;   
   ods show;   
   run;   
   proc reg data  =  pc_acetylene;   
   model conv  =  prinl prin2 prin3 prin4 prin5 prin6 prin7 prin8 prin9 / vif;   
   run;   
   proc reg data  =  pc_acetylene;   
   model conv  =  prinl;   
   run;   
   proc reg data  =  pc_acetylene;   
   model conv  =  prinl prin2;   
   run;   
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    9.5    Repeat Problem 9.4 without centering the regressors and compare the results. 
Which approach do you think is better?   

    9.6    Use the regressors  x  2  (passing yardage),  x  7  (percentage of rushing plays), and  x  8  
(opponents ’  yards rushing) for the National Football League data in Table B.1.
   a.     Does the correlation matrix give any indication of multicollinearity?  
  b.     Calculate the variance infl ation factors and the condition number of  X ′ X . 

Is there any evidence of multicollinearity?      

    9.7    Consider the gasoline mileage data in Table B.3.
   a.     Does the correlation matrix give any indication of multicollinearity?  
  b.     Calculate the variance infl ation factors and the condition number of  X ′ X . 

Is there any evidence of multicollinearity?      

    9.8    Using the gasoline mileage data in Table B.3 fi nd the eigenvectors associated 
with the smallest eigenvalues of  X ′ X . Interpret the elements of these vectors. 
What can you say about the source of multicollinearity in these data?   

    9.9    Use the gasoline mileage data in Table B.3 and compute the condition indices 
and variance - decomposition proportions, with the regressors centered. What 
statements can you make about multicollinearity in these data?   

    9.10    Analyze the housing price data in Table B.4 for multicollinearity. Use the 
variance infl ation factors and the condition number of  X ′ X .   

    9.11    Analyze the chemical process data in Table B.5 for evidence of multicollinear-
ity. Use the variance infl ation factors and the condition number of  X ′ X .   

    9.12    Analyze the patient satisfaction data in Table B.17 for multicollinearity.   

    9.13    Analyze the fuel consumption data in Table B.18 for multicollinearity.   

    9.14    Analyze the wine quality of young red wines data in Table B.19 for 
multicollinearity.   

    9.15    Analyze the methanol oxidation data in Table B.20 for multicollinearity.   

    9.16    The table below shows the condition indices and variance decomposition pro-
portions for the acetylene data using centered regressors. Use this information 
to diagnose multicollinearity in the data and draw appropriate conclusions.      

   Number     Eigenvalue  
   Condition 

Indices  

   Variance Decomposition Proportions  

   T     H     C     TH     TC     HC     T2     H2     C2  

  1    4.204797    1.00000o    0.0001    0.0024    0.0001    0.0004    0.0000    0.0004    0.0000    0.0001    0.0000  
  2    2.162611    1.394387    0.0000    0.0305    0.0000    0.0044    0.0000    0.0035    0.0000    0.0412    0.0000  
  3    1.138392    1.921882    0.0010    0.0000    0.0003    0.0002    0.0000    0.0001    0.0001    0.0139    0.0000  
  4    1.041305    2.009480    0.0000    0.2888    0.0000    0.0040    0.0000    0.0032    0.0000    0.0354    0.0000  
  5    0.384532    3.306788    0.0001    0.5090    0.0000    0.0023    0.0000    0.0029    0.0000    0.4425    0.0000  
  6    0.049510    9.215620    0.0034    0.0049    0.0000    0.0874    0.0000    0.0565    0.0033    0.0319    0.0071  
  7    0.013633    17.562062    0.0096    0.0051    0.0031    0.8218    0.0000    0.7922    0.0042    0.0001    0.0053  
  8    0.0051232    28.648589    0.1514    0.0936    0.1461    0.0773    0.0007    0.1210    0.0002    03526    0.0229  
  9    0.0000969    208.285    0.8343    0.0657    0.8504    0.0022    0.9993    0.0201    0.9920    0.0822    0.9646  
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    9.17    Apply ridge regression to the Hald cement data in Table B.21.
   a.     Use the ridge trace to select an appropriate value of  k.  Is the fi nal model 

a good one?  
  b.     How much infl ation in the residual sum of squares has resulted from the 

use of ridge regression?  
  c.     Compare the ridge ·  regression model with the two - regressor model involv-

ing  x  1  and  x  2  developed by all possible regressions in Example  9.1 .      

    9.18    Use ridge regression on the Hald cement data (Table B.21) using the 
value of  k  in Eq.  (9.8) . Compare this value of  k  value selected by the ridge 
trace in Problem 9.17. Does the fi nal model differ greatly from the one in 
Problem 9.17?   

    9.19    Estimate the parameters in a model for the gasoline mileage data in Table 
B.3 using ridge regression.
   a.     Use the ridge trace to select an appropriate value of  k.  Is the resulting 

model adequate?  
  b.     How much infl ation in the residual sum of squares has resulted from the 

use of ridge regression?  
  c.     How much reduction in  R  2  has resulted from the use of ridge 

regression?      

    9.20    Estimate the parameters in a model for the gasoline mileage data in Table 
B.3 using ridge regression with the value of  k  determined by Eq.  (9.8) . Does 
this model differ dramatically from the one developed in Problem 9.19?   

    9.21    Estimate model parameters for the Hald cement data (Table B.21) using 
principal - component regression.
   a.     What is the loss in  R  2  for this model compared to least squares?  
  b.     How much shrinkage in the coeffi cient vector has resulted?  
  c.     Compare the principal - component model with the ordinary ridge model 

developed in Problem 9.17. Comment on any apparent differences in the 
models.      

    9.22    Estimate the model parameters for the gasoline mileage data using principal -
 component regression.
   a.     How much has the residual sum of squares increased compared to least 

squares?  
  b.     How much shrinkage in the coeffi cient vector has resulted?  
  c.     Compare the principal - component and ordinary ridge models (Problem 

9.19). Which model do you prefer?      

    9.23    Consider the air pollution and mortality data given in Table B.15.
   a.     Is there a problem with collinearity? Discuss how you arrived at this 

decision.  
  b.     Perform a ridge trace on these data.  
  c.     Select a  k  based upon the ridge trace from part b. Which estimates of the 

coeffi cients do you prefer for these data, ridge or OLS? Justify your answer.  
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  d.     Use principal - component regression to analyze these data. Discuss the 
principal - component regression results with the ridge regression and OLS 
results.      

    9.24    Show that the ridge estimator is the solution to the problem

   Minimize
b

b b b b−( )′ ′ −( )ˆ ˆX X  

   subject to ′ ≤b b d2     

    9.25     Pure Shrinkage Estimators   (Stein [   1960   ]) . The pure shrinkage estimator is
defi ned as   ˆ ˆb bs c= , were 0    ≤     c     ≤    1 is a constant chosen by the analyst. Describe 
the kind of shrinkage that this estimator introduces, and compare it with the 
shrinkage that results from ridge regression. Intuitively, which estimator 
seems preferable?   

    9.26    Show that the pure shrinkage estimator (Problem 9.25) is the solution to

   Minimize
b

b b b b−( )′ −( )ˆ ˆ  

   subject to ′ ≤b b d2     

    9.27    The mean square error criterion for ridge regression is

   E L
k

k

k

j

jj

p
j
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2
1

2 2

2
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 Try to fi nd the value of  k  that minimizes   E L1
2( ). What diffi culties are 

encountered?   

    9.28    Consider the mean square error criterion for generalized ridge regression. 
Show that the mean square error is minimized by choosing   kj j= σ α2 2,  j     =    1, 
2,    . . .    ,  p .   

    9.29    Show that if  X ′ X  is in correlation form,   Λ   is the diagonal matrix of eigenvalues 
of  X ′ X , and  T  is the corresponding matrix of eigenvectors, then the variance 
infl ation factors are the main diagonal elements of  T Λ    − 1  T ′  .       
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  CHAPTER 10 

VARIABLE SELECTION AND 
MODEL BUILDING     

    10.1    INTRODUCTION 

   10.1.1    Model - Building Problem 

 In the preceding chapters we have assumed that the regressor variables included in 
the model are known to be important. Our focus was on techniques to ensure that 
the functional form of the model was correct and that the underlying assumptions 
were not violated. In some applications theoretical considerations or prior experi-
ence can be helpful in selecting the regressors to be used in the model. 

 In previous chapters, we have employed the classical approach to regression 
model selection, which assumes that we have a very good idea of the basic form of 
the model and that we know all (or nearly all) of the regressors that should be used. 
Our basic strategy is as follows:

   1.     Fit the full model (the model with all of the regressors under consideration).  
  2.     Perform a thorough analysis of this model, including a full residual analysis. 

Often, we should perform a thorough analysis to investigate possible 
collinearity.  

  3.     Determine if transformations of the response or of some of the regressors are 
necessary.  

  4.     Use the  t  tests on the individual regressors to edit the model.  
  5.     Perform a thorough analysis of the edited model, especially a residual analysis, 

to determine the model ’ s adequacy.    

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 In most practical problems, especially those involving historical data, the analyst has 
a rather large pool of possible  candidate regressors , of which only a few are likely 
to be important. Finding an appropriate subset of regressors for the model is often 
called the  variable selection problem . 

 Good variable selection methods are very important in the presence of multicol-
linearity. Frankly, the most common corrective technique for multicollinearity is 
variable selection. Variable selection does not guarantee elimination of multicol-
linearity. There are cases where two or more regressors are highly related; yet, some 
subset of them really does belong in the model. Our variable selection methods help 
to justify the presence of these highly related regressors in the fi nal model. 

 Multicollinearity is not the only reason to pursue variable selection techniques. 
Even mild relationships that our multicollinearity diagnostics do not fl ag as prob-
lematic can have an impact on model selection. The use of good model selection 
techniques increases our confi dence in the fi nal model or models recommended. 

 Building a regression model that includes only a subset of the available regressors 
involves two confl icting objectives. (1) We would like the model to include as many 
regressors as possible so that the information content in these factors can infl uence 
the predicted value of  y . (2) We want the model to include as few regressors as pos-
sible because the variance of the prediction   ̂y increases as the number of regressors 
increases. Also the more regressors there are in a model, the greater the costs of 
data collection and model maintenance. The process of fi nding a model that is a 
compromise between these two objectives is called selecting the   “ best ”  regression 
equation . Unfortunately, as we will see in this chapter, there is no unique defi nition 
of  “ best. ”  Furthermore, there are several algorithms that can be used for variable 
selection, and these procedures frequently specify different subsets of the candidate 
regressors as best. 

 The variable selection problem is often discussed in an idealized setting. It is 
usually assumed that the correct functional specifi cation of the regressors is known 
(e.g., 1 /x  1 , ln  x  2 ) and that no outliers or infl uential observations are present. In prac-
tice, these assumptions are rarely met.  Residual analysis , such as described in 
Chapter  4 , is useful in revealing functional forms for regressors that might be inves-
tigated, in pointing out new candidate regressors, and for identifying defects in the 
data such as outliers. The effect of  infl uential  or  high - leverage observations  should 
also be determined. Investigation of model adequacy is linked to the variable selec-
tion problem. Although ideally these problems should be solved simultaneously, an 
iterative approach is often employed, in which (1) a particular variable selection 
strategy is employed and then (2) the resulting subset model is checked for correct 
functional specifi cation, outliers, and infl uential observations. This may indicate that 
step 1 must be repeated. Several iterations may be required to produce an adequate 
model. 

 None of the variable selection procedures described in this chapter are guaran-
teed to produce the best regression equation for a given data set. In fact, there 
usually is not a single best equation but rather several equally good ones. Because 
variable selection algorithms are heavily computer dependent, the analyst is some-
times tempted to place too much reliance on the results of a particular procedure. 
Such temptation is to be avoided. Experience, professional judgment in the subject -
 matter fi eld, and subjective considerations all enter into the variable selection 
problem. Variable selection procedures should be used by the analyst as methods 
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to explore the structure of the data. Good general discussions of variable selection 
in regression include Cox and Snell [ 1974 ], Hocking [ 1972, 1976 ], Hocking and 
LaMotte [ 1973 ], Myers [ 1990 ], and Thompson [ 1978a, b ].  

   10.1.2    Consequences of Model Misspecifi cation 

 To provide motivation for variable selection we will briefl y review the consequences 
of  incorrect model specifi cation . Assume that there are  K  candidate regressors  x  1 , 
 x  2 ,    . . .    ,  x K   and  n     ≥     K     +    1 observations on these regressors and the response  y . The 
 full model , containing all  K  regressors, is

    y x i ni j ij

j

K

i= + + =
=

∑β β ε0

1

1 2, , , ,…     (10.1a)   

 or equivalently

    y X= +b e     (10.1b)   

 We assume that the list of candidate regressors contains all the important variables. 
Note that Eq.  (10.1)  contains an intercept term   β   0 . While   β   0  could also be a candidate 
for selection, it is typically forced into the model. We assume that all equations 
include an intercept term. Let  r  be the number of regressors that are deleted from 
Eq.  (10.1) . Then the number of variables that are retained is  p     =     K     +    1    −     r . Since the 
intercept is included, the subset model contains  p     −    1    =     K     −     r  of the original 
regressors. 

 The model (10.1) may be written as

    y X X= + +p p r rb b e     (10.2)   

 where the  X  matrix has been partitioned into  X   p  , an  n     ×     p  matrix whose columns 
represent the intercept and the  p     −    1 regressors to be retained in the subset model, 
and  X   r  , an  n     ×     r  matrix whose columns represent the regressors to be deleted from 
the full model. Let   β   be partitioned conformably into   β    p   and   β    r  . For the full model 
the least - squares estimate of   β   is

    ˆ*b = ′( ) ′−X X X y1     (10.3)   

 and an estimate of the residual variance   σ   2  is

    ˆ
ˆ*

*σ 2

1

1 1
= ′ − ′ ′

− −
=

′ − ′( ) ′⎡⎣ ⎤⎦
− −

−
y y X y y I X X X X yb

n K n K
    (10.4)   

 The components of   ˆ*b  are denoted by   ˆ *bp and   ˆ *br , and   ̂ *yi  denotes the fi tted values. 
For the subset model

    y X= +p pb e     (10.5)   
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 the least - squares estimate of   β    p   is

    b̂p p p p= ′( ) ′−X X X y1     (10.6)   

 the estimate of the residual variance is

    ˆ
ˆ

σ 2

1

= ′ − ′ ′
−

=
′ − ′( ) ′⎡⎣ ⎤⎦

−

−
y y X y y I X X X X ybp p p p p p

n p n p
    (10.7)   

 and the fi tted values are   ̂yi. 
 The properties of the estimates   b̂p and   σ̂ 2 from the subset model have been 

investigated by several authors, including Hocking [ 1974, 1976 ], Narula and Ramberg 
[ 1972 ], Rao [ 1971 ], Rosenberg and Levy [ 1972 ], and Walls and Weeks [ 1969 ]. 

 The results can be summarized as follows:

   1.     The expected value of   b̂p is

   E p p p p p r r p rb̂ b b b b( ) = + ′( ) ′ = +−X X X X A1
 

  where   A X X X X= ′( ) ′−
p p p r

1  ( A  is sometimes called the alias matrix). Thus,   b̂p is 
a biased estimate of   β    p   unless the regression coeffi cients corresponding to the 
deleted variables (  β    r  ) are zero or the retained variables are orthogonal to the 
deleted variables (  ′ =X X 0p r ).  

  2.     The variances of   b̂p and   ˆ*b  are   Var b̂p p p( ) = ′( )−σ 2 1X X  and   Var ˆ*b( ) = ′( )−σ 2 1X X ,

respectively. Also the matrix   Var Varˆ ˆ*b bp p( ) − ( ) is positive semidefi nite, that is,

the variances of the least - squares estimates of the parameters in the full model 
are greater than or equal to the variances of the corresponding parameters in 
the subset model. Consequently, deleting variables never increases the vari-
ances of the estimates of the remaining parameters.  

  3.     Since   b̂p is a biased estimate of   β    p   and   ˆ *bp is not, it is more reasonable to 
compare the precision of the parameter estimates from the full and subset 
models in terms of mean square error. Recall that if   ̂θ  is an estimate of the 
parameter   θ  , the mean square error of   ̂θ is

   MSE Varˆ ˆ ˆθ θ θ θ( ) = ( ) + ( ) −⎡⎣ ⎤⎦E
2

  

 The mean square error of   b̂p  is

   MSE b̂ b bp p p r r( ) = ′( ) + ′ ′−σ 2 1X X A A   

 If the matrix   Var ˆ *b b br r r( ) − ′ is positive semidefi nite, the matrix 
  Var MSEˆ ˆ*b bp p( ) − ( ) is positive semidefi nite. This means that the least - squares 
estimates of the parameters in the subset model have smaller mean square 
error than the corresponding parameter estimates from the full model when 
the deleted variables have regression coeffi cients that are smaller than the 
standard errors of their estimates in the full model.  
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  4.     The parameter   ̂ *σ 2 from the full model is an unbiased estimate of   σ    2 . However, 
for the subset model

   E
n p

r r p p p p r r
σ̂ σ2 2

1

( ) = +
′ ′ − ′( ) ′⎡⎣ ⎤⎦

−

−b bX I X X X X X
  

 That is,   σ̂ 2 is generally biased upward as an estimate of   σ    2 .  
  5.     Suppose we wish to predict the response at the point   ′ = ′ ′[ ]x x xp r, . If we use 

the full model, the predicted value is   ̂ * ˆ*y = ′x b , with mean  x  ′   β   and prediction 
variance

   Var ˆ*y( ) = + ′ ′( )⎡⎣ ⎤⎦
−σ 2 11 x X X x   

 However, if the subset model is used,   ˆ ˆy p p= ′x b  with mean

   E y p p p rˆ( ) = ′ + ′x x Ab b  

  and prediction mean square error

   MSE ŷ p p p p p r r r( ) = + ′ ′( )⎡⎣ ⎤⎦ + ′ − ′( )−σ 2 1 21 x X X x x A xb b   

 Note that   ̂y is a biased estimate of  y  unless   ′ =x Ap rb 0, which is only true in 
general if   ′ =X X 0p r rb . Furthermore, the variance of   ̂ *y  from the full model is 
not less than the variance of   ̂y from the subset model. In terms of mean square 
error we can show that

   Var MSEˆ* ˆy y( ) ≥ ( )  

  provided that the matrix   Var ˆ *b b br r r( ) − ′ is positive semidefi nite.    

 Our motivation for variable selection can be summarized as follows. By deleting 
variables from the model, we may  improve the precision  of the parameter estimates 
of the retained variables even though some of the deleted variables are not negli-
gible. This is also true for the variance of a predicted response. Deleting variables 
potentially introduces  bias  into the estimates of the coeffi cients of retained variables 
and the response. However, if the deleted variables have small effects, the MSE of 
the biased estimates will be less than the variance of the unbiased estimates. That 
is, the amount of bias introduced is less than the reduction in the variance. There is 
danger in retaining negligible variables, that is, variables with zero coeffi cients or 
coeffi cients less than their corresponding standard errors from the full model. This 
danger is that the variances of the estimates of the parameters and the predicted 
response are increased. 

 Finally, remember from Section  1.2  that regression models are frequently built 
using retrospective data, that is, data that have been extracted from historical 
records. These data are often saturated with defects, including outliers,  “ wild ”  points, 
and inconsistencies resulting from changes in the organization ’ s data collection and 
information - processing system over time. These data defects can have great impact 
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on the variable selection process and lead to model misspecifi cation. A very common 
problem in historical data is to fi nd that some candidate regressors have been con-
trolled so that they vary over a very limited range. These are often the most infl u-
ential variables, and so they were tightly controlled to keep the response within 
acceptable limits. Yet because of the limited range of the data, the regressor may 
seem unimportant in the least - squares fi t. This is a serious model misspecifi cation 
that only the model builder ’ s nonstatistical knowledge of the problem environment 
may prevent. When the range of variables thought to be important is tightly con-
trolled, the analyst may have to collect new data specifi cally for the model - building 
effort. Designed experiments are helpful in this regard.  

   10.1.3    Criteria for Evaluating Subset Regression Models 

 Two key aspects of the variable selection problem are generating the subset models 
and deciding if one subset is better than another. In this section we discuss criteria 
for evaluating and comparing subset regression models. Section  10.2  will present 
computational methods for variable selection. 

  Coeffi cient of Multiple Determination     A measure of the adequacy of a regres-
sion model that has been widely used is the coeffi cient of multiple determination, 
 R  2 . Let   Rp

2  denote the coeffi cient of multiple determination for a subset regre-
ssion model with  p  terms, that is,  p     −    1 regressors and an intercept term   β   0 . 
Computationally,

    R
SS p

SS
SS p

SS
p
2 1= ( ) = − ( )R

T

Res

T

    (10.8)  

  where  SS  R ( p ) and  SS  Res ( p ) denote the regression sum of squares and the residual 

sum of squares, respectively, for a  p  - term subset model. Note that there are   
K

p −
⎛
⎝⎜

⎞
⎠⎟1

values of   Rp
2 for each value of  p , one for each possible subset model of size  p . Now 

  Rp
2 increases as  p  increases and is a maximum when  p     =     K     +    1. Therefore, the analyst 

uses this criterion by adding regressors to the model up to the point where an addi-
tional variable is not useful in that it provides only a small increase in   Rp

2. The 
general approach is illustrated in Figure  10.1 , which presents a hypothetical plot of 
the maximum value of   Rp

2 for each subset of size  p  against  p . Typically one examines 
a display such as this and then specifi es the number of regressors for the fi nal model 
as the point at which the  “ knee ”  in the curve becomes apparent. Clearly this requires 
judgment on the part of the analyst. 

 Since we cannot fi nd an  “ optimum ”  value of  R  2  for a subset regression 
model, we must look for a  “ satisfactory ”  value. Aitkin [ 1974 ] has proposed one 
solution to this problem by providing a test by which all subset regression models 
that have an  R  2  not signifi cantly different from the  R  2  for the full model can be 
identifi ed. Let

    R R dK n K0
2

1
21 1 1= − −( ) +( )+ α , ,     (10.9)     
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 where

   d
KF
n K

n K
K n K

α
α

, ,
, ,=

− −
− −1

1
  

 and   RK+1
2  is the value of  R  2  for the full model. Aitkin calls any subset of regressor 

variables producing an  R  2  greater than   R0
2 an  R  2  -  adequate (   α   ) subset . 

 Generally, it is not straightforward to use  R  2  as a criterion for choosing 
the number of regressors to include in the model. However, for a fi xed number of 

variables  p ,   Rp
2 can be used to compare the   

K

p −
⎛
⎝⎜

⎞
⎠⎟1

 subset models so generated. 

Models having large values of   Rp
2 are preferred.  

  Adjusted  R  2      To avoid the diffi culties of interpreting  R  2 , some analysts prefer to 
use the adjusted  R  2  statistic, defi ned for a  p  - term equation as

    R
n
n p

Rp pAdj,
2 21

1
1= − −

−
⎛
⎝⎜

⎞
⎠⎟

−( )     (10.10)   

 The   R pAdj,
2  statistic does not necessarily increase as additional regressors are intro-

duced into the model. In fact, it can be shown (Edwards [ 1969 ], Haitovski [ 1969 ], 
and Seber [ 1977 ]) that if  s  regressors are added to the model,   R p sAdj, +

2  will exceed 
  R pAdj,

2  if and only if the partial  F  statistic for testing the signifi cance of the  s  additional 
regressors exceeds 1. Consequently, one criterion for selection of an optimum subset 
model is to choose the model that has a maximum   R pAdj,

2 . However, this is equivalent 
to another criterion that we now present.  

  Residual Mean Square     The residual mean square for a subset regression model, 
for example,

    MS p
SS p

n p
Res

Res( ) = ( )
−

    (10.11)  

  may be used as a model evaluation criterion. The general behavior of  MS  Res ( p ) as 
 p  increases is illustrated in Figure  10.2 . Because  SS  Res ( p ) always decreases 

     Figure 10.1     Plot of   Rp
2 versus  p .  
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as  p  increases,  MS  Res ( p ) initially decreases, then stabilizes, and eventually 
may increase. The eventual increase in  MS  Res ( p ) occurs when the reduction in 
 SS  Res ( p ) from adding a regressor to the model is not suffi cient to compensate for 
the loss of one degree of freedom in the denominator of Eq.  (10.11) . That is, adding 
a regressor to a  p  - term model will cause  MS  Res ( p     +    1) to be greater than  MS  Res ( p ) 
if the decrease in the residual sum of squares is less than  MS  Res ( p ). Advocates of 
the  MS  Res ( p ) criterion will plot  MS  Res ( p ) versus  p  and base the choice of  p  on the 
following: 

    1.     The minimum  MS  Res ( p )    
  2.     The value of  p  such that  MS  Res ( p ) is approximately equal to  MS  Res  for the full 

model  
  3.     A value of  p  near the point where the smallest  MS  Res ( p ) turns upward    

 The subset regression model that minimizes  MS  Res ( p ) will also maximize   R pAdj,
2 . 

To see this, note that

   R
n
n p

R
n
n p

SS p
SS

MS p
SS n

p pAdj
Res

T

Res

T
,

2 21
1

1 1
1

1= − −
−

−( ) = − −
−

( ) = − ( )
−−( )1

  

 Thus, the criteria minimum  MS  Res ( p ) and maximum adjusted  R  2  are equivalent.  

  Mallows ’ s  C p   Statistic     Mallows [ 1964, 1966, 1973, 1995 ] has proposed a criterion 
that is related to the mean square error of a fi tted value, that is,

    E y E y E y E y yi i i i iˆ ˆ ˆ− ( )[ ] = ( ) − ( )[ ] + ( )2 2 Var     (10.12)   

 Note that  E ( y i  ) is the expected response from the true regression equation and   E yiˆ( ) 
is the expected response from the  p  - term subset model. Thus,   E y E yi i( ) − ( )ˆ  is the 
bias at the  i th data point. Consequently, the two terms on the right - hand side of Eq. 
 (10.12)  are the  squared bias  and  variance  components, respectively, of the mean 
square error. Let the total squared bias for a  p  - term equation be

   SS p E y E yi i

i

n

B( ) = ( ) − ( )[ ]
=
∑ ˆ 2

1

  

     Figure 10.2     Plot of  MS  Res ( p ) versus  p .  
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 and defi ne the standardized total mean square error as

    

Γ p i i

i

n

i

i

n

E y E y y

SS p

= ( ) − ( )[ ] + ( )⎧
⎨
⎩

⎫
⎬
⎭

= ( ) +

= =
∑ ∑1

1

2
2

1 1

2

σ

σ σ

ˆ ˆVar

B
22

1

Var ŷi
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 It can be shown that

   Var ŷ pi

i

n

( ) =
=
∑

1

2σ   

 and that the expected value of the residual sum of squares from a  p  - term equation 
is

   E SS p SS p n pRes B( )[ ] = ( ) + −( )σ 2   

 Substituting for   ∑ ( )=i
n

iy1 Var ˆ  and  SS  B ( p ) in Eq.  (10.13)  gives

    Γ p E SS p n p p
E SS p

n p= ( )[ ]− −( ) +{ } = ( )[ ] − +1
2

2
2 2

2σ
σ σ

σRes
Res     (10.14)   

 Suppose that   ̂σ 2 is a good estimate of   σ    2 . Then replacing  E [ SS  Res ( p )] by the observed 
value  SS  Res ( p ) produces an estimate of  Γ   p  , say

    C
SS p

n pp = ( ) − +Res

σ̂ 2
2     (10.15)   

 If the  p  - term model has negligible bias, then  SS  B ( p )    =    0. Consequently, 
 E [ SS  Res ( p )]    =    ( n     −     p )  σ   2 , and

   E C
n p

n p pp Bias =[ ] = −( ) − + =0 2
2

2

σ
σ

  

 When using the  C p   criterion, it can be helpful to visualize the plot of  C p   as a 
function of  p  for each regression equation, such as shown in Figure  10.3 . Regression 
equations with little bias will have values of  C  p    that fall near the line  C p      =     p  (point 
 A  in Figure  10.3 ) while those equations with substantial bias will fall above this line 
(point  B  in Figure  10.3 ). Generally,  small values of   C  p     are desirable . For example, 
although point  C  in Figure  10.3  is above the line  C p      =     p , it is below point  A  and thus 
represents a model with lower total error. It may be preferable to accept some bias 
in the equation to reduce the average error of prediction.   

 To calculate  C p  , we need an unbiased estimate of   σ    2 . Frequently we use the 
residual mean square for the full equation for this purpose. However, this forces 
 C p      =     p     =     K     +    1 for the full equation. Using  MS  Res ( K     +    1) from the full model as an 
estimate of   σ    2  assumes that the full model has negligible bias. If the full model 
has several regressors that do not contribute signifi cantly to the model (zero regres-
sion coeffi cients), then  MS  Res ( K     +    1) will often overestimate   σ    2 , and consequently 
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the values of  C p   will be small. If the  C p   statistic is to work properly, a good 
estimate of   σ    2  must be used. As an alternative to  MS  Res ( K     +    1), we could base our 
estimate of   σ    2  on pairs of points that are  “ near neighbors ”  in  x  space, as illustrated 
in Section  4.5.2 .  

  The Akaike Information Criterion and Bayesian Analogues ( BIC  s )     Akaike 
proposed an information criterion, AIC, based on maximizing the expected  entropy  
of the model. Entropy is simply a measure of the expected information, in this 
case the Kullback - Leibler information measure. Essentially, the AIC is a penalized 
log - likelihood measure. Let  L  be the likelihood function for a specifi c model. The 
AIC is

   AIC = − ( ) +2 2ln ,L p   

 where  p  is the number of parameters in the model. In the case of ordinary least 
squares regression,

   AIC Res= ⎛
⎝⎜

⎞
⎠⎟ +n

SS
n

pln .2   

 The key insight to the AIC is similar to   RAdj
2  and Mallows  C p  . As we add regressors 

to the model,  SS  Res , cannot increase. The issue becomes whether the decrease in 
 SS  Res  justifi es the inclusion of the extra terms. 

 There are several Bayesian extensions of the AIC. Schwartz  (1978)  and Sawa 
 (1978)  are two of the more popular ones. Both are called BIC for Bayesian informa-
tion criterion. As a result, it is important to check the fi ne print on the statistical 
software that one uses! The Schwartz criterion (BIC Sch ) is

   BICSch = − ( ) + ( )2 ln ln .L p n   

 This criterion places a greater penalty on adding regressors as the sample size 
increases. For ordinary least squares regression, this criterion is

     Figure 10.3     A  C p   plot.  
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   BICSch
Res= ⎛

⎝⎜
⎞
⎠⎟ + ( )n

SS
n

p nln ln .   

 R uses this criterion as its BIC. SAS uses the Sawa criterion, which involves a more 
complicated penalty term. This penalty term involves   σ    2  and   σ    4 , which SAS esti-
mates by  MS  Res  from the full model. 

 The AIC and BIC criteria are gaining popularity. They are much more commonly 
used in the model selection procedures involving more complicated modeling situ-
ations than ordinary least squares, for example, the mixed model situation outlined 
in Section  5.6 . These criteria are very commonly used with generalized linear models 
(Chapter  13 ).  

  Uses of Regression and Model Evaluation Criteria     As we have seen, there are 
several criteria that can be used to evaluate subset regression models. The criterion 
that we use for model selection should certainly be related to the intended use of 
the model. There are several possible uses of regression, including (1) data descrip-
tion, (2) prediction and estimation, (3) parameter estimation, and (4) control. 

 If the objective is to obtain a good description of a given process or to model a 
complex system, a search for regression equations with small residual sums of 
squares is indicated. Since  SS  Res  is minimized by using all  K  candidate regressors, 
we usually prefer to eliminate some variables if only a small increase in  SS  Res  results. 
In general, we would like to describe the system with as few regressors as possible 
while simultaneously explaining the substantial portion of the variability in  y . 

 Frequently, regression equations are used for prediction of future observations 
or estimation of the mean response. In general, we would like to select the regres-
sors such that the mean square error of prediction is minimized. This usually implies 
that regressors with small effects should be deleted from the model. One could also 
use the PRESS statistic introduced in Chapter  4  to evaluate candidate equations 
produced by a subset generation procedure. Recall that for a  p  - term regression 
model

    PRESSp i i

i

n
i

iii

n

y y
e

h
= −[ ] =

−
⎛
⎝⎜

⎞
⎠⎟( )

= =
∑ ∑ˆ 2

1

2

1 1
    (10.16)   

 One then selects the subset regression model based on a small value of PRESS  p  . 
While PRESS  p   has intuitive appeal, particularly for the prediction problem, it is not 
a simple function of the residual sum of squares, and developing an algorithm for 
variable selection based on this criterion is not straightforward. This statistic is, 
however, potentially useful for discriminating between alternative models, as we will 
illustrate. 

 If we are interested in parameter estimation, then clearly we should consider 
both the bias that results from deleting variables and the variances of the estimated 
coeffi cients. When the regressors are highly multicollinear, the least - squares esti-
mates of the individual regression coeffi cients may be extremely poor, as we saw in 
Chapter  9 . 

 When a regression model is used for control, accurate estimates of the parame-
ters are important. This implies that the standard errors of the regression coeffi cients 
should be small. Furthermore, since the adjustments made on the  x  ’ s to control  y  
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will be proportional to the   β̂’s, the regression coeffi cients should closely represent 
the effects of the regressors. If the regressors are highly multicollinear, the   β̂’s may 
be very poor estimates of the effects of individual regressors.    

   10.2    COMPUTATIONAL TECHNIQUES FOR VARIABLE SELECTION 

 We have seen that it is desirable to consider regression models that employ a subset 
of the candidate regressor variables. To fi nd the subset of variables to use in the 
fi nal equation, it is natural to consider fi tting models with various combinations of 
the candidate regressors. In this section we will discuss several computational tech-
niques for generating subset regression models and illustrate criteria for evaluation 
of these models. 

   10.2.1    All Possible Regressions 

 This procedure requires that the analyst fi t all the regression equations involving 
one candidate regressor, two candidate regressors, and so on. These equations are 
evaluated according to some suitable criterion and the  “ best ”  regression model 
selected. If we assume that the intercept term   β   0  is included in all equations, then if 
there are  K  candidate regressors, there are 2  K   total equations to be estimated and 
examined. For example, if  K     =    4, then there are 2 4     =    16 possible equations, while if 
 K     =    10, there are 2 10     =    1024 possible regression equations. Clearly the number of 
equations to be examined increases rapidly as the number of candidate regressors 
increases. Prior to the development of effi cient computer codes, generating all pos-
sible regressions was impractical for problems involving more than a few regressors. 
The availability of high - speed computers has motivated the development of several 
very effi cient algorithms for all possible regressions. We illustrate Minitab and SAS 
in this chapter. The R function leaps() in the leaps directory performs an all possible 
regressions methodology.   

   †       These are  “ classical ”  data for illustrating the problems inherent in variable selection. For other analysis, 
see Daniel and Wood [ 1980 ], Draper and Smith [ 1998 ], and Seber [ 1977 ]. 

 Example 10.1   The Hald Cement Data 

    Hald [1952]  †   presents data concerning the heat evolved in calories per gram of 
cement ( y ) as a function of the amount of each of four ingredients in the mix: tri-
calcium aluminate ( x  1 ), tricalcium silicate ( x  2 ), tetracalcium alumino ferrite ( x  3 ), and 
dicalcium silicate ( x  4 ). The data are shown in Appendix Table  B.21 . These refl ect 
quite serious problems with multicollinearity. The VIFs are:

   x1: 38.496    
  x2: 254.423  
  x3: 46.868  
  x4: 282.513    

 We will use these data to illustrate the all - possible - regressions approach to vari-
able selection. 
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 Since there are  K     =    4 candidate regressors, there are 2 4     =    16 possible regression 
equations if we always include the intercept   β   0 . The results of fi tting these 16 equa-
tions are displayed in Table  10.1 . The   Rp

2,   R pAdj,
2 ,  MS  Res ( p ), and  C p   statistics are also 

given in this table.   
 Table  10.2  displays the least - squares estimates of the regression coeffi cients. The 

partial nature of regression coeffi cients is readily apparent from examination of this 

  TABLE 10.1    Summary of All Possible Regressions for the Hald Cement Data 

   Number of 
Regressors 
in Model      p   

   Regressors 
in Model      SS  Res ( p )       Rp

2        R pAdj,
2       MS  Res ( p )      C p    

  None    1    None    2715.7635    0    0    226.3136    442.92  
  1    2     x  1     1265.6867    0.53395    0.49158    115.0624    202.55  
  1    2     x  2     906.3363    0.66627    0.63593    82.3942    142.49  
  1    2     x  3     1939.4005    0.28587    0.22095    176.3092    315.16  
  1    2     x  4     883.8669    0.67459    0.64495    80.3515    138.73  
  2    3     x  1  x  2     57.9045    0.97868    0.97441    5.7904    2.68  
  2    3     x  1  x  3     1227.0721    0.54817    0.45780    122.7073    198.10  
  2    3     x  1  x  4     74.7621    0.97247    0.96697    7.4762    5.50  
  2    3     x  2  x  3     415.4427    0.84703    0.81644    41.5443    62.44  
  2    3     x  2  x  4     868.8801    0.68006    0.61607    86.8880    138.23  
  2    3     x  3  x  4     175.7380    0.93529    0.92235    17.5738    22.37  
  3    4     x  1  x  2  x  3     48.1106    0.98228    0.97638    5.3456    3.04  
  3    4     x  1  x  2  x  4     47.9727    0.98234    0.97645    5.3303    3.02  
  3    4     x  1  x  3  x  4     50.8361    0.98128    0.97504    5.6485    3.50  
  3    4     x  2  x  3  x  4     73.8145    0.97282    0.96376    8.2017    7.34  
  4    5     x  1  x  2  x  3  x  4     47.8636    0.98238    0.97356    5.9829    5.00  

  TABLE 10.2    Least - Squares Estimates for All Possible Regressions (Hald Cement Data) 

   Variables in Model       β̂0        β̂1        β̂2        β̂3        β̂4   

   x  1     81.479    1.869              
   x  2     57.424        0.789          
   x  3     110.203             − 1.256      
   x  4     117.568                 − 0.738  
   x  1  x  2     52.577    1.468    0.662          
   x  1  x  3     72.349    2.312        0.494      
   x  1  x  4     103.097    1.440             − 0.614  
   x  2  x  3     72.075        0.731     − 1.008      
   x  2  x  4     94.160        0.311         − 0.457  
   x  3  x  4     131.282             − 1.200     − 0.724  
   x  1  x  2  x  3     48.194    1.696    0.657    0.250      
   x  1  x  2  x  4     71.648    1.452    0.416         − 0.237  
   x  2  x  3  x  4     203.642         − 0.923     − 1.448     − 1.557  
   x  1  x  3  x  4     111.684    1.052         − 0.410     − 0.643  
   x  1  x  2  x  3  x  4     62.405    1.551    0.510    0.102     − 0.144  
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table. For example, consider  x  2 . When the model contains only  x  2 , the least - squares 
estimate of the  x  2  effect is 0.789. If  x  4  is added to the model, the  x  2  effect is 0.311, a 
reduction of over 50%. Further addition of  x  3  changes the  x  2  effect to  − 0.923. Clearly 
the least - squares estimate of an individual regression coeffi cient depends heavily 
on the  other  regressors in the model. The large changes in the regression coeffi cients 
observed in the Hald cement data are consistent with a serious problem with 
multicollinearity.   

 Consider evaluating the subset models by the   Rp
2 criterion. A plot of   Rp

2 versus  p  
is shown in Figure  10.4 . From examining this display it is clear that after two regres-
sors are in the model, there is little to be gained in terms of  R  2  by introducing 
additional variables. Both of the two - regressor models ( x  1 ,  x  2 ) and ( x  1 ,  x  4 ) have 
essentially the same  R  2  values, and in terms of this criterion, it would make little 
difference which model is selected as the fi nal regression equation. It may be prefer-
able to use ( x  1 ,  x  4 ) because  x  4  provides the best one - regressor model. From Eq.  (10.9)  
we fi nd that if we take   α      =    0.05,

   
R R

F
0
2

5
2 0 05 4 81 1 1

4
8

1 0 01762 1
4 3 84

8

= − −( ) +⎛
⎝⎜

⎞
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= − + ( )⎡
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⎤
⎦⎥

. , ,

.
. == 0 94855.

    

 Therefore, any subset regression model for which   R Rp
2

0
2 0 94855> = .  is  R  2  adequate 

(0.05); that is, its  R  2  is not signifi cantly different from   RK+1
2 . Clearly, several models 

     Figure 10.4     Plot of   Rp
2  versus  p , Example  10.1 .  
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in Table  10.1  satisfy this criterion, and so the choice of the fi nal model is still not 
clear. 

 It is instructive to examine the pairwise correlations between  x i   and  x j   and 
between  x i   and  y . These simple correlations are shown in Table  10.3 . Note that the 
pairs of regressors ( x  l ,  x  3 ) and ( x  2 ,  x  4 ) are highly correlated, since

   r r13 240 824 0 973= − = −. .and     

 Consequently, adding further regressors when  x  1  and  x  2  or when  x  1  and  x  4  are already 
in the model will be of little use since the information content in the excluded 
regressors is essentially present in the regressors that are in the model. This correla-
tive structure is partially responsible for the large changes in the regression coeffi -
cients noted in Table  10.2 . 

 A plot of  MS  Res ( p ) versus  p  is shown in Figure  10.5 . The minimum residual mean 
square model is ( x  1 ,  x  2 ,  x  4 ), with  MS  Res (4)    =    5.3303. Note that, as expected, the model 
that minimizes  MS  Res ( p ) also maximizes the adjusted  R  2 . However, two of the other 
three - regressor models [( x  1 ,  x  2 ,  x  3 ) and ( x  1 ,  x  3 ,  x  4 )] and the two - regressor models [( x  1 , 
 x  2 ) and ( x  1 ,  x  4 )] have comparable values of the residual mean square. If either 
( x  1 ,  x  2 ) or ( x  1 ,  x  4 ) is in the model, there is little reduction in residual mean square 
by adding further regressors. The subset model ( x  1 ,  x  2 ) may be more appropriate 
than ( x  1 ,  x  4 ) because it has a smaller value of the residual mean square.   

 A  C p   plot is shown in Figure  10.6 . To illustrate the calculations, suppose we take 
  ˆ .σ = 5 9829 ( MS  Res  from the full model) and calculate  C  3  for the model ( x  1 ,  x  4 ). From 
Eq.  (10.15)  we fi nd that

   C
SS

n p3 2

3
2

74 7621
5 9829

13 2 3 5 50= ( ) − + = − + ( ) =Res

ˆ
.

.
.

σ
    

 From examination of this plot we fi nd that there are four models that could be 
acceptable: ( x  1 ,  x  2 ), ( x  1 ,  x  2 ,  x  3 ), ( x  1 ,  x  2 ,  x  4 ), and ( x  1 ,  x  3 ,  x  4 ). Without considering addi-
tional factors such as technical information about the regressors or the costs of data 
collection, it may be appropriate to choose the simplest model ( x  1 ,  x  2 ) as the fi nal 
model because it has the smallest  C p  . 

 This example has illustrated the computational procedure associated with model 
building with all possible regressions. Note that there is no clear - cut choice of the 
best regression equation. Very often we fi nd that different criteria suggest different 
equations. For example, the minimum  C p   equation is ( x  1 ,  x  2 ) and the minimum  MS  Res  

  TABLE 10.3    Matrix of Simple Correlations for Hald ’ s 
Data in Example  10.1  

         x  1       x  2       x  3       x  4       y   

   x  1     1.0                  
   x  2     0.229    1.0              
   x  3      − 0.824     − 0.139    1.0          
   x  4      − 0.245     − 0.973    0.030    1.0      
   y     0.731    0.816     − 0.535     − 0.821    1.0  
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     Figure 10.5     Plot of  MS  Res ( p ) versus  p , Example  10.1 .  
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  Effi cient Generation of All Possible Regressions     There are several algorithms 
potentially useful for generating all possible regressions. For example, see Furnival 
[ 1971 ], Furnival and Wilson [ 1974 ], Gartside  [1965, 1971] , Morgan and Tatar [ 1972 ], 
and Schatzoff, Tsao, and Fienberg [ 1968 ]. The basic idea underlying all these algo-
rithms is to perform the calculations for the 2  K   possible subset models in such a way 
that sequential subset models differ by only one variable. This allows very effi cient 

equation is ( x  1 ,  x  2 ,  x  4 ). All  “ fi nal ”  candidate models should be subjected to the usual 
tests for adequacy, including investigation of leverage points, infl uence, and multicol-
linearity. As an illustration, Table  10.4  examines the two models ( x  1 ,  x  2 ) and ( x  1 ,  x  2 , 
 x  4 ) with respect to PRESS and their variance infl ation factors (VIFs). Both models 
have very similar values of PRESS (roughly twice the residual sum of squares for 
the minimum  MS  Res  equation), and the  R  2  for prediction computed from PRESS is 
similar for both models. However,  x  2  and  x  4  are highly multicollinear, as evidenced 
by the larger variance infl ation factors in ( x  1 ,  x  2 ,  x  4 ). Since both models have equiva-
lent PRESS statistics, we would recommend the model with ( x  1 ,  x  2 ) based on the 
lack of multicollinearity in this model.        ■     
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     Figure 10.6     The  C p   plot for Example  10.1 .  

numerical methods to be used in performing the calculations. These methods are 
usually based on either Gauss – Jordan reduction or the sweep operator (see Beaton 
[ 1964 ] or Seber [ 1977 ]). Some of these algorithms are available commercially. For 
example, the Furnival and Wilson [ 1974 ] algorithm is an option in the MlNlTAB 
and SAS computer programs. 

 A sample computer output for Minitab applied to the Hald cement data is 
shown in Figure  10.7 . This program allows the user to select the best subset regre-
ssion mode l of each size for 1    ≤     p     ≤     K     +    1 and displays the C  p  ,   Rp

2, and  MS  Res ( p ) 
criteria. It also displays the values of the  C p  ,   Rp

2 ,   R pAdj,
2  and   S MS p= ( )Res  statistics 

for several (but not all) models for each value of  p . The program has the capability 
of identifying the  m  best (for  m     ≤    5) subset regression models.   

 Current all - possible - regression procedures will very effi ciently process up to 
about 30 candidate regressors with computing times that are comparable to the 
usual stepwise - type regression algorithms discussed in Section  10.2.2 . Our experi-
ence indicates that problems with 30 or less candidate regressors can usually be 
solved relatively easily with an all - possible - regressions approach.   
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   10.2.2    Stepwise Regression Methods 

 Because evaluating all possible regressions can be burdensome computationally, 
various methods have been developed for evaluating only a small number of subset 
regression models by either adding or deleting regressors one at a time. These 

     Figure 10.7     Computer output (Minitab) for Furnival and Wilson all - possible - regression 
algorithm.  

  TABLE 10.4    Comparisons of Two Models for Hald ’ s Cement Data 

  Observation       ̂ . . .y x x= + +52 58 1 468 0 6621 2   a          ̂ . . . .y x x x= + + −71 65 1 452 0 416 0 2371 2 4   b     

    i       e i        h ii       [ e i  /(1    −     h ii  )] 2       e i        h ii       [ e i  /(1    −     h ii  )] 2   

  1     − 1.5740    0.25119    4.4184    0.0617    0.52058    0.0166  
  2     − 1.0491    0.26189    2.0202    1.4327    0.27670    3.9235  
  3     − 1.5147    0.11890    2.9553     − 1.8910    0.13315    4.7588  
  4     − 1.6585    0.24225    4.7905     − 1.8016    0.24431    5.6837  
  5     − 1.3925    0.08362    2.3091    0.2562    0.35733    0.1589  
  6    4.0475    0.11512    20.9221    3.8982    0.11737    19.5061  
  7     − 1.3031    0.36180    4.1627     − 1.4287    0.36341    5.0369  
  8     − 2.0754    0.24119    7.4806     − 3.0919    0.34522    22.2977  
  9    1.8245    0.17195    4.9404    1.2818    0.20881    2.6247  

  10    1.3625    0.55002    9.1683    0.3539    0.65244    1.0368  
  11    3.2643    0.18402    16.0037    2.0977    0.32105    9.5458  
  12    0.8628    0.19666    1.1535    1.0556    0.20040    1.7428  
  13     − 2.8934    0.21420     13.5579      − 2.2247    0.25923     9.0194   

          PRESS  x  1 ,  x  2     =    93.8827    PRESS  x  1 ,  x  2 ,  x  4     =    85.3516  

       a          RPrediction
2 0 9654= . , VIF 1     =    1.05, VIF 2     =    1.06.  

     b          RPrediction
2 0 9684= . , VIF 1     =    1.07, VIF 2     =    18.78, VIF 4     =    18.94.   
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methods are generally referred to as  stepwise - type procedures . They can be classi-
fi ed into three broad categories: (1)  forward selection , (2)  backward elimination , 
and (3)  stepwise regression , which is a popular combination of procedures 1 and 2. 
We now briefl y describe and illustrate these procedures. 

  Forward Selection     This procedure begins with the assumption that there are  no 
regressors in the model  other than the intercept. An effort is made to fi nd an optimal 
subset by inserting regressors into the model one at a time. The fi rst regressor 
selected for entry into the equation is the one that has the  largest simple correlation  
with the response variable  y . Suppose that this regressor is  x  1 . This is also the regres-
sor that will produce the largest value of the  F  statistic for testing signifi cance of 
regression. This regressor is entered if the  F  statistic exceeds a preselected  F  value, 
say  F  IN  (or  F  - to - enter). The second regressor chosen for entry is the one that now 
has the largest correlation with  y  after adjusting for the effect of the fi rst regressor 
entered ( x  1 ) on  y . We refer to these correlations as  partial correlations . They are the 
simple correlations between the residuals from the regression   ̂ ˆ ˆy x= +β β0 1 1 and the 
residuals from the regressions of the other candidate regressors on  x  1 , say 
  ̂ ˆ ˆx xj j j= +α α0 1 1,  j     =    2, 3,    . . .    ,  K . 

 Suppose that at step 2 the regressor with the highest partial correlation with  y  is 
 x  2 . This implies that the largest partial  F  statistic is

   F
SS x x

MS x x
= ( )

( )
R

Res

2 1

1 2,
  

 If this  F  value exceeds  F  IN , then  x  2  is added to the model. In general, at each step 
the regressor having the highest partial correlation with  y  (or equivalently the 
largest partial  F  statistic given the other regressors already in the model) is added 
to the model if its partial  F  statistic exceeds the preselected entry level  F  IN . The 
procedure terminates either when the partial  F  statistic at a particular step does not 
exceed  F  IN  or when the last candidate regressor is added to the model. 

 Some computer packages report  t  statistics for entering or removing variables. 
This is a perfectly acceptable variation of the procedures we have described, because 
  t Fα ν α ν2

2
1, , ,= . 

 We illustrate the stepwise procedure in Minitab. SAS and the R function step () 
in the mass directory also perform this procedure.    

 Example 10.2   Forward Selection — Hald Cement Data 

    We will apply the forward selection procedure to the Hald cement data given in 
Example  10.1 . Figure  10.8  shows the results obtained when a particular computer 
program, the Minitab forward selection algorithm, was applied to these data. In this 
program the user specifi es the cutoff value for entering variables by choosing a type 
I error rate   α  . Furthermore, Minitab uses the  t  statistics for decision making regard-
ing variable selection, so the variable with the largest partial correlation with  y  is 
added to the model if | t |    >     t      /2,       . In this example we will use   α      =    0.25, the default value 
in Minitab.   
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     Figure 10.8     Forward selection results from Minitab for the Hald cement data.  

 From Table  10.3 , we see that the regressor most highly correlated with  y  
is  x  4 ( r  4   y      =     − 0.821), and since the  t  statistic associated with the model using  x  4  
is  t     =    4.77 and  t  0.25/2,11     =    1.21,  x  4  is added to the equation. At step 2 the regressor 
having the largest partial correlation with  y  (or the largest  t  statistic given that  x  4  
is in the model) is  x  1 , and since the partial  F  statistic for this regressor is  t     =    10.40, 
which exceeds  t  0.25/2,10     =    1.22,  x  1  is added to the model. In the third step,  x  2  
exhibits the highest partial correlation with  y . The  t  statistic associated with this 
variable is 2.24, which is larger than  t  0.25/2,9     =    1.23, and so  x  2  is added to the model. 
At this point the only remaining candidate regressor is  x  3 , for which the  t  statistic 
does not exceed the cutoff value  t  0.25/2,8     =    1.24, so the forward selection procedure 
terminates with

   ˆ . . . .y x x x= + + −71 6483 1 4519 0 4161 0 23651 2 4  

  as the fi nal model.        ■   

  Backward Elimination     Forward selection begins with  no regressors in the model  
and attempts to insert variables until a suitable model is obtained.  Backward elimi-
nation  attempts to fi nd a good model by working in the opposite direction. That is, 
we begin with a model that includes all  K  candidate regressors. Then the partial  F  
statistic (or equivalently, a  t  statistic) is computed for each regressor as if it were 
the last variable to enter the model. The smallest of these partial  F  (or  t ) statistics 
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 Example 10.3   Backward Elimination — Hald Cement Data 

    We will illustrate backward elimination using the Hald cement data from Example 
 10.1 . Figure  10.9  presents the results of using the Minitab version of backward 
elimination on those data. In this run we have selected the cutoff value by using 
  α      =    0.10, the default in Minitab. Minitab uses the  t  statistic for removing variables; 
thus, a regressor is dropped if the absolute value of its  t  statistic is less than 
 t  OUT     =     t  0.1/2,   n    −    p  . Step 1 shows the results of fi tting the full model. The smallest  t  value 
is 0.14, and it is associated with  x  3 . Thus, since  t      =     0.14      <       t  OUT     =     t  0.10/2,8     =    1.86,  x  3  is 
removed from the model. At step 2 in Figure  10.9 , we see the results of fi tting the 

is compared with a preselected value,  F  OUT  (or  t  OUT ), for example, and if the smallest 
partial  F  (or  t ), value is less than  F  OUT  (or  t  OUT ), that regressor is removed from the 
model. Now a regression model with  K     −    1 regressors is fi t, the partial  F  (or  t ) sta-
tistics for this new model calculated, and the procedure repeated. The backward 
elimination algorithm terminates when the smallest partial  F  (or  t ) value is not less 
than the preselected cutoff value  F  OUT  (or  t  OUT ). 

 Backward elimination is often a very good variable selection procedure. It is 
particularly favored by analysts who like to see the effect of including all the can-
didate regressors, just so that nothing  “ obvious ”  will be missed.    

     Figure 10.9     Backward selection results from Minitab for the Hald cement data.  
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  Stepwise Regression     The two procedures described above suggest a number of 
possible combinations. One of the most popular is the  stepwise regression algorithm  
of Efroymson [ 1960 ]. Stepwise regression is a modifi cation of forward selection in 
which at each step all regressors entered into the model previously are reassessed 
via their partial  F  (or  t ) statistics. A regressor added at an earlier step may now be 
redundant because of the relationships between it and regressors now in the equa-
tion. If the partial  F  (or  t ) statistic for a variable is less than  F  OUT  (or  t  OUT ), that 
variable is dropped from the model. 

 Stepwise regression requires two cutoff values, one for entering variables and 
one for removing them. Some analysts prefer to choose  F  IN  (or  t  IN )    =     F  OUT  (or  t  OUT ), 
although this is not necessary. Frequently we choose  F  IN  (or  t  IN )    >     F  OUT  (or  t  OUT ), 
making it relatively more diffi cult to add a regressor than to delete one.    

 Example 10.4   Stepwise Regression — Hald Cement Data 

    Figure  10.10  presents the results of using the Minitab stepwise regression algo-
rithm on the Hald cement data. We have specifi ed the   α   level for either adding or 
removing a regressor as 0.15. At step 1, the procedure begins with no variables in 
the model and tries to add  x  4 . Since the  t  statistic at this step exceeds  t  IN     =     t  0.15/2,11     =    1.55, 
 x  4  is added to the model. At step 2,  x  1  is added to the model. If the  t  statistic value 
for  x  4  is less than  t  OUT     =     t  0.15/2,10     =    1.56,  x  4  would be deleted. However, the  t  value for 
 x  4  at step 2 is  − 12.62, so  x  4  is retained. In step 3, the stepwise regression algorithm 
adds  x  2  to the model. Then the  t  statistics for  x  1  and  x  4  are compared to 
 t  OUT     =     t  0.15/2,9     =    1.57. Since for  x  4  we fi nd a  t  value of  − 1.37, and since | t |    =    1.37 is less 
than  t  OUT     =    1.57,  x  4  is deleted. Step 4 shows the results of removing  x  4  from the 
model. At this point the only remaining candidate regressor is  x  3 , which cannot be 
added because its  t  value does not exceed  t  IN . Therefore, stepwise regression termi-
nates with the model

   ˆ . . .y x x= + +52 5773 1 4683 0 66231 2     

 This is the same equation identifi ed by the all - possible - regressions and backward 
elimination procedures.        ■   

three - variable model involving ( x  1 ,  x  2 ,  x  4 ). The smallest  t  statistic  in this model,  t      =      − 1.37, 
is associated with  x  4 . Since | t |    =    1.37      <       t  OUT     =     t  0.20/2,9     =    1.83,  x  4  is removed from the 
model. At step 3, we see the results of fi tting the two - variable model involving ( x  1 , 
 x  2 ). The smallest  t  statistic in this model is 12.41, associated with  x  1 , and since this 
exceeds  t  OUT     =     t  0.10/2,10     =    1.81, no further regressors can be removed from the model. 
Therefore, backward elimination terminates, yielding the fi nal model

   ˆ . . .y x x= + +52 5773 1 4683 0 66231 2     

 Note that this is a different model from that found by forward selection. Further -
 more, it is the model tentatively identifi ed as best by the all - possible - regressions 
procedure.        ■   
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  General Comments on Stepwise - Type Procedures     The stepwise regression 
algorithms described above have been criticized on various grounds, the most 
common being that none of the procedures generally guarantees that the best subset 
regression model of any size will be identifi ed. Furthermore, since all the stepwise -
 type procedures terminate with one fi nal equation, inexperienced analysts may 
conclude that they have found a model that is in some sense optimal. Part of the 
problem is that it is likely, not that there is one best subset model, but that there 
are several equally good ones. 

 The analyst should also keep in mind that the order in which the regressors enter 
or leave the model does not necessarily imply an order of importance to the regres-
sors. It is not unusual to fi nd that a regressor inserted into the model early in the 
procedure becomes negligible at a subsequent step. This is evident in the Hald 
cement data, for which forward selection chooses  x  4  as the fi rst regressor to enter. 
However, when  x  2  is added at a subsequent step,  x  4  is no longer required because 
of the high intercorrelation between  x  2  and  x  4 . This is in fact a  general  problem with 
the forward selection procedure. Once a regressor has been added, it cannot be 
removed at a later step. 

 Note that forward selection, backward elimination, and stepwise regression do 
not necessarily lead to the  same  choice of fi nal model. The intercorrelation between 
the regressors affects the order of entry and removal. For example, using the Hald 
cement data, we found that the regressors selected by each procedure were as 
follows: 

     

     Figure 10.10     Stepwise selection results from Minitab for the Hald cement data.  
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  Forward selection     x  1      x  2      x  4   
  Backward elimination     x  1      x  2       
  Stepwise regression     x  1      x  2       

 Some users have recommended that all the procedures be applied in the hopes of 
either seeing some agreement or learning something about the structure of the data 
that might be overlooked by using only one selection procedure. Furthermore, there 
is not necessarily any agreement between any of the stepwise - type procedures and 
all possible regressions. However, Berk  [1978]  has noted that forward selection 
tends to agree with all possible regressions for small subset sizes but not for large 
ones, while backward elimination tends to agree with all possible regressions for 
large subset sizes but not for small ones. 

 For these reasons stepwise - type variable selection procedures should be used 
with caution. Our own preference is for the stepwise regression algorithm followed 
by backward elimination. The backward elimination algorithm is often less adversely 
affected by the correlative structure of the regressors than is forward selection (see 
Mantel [ 1970 ]).  

  Stopping Rules for Stepwise Procedures     Choosing the cutoff values  F  IN  (or 
 t  IN ) and/or  F  OUT  (or  t  OUT ) in stepwise - type procedures can be thought of as specifying 
a stopping rule for these algorithms. Some computer programs allow the analyst to 
specify these numbers directly, while others require the choice of a type 1 error rate 
  α   to generate the cutoff values. However, because the partial  F  (or  t ) value examined 
at each stage is the maximum of several correlated partial  F  (or  t ) variables, thinking 
of   α   as a level of signifi cance or type 1 error rate is misleading. Several authors (e.g., 
Draper, Guttman, and Kanemasa [ 1971 ] and Pope and Webster [ 1972 ]) have inves-
tigated this problem, and little progress has been made toward either fi nding condi-
tions under which the  “ advertised ”  level of signifi cance on the  t  or  F  statistic is 
meaningful or developing the exact distribution of the  F  (or  t ) - to - enter and  F  (or 
 t ) - to - remove statistics. 

 Some users prefer to choose relatively small values of  F  IN  and  F  OUT  (or the equiva-
lent  t  statistics) so that several additional regressors that would ordinarily be rejected 
by more conservative  F  values may be investigated. In the extreme we may choose 
 F  IN  and  F  OUT  so that all regressors are entered by forward selection or removed by 
backward elimination revealing one subset model of each size for  p      =     2, 3,    . . .    ,  K     +    1. 
These subset models may then be evaluated by criteria such as  C p   or  MS  Res  to deter-
mine the fi nal model. We do not recommend this extreme strategy because the 
analyst may think that the subsets so determined are in some sense optimal when it 
is likely that the best subset model was overlooked. A very popular procedure is to 
set  F  IN     =     F  OUT     =    4, as this corresponds roughly to the upper 5% point of the  F  dis-
tribution. Still another possibility is to make several runs using different values for 
the cutoffs and observe the effect of the choice of criteria on the subsets obtained. 

 There have been several studies directed toward providing practical guidelines 
in the choice of stopping rules. Bendel and Afi fi  [ 1974 ] recommend   α      =    0.25 for 
forward selection. These are the defaults in Minitab. This would typically result in 
a numerical value of  F  IN  of between 1.3 and 2. Kennedy and Bancroft [ 1971 ] also 
suggest   α      =    0.25 for forward selection and recommend   α      =    0.10 for backward elimi-
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nation. The choice of values for the cutoffs is largely a matter of the personal prefer-
ence of the analyst, and considerable latitude is often taken in this area.    

   10.3    STRATEGY FOR VARIABLE SELECTION AND MODEL BUILDING 

 Figure  10.11  summarizes a basic approach for variable selection and model building. 
The basic steps are as follows:

   1.     Fit the largest model possible to the data.    
  2.     Perform a thorough analysis of this model.  
  3.     Determine if a transformation of the response or of some of the regressors is 

necessary.  
  4.     Determine if all possible regressions are feasible. 

    •      If all possible regressions are feasible, perform all possible regressions using 
such criteria as Mallow ’ s C  p   adjusted  R  2 , and the PRESS statistic to rank the 
best subset models.  

     Figure 10.11     Flowchart of the model - building process.  
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   •      If all possible regressions are not feasible, use stepwise selection techniques 
to generate the largest model such that all possible regressions are feasible. 
Perform all possible regressions as outlined above.    

  5.     Compare and contrast the best models recommended by each criterion.  
  6.     Perform a thorough analysis of the  “ best ”  models (usually three to fi ve models).  
  7.     Explore the need for further transformations.  
  8.     Discuss with the subject - matter experts the relative advantages and disadvan-

tages of the fi nal set of models.    

 By now, we believe that the reader has a good idea of how to perform a thorough 
analysis of the full model. The primary reason for analyzing the full model is to get 
some idea of the  “ big picture. ”  Important questions include the following:

    •      What regressors seem important?  
   •      Are there possible outliers?  
   •      Is there a need to transform the response?  
   •      Do any of the regressors need transformations?    

 It is crucial for the analyst to recognize that there are two basic reasons why one 
may need a transformation of the response:

    •      The analyst is using the wrong  “ scale ”  for the purpose. A prime example of this 
situation is gas mileage data. Most people fi nd it easier to interpret the response 
as  “ miles per gallon ” ; however, the data are actually measured as  “ gallons per 
mile. ”  For many engineering data, the proper scale involves a log 
transformation.  

   •      There are signifi cant outliers in the data, especially with regard to the fi t by the 
full model. Outliers represent failures by the model to explain some of the 
responses. In some cases, the responses themselves are the problem, for example, 
when they are mismeasured at the time of data collection. In other cases, it is 
the model itself that creates the outlier. In these cases, dropping one of the 
unimportant regressors can actually clear up this problem.    

 We recommend the use of all possible regressions to identify subset models 
whenever it is feasible. With current computing power, all possible regressions is 
typically feasible for 20 – 30 candidate regressors, depending on the total size of the 
data set. It is important to keep in mind that all possible regressions suggests the 
best models purely in terms of whatever criteria the analyst chooses to use. Fortu-
nately, there are several good criteria available, especially Mallow ’ s C  p  , adjusted  R  2 , 
and the PRESS statistic. In general, the PRESS statistic tends to recommend smaller 
models than Mallow ’ s  C p  , which in turn tends to recommend smaller models than 
the adjusted  R  2 . The analyst needs to refl ect on the differences in the models in light 
of each criterion used. All possible regressions inherently leads to the recommenda-
tion of several candidate models, which better allows the subject - matter expert to 
bring his or her knowledge to bear on the problem. Unfortunately, not all statistical 
software packages support the all - possible - regressions approach. 
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 The stepwise methods are fast, easy to implement, and readily available in many 
software packages. Unfortunately, these methods do not recommend subset models 
that are necessarily best with respect to any standard criterion. Furthermore, these 
methods, by their very nature, recommend a single, fi nal equation that the unsophis-
ticated user may incorrectly conclude is in some sense optimal. 

 We recommend a  two - stage strategy   when the number of candidate regressors is 
too large to employ the all - possible - regressions approach initially . The fi rst stage uses 
stepwise methods to  “ screen ”  the candidate regressors, eliminating those that clearly 
have negligible effects. We then recommend using the all - possible - regressions 
approach to the reduced set of candidate regressors. The analyst should always use 
knowledge of the problem environment and common sense in evaluating candidate 
regressors. When confronted with a large list of candidate regressors, it is usually 
profi table to invest in some serious thinking before resorting to the computer. Often, 
we fi nd that we can eliminate some regressors on the basis of logic or engineering 
sense. 

 A proper application of the all - possible - regressions approach should produce 
several (three to fi ve) fi nal candidate models. At this point, it is critical to perform 
thorough residual and other diagnostic analyses of each of these fi nal models. In 
making the fi nal evaluation of these models, we strongly suggest that the analyst 
ask the following questions:

   1.     Are the usual diagnostic checks for model adequacy satisfactory? For example, 
do the residual plots indicate unexplained structure or outliers or are there 
one or more high leverage points that may be controlling the fi t? Do these 
plots suggest other possible transformation of the response or of some of the 
regressors?  

  2.     Which equations appear most reasonable? Do the regressors in the best model 
make sense in light of the problem environment? Which models make the 
most sense from the subject - matter theory?  

  3.     Which models are most usable for the intended purpose? For example, 
a model intended for prediction that contains a regressor that is unobser-
vable at the time the prediction needs to be made is unusable. Another 
example is a model that includes a regressor whose cost of collecting is 
prohibitive.  

  4.     Are the regression coeffi cients reasonable? In particular, are the signs and 
magnitudes of the coeffi cients realistic and the standard errors relatively 
small?  

  5.     Is there still a problem with multicollinearity?    

 If these four questions are taken seriously and the answers strictly applied, in 
some (perhaps many) instances there will be no fi nal satisfactory regression equa-
tion. For example, variable selection methods do not guarantee correcting all prob-
lems with multicollinearity and infl uence. Often, they do; however, there are 
situations where highly related regressors still make signifi cant contributions to the 
model even though they are related. There are certain data points that always seem 
to be problematic. 
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 The analyst needs to evaluate all the trade - offs in making recommendations 
about the fi nal model. Clearly, judgment and experience in the model ’ s intended 
operation environment must guide the analyst as he/she makes decisions about the 
fi nal recommended model. 

 Finally, some models that fi t the data upon which they were developed very well 
may not predict new observations well. We recommend that the analyst assess the 
 predictive ability  of models by observing their performance on new data not used 
to build the model. If new data are not readily available, then the analyst should set 
aside some of the originally collected data (if practical) for this purpose. We discuss 
these issues in more detail in Chapter  11 .  

   10.4    CASE STUDY: GORMAN AND TOMAN ASPHALT DATA USING SAS 

 Gorman and Toman  (1966)  present data concerning the rut depth of 31 asphalt 
pavements prepared under different conditions specifi ed by fi ve regressors. A sixth 
regressor is used as an indicator variable to separate the data into two sets of runs. 
The variables are as follows:  y  is the rut depth per million wheel passes,  x  1  is the 
viscosity of the asphalt,  x  2  is the percentage of asphalt in the surface course,  x  3  is 
the percentage of asphalt in the base course,  x  4  is the run,  x  5  is the percentage of 
fi nes in the surface course, and  x  6  is the percentage of voids in the surface course. 
It was decided to use the log of the viscosity as the regressor, instead of the actual 
viscosity, based upon consultation with a civil engineer familiar with this material. 
Viscosity is an example of a measurement that is usually more nearly linear when 
expressed on a log scale. 

 The run regressor is actually an indicator variable. In regression model building, 
indicator variables can often present unique challenges. In many cases the rela-
tionships between the response and the other regressors change depending on 
the specifi c level of the indicator. Readers familiar with experimental design will 
recognize the concept of  interaction  between the indicator variable and at least 
some of the other regressors. This interaction complicates the model - building 
process, the interpretation of the model, and the prediction of new (future) observa-
tions. In some cases, the variance of the response is very different at the different 
levels of the indicator variable, which further complicates model building and 
prediction. 

 An example helps us to see the possible complications brought about by an 
indicator variable. Consider a multinational wine - making fi rm that makes Cabernet 
Sauvignon in Australia, California, and France. This company wishes to model the 
quality of the wine as measured by its professional tasting staff according to the 
standard 100 - point scale. Clearly, local soil and microclimate as well as the process-
ing variables impact the taste of the wine. Some potential regressors, such as the age 
of the oak barrels used to age the wine, may behave similarly from region to region. 
Other possible regressors, such as the yeast used in the fermentation process, may 
behave radically differently across the regions. Consequently, there may be consid-
erable variability in the ratings for the wines made from the three regions, and it 
may be quite diffi cult to fi nd a single regression model that describes wine quality 
incorporating the indicator variables to model the three regions. This model would 
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also be of minimal value in predicting wine quality for a Cabernet Sauvignon pro-
duced from grapes grown in Oregon. In some cases, the best thing to do is to build 
separate models for each level of the indicator variable. 

 Table  10.5  gives the asphalt data. Table  10.6  gives the appropriate SAS code to 
perform the initial analysis of the data. Table  10.7  gives the resulting SAS output. 
Figures  10.12 – 10.19  give the residual plots from Minitab.     

 We note that the overall  F  test indicates that at least one regressor is important. 
The  R  2  is 0.8060, which is good. The  t  tests on the individual coeffi cients indicate 
that only the log of the viscosity is important, which we will see later is misleading. 
The variance infl ation factors indicate problems with log - visc and run. Figure  10.13  
is the plot of the residuals versus the predicted values and indicates a major problem. 
This plot is consistant with the need for a log transformation of the response. We 
see a similar problem with Figure  10.14 , which is the plot of the residuals versus the 
log of the viscosity. This plot is also interesting because it suggests that there may 

  TABLE 10.5    Gorman and Toman Asphalt Data 

   Observation,  i       y i        x i   1       x i   2       x i   3       x i   4       x i   5       x i   6   

  1    6.75    2.80    4.68    4.87    0    8.4    4.916  
  2    13.00    1.40    5.19    4.50    0    6.5    4.563  
  3    14.75    1.40    4.82    4.73    0    7.9    5.321  
  4    12.60    3.30    4.85    4.76    0    8.3    4.865  
  5    8.25    1.70    4.86    4.95    0    8.4    3.776  
  6    10.67    2.90    5.16    4.45    0    7.4    4.397  
  7    7.28    3.70    4.82    5.05    0    6.8    4.867  
  8    12.67    1.70    4.86    4.70    0    8.6    4.828  
  9    12.58    0.92    4.78    4.84    0    6.7    4.865  

  10    20.60    0.68    5.16    4.76    0    7.7    4.034  
  11    3.58    6.00    4.57    4.82    0    7.4    5.450  
  12    7.00    4.30    4.61    4.65    0    6.7    4.853  
  13    26.20    0.60    5.07    5.10    0    7.5    4.257  
  14    11.67    1.80    4.66    5.09    0    8.2    5.144  
  15    7.67    6.00    5.42    4.41    0    5.8    3.718  
  16    12.25    4.40    5.01    4.74    0    7.1    4.715  
  17    0.76    88.00    4.97    4.66    1    6.5    4.625  
  18    1.35    62.00    4.01    4.72    1    8.0    4.977  
  19    1.44    50.00    4.96    4.90    1    6.8    4.322  
  20    1.60    58.00    5.20    4.70    1    8.2    5.087  
  21    1.10    90.00    4.80    4.60    1    6.6    5.971  
  22    0.85    66.00    4.98    4.69    1    6.4    4.647  
  23    1.20    140.00    5.35    4.76    1    7.3    5.115  
  24    0.56    240.00    5.04    4.80    1    7.8    5.939  
  25    0.72    420.00    4.80    4.80    1    7.4    5.916  
  26    0.47    500.00    4.83    4.60    1    6.7    5.471  
  27    0.33    180.00    4.66    4.72    1    7.2    4.602  
  28    0.26    270.00    4.67    4.50    1    6.3    5.043  
  29    0.76    170.00    4.72    4.70    1    6.8    5.075  
  30    0.80    98.00    5.00    5.07    1    7.2    4.334  
  31    2.00    35.00    4.70    4.80    1    7.7    5.705  
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be two distinct models: one for the low viscosity and another for the high viscosity. 
This point is reemphasized in Figure  10.17 , which is the residuals versus run plot. It 
looks like the fi rst run (run 0) involved all the low - viscosity material while the 
second run (run 1) involved the high - viscosity material. 

 The plot of residuals versus run reveals a distinct difference in the variability 
between these two runs. We leave the exploration of this issue as an exercise. The 
residual plots also indicate one possible outlier. 

  TABLE 10.6    Initial SAS Code for Untransformed Response 

  data asphalt; 
  input rut_depth viscosity surface base run fi nes voids;  
  log_visc  =  log(viscosity);  
  cards;   

   6.75      2.80      4.68      4.87      0      8.4      4.916   
   13.00      1.40      5.19      4.50      0      6.5      4.563   
   14.75      1.40      4.82      4.73      0      7.9      5.321   
   12.60      3.30      4.85      4.76      0      8.3      4.865   

   8.25      1.70      4.86      4.95      0      8.4      3.776   
   10.67      2.90      5.16      4.45      0      7.4      4.397   

   7.28      3.70      4.82      5.05      0      6.8      4.867   
   12.67      1.70      4.86      4.70      0      8.6      4.828   
   12.58      0.92      4.78      4.84      0      6.7      4.865   
   20.60      0.68      5.16      4.76      0      7.7      4.034   

   3.58      6.00      4.57      4.82      0      7.4      5.450   
   7.00      4.30      4.61      4.65      0      6.7      4.853   

   26.20      0.60      5.07      5.10      0      7.5      4.257   
   11.67      1.80      4.66      5.09      0      8.2      5.144   

   7.67      6.00      5.42      4.41      0      5.8      3.718   
   12.25      4.40      5.01      4.74      0      7.1      4.715   

   0.76      88.00      4.97      4.66      1      6.5      4.625   
   1.35      62.00      4.01      4.72      1      8.0      4.977   
   1.44      50.00      4.96      4.90      1      6.8      4.322   
   1.60      58.00      5.20      4.70      1      8.2      5.087   
   1.10      90.00      4.80      4.60      1      6.6      5.971   
   0.85      66.00      4.98      4.69      1      6.4      4.647   
   1.20      140.00      5.35      4.76      1      7.3      5.115   
   0.56      240.00      5.04      4.80      1      7.8      5.939   
   0.72      420.00      4.80      4.80      1      7.4      5.916   
   0.47      500.00      4.83      4.60      1      6.7      5.471   
   0.33      180.00      4.66      4.72      1      7.2      4.602   
   0.26      270.00      4.67      4.50      1      6.3      5.043   
   0.76      170.00      4.72      4.70      1      6.8      5.075   
   0.80      98.00      5.00      5.07      1      7.2      4.334   
   2.00      35.00      4.70      4.80      1      7.7      5.705   

   proc reg;   
         model rut_depth  =  log_visc surface base run fi nes voids / vif;   
         plot rstudent. * (predicted. log_visc surface base run fi nes voids);   
         plot npp. * rstudent.;   
   run;   
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  TABLE 10.7    SAS Output for Initial Analysis of Asphalt Data 

   The REG Procedure   

   Model: MODEL1   
   Dependent Variable: rut_depth   

   Number of Observations Read     31   
   Number of Observations Used     31   

   Analysis of Variance   

           Sum of      Mean               
   Source      DF      Squares      Square      F Value      Pr    >    F       

   Model      6      1101.41861      183.56977      16.62       < .0001       
   Error      24      265.09983      11.04583               
   Corrected Total      30      1366.51844                   

   Root MSE      3.32353      R - Square      0.8060           
   Dependent Mean      6.50710      Adj R - Sq      0.7575           
   Coeff Var      51.07541                   

   Parameter Estimates   

           Parameter      Standard              Variance   
   Variable      DF      Estimate      Error      t Value      Pr    >    |t|      Infl ation   

   Intercept      1       − 14.95916      25.28809       − 0.59      0.5597      0   
   log_visc      1       − 3.15151      0.91945       − 3.43      0.0022      10.86965   
   surface      1      3.97057      2.49665      1.59      0.1248      1.23253   
   base      1      1.26314      3.97029      0.32      0.7531      1.33308   
   run      1      1.96548      3.64720      0.54      0.5949      9.32334   
   fi nes      1      0.11644      1.01239      0.12      0.9094      1.47906   
   voids      1      0.58926      1.32439      0.44      0.6604      1.59128   

     Figure 10.12     Normal probability plot of the 
residuals for the asphalt data.  
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     Figure 10.13     Residuals versus the fi tted values 
for the asphalt data.  
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     Figure 10.14     Residuals versus the log of the 
viscosity for the asphalt data.  
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     Figure 10.15     Residuals versus surface for the 
asphalt data.  
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     Figure 10.18     Residuals versus fi nes for the 
asphalt data.  
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     Figure 10.19     Residuals versus voids for the 
asphalt data.  
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     Figure 10.17     Residuals versus run for the 
asphalt data.  
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     Figure 10.16     Residuals versus base for the 
asphalt data.  
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 Table  10.8  gives the SAS code to generate the analysis on the log of the rut depth 
data. Table  10.9  gives the resulting SAS output.   

 Once again, the overall  F  test indicates that at least one regressor is important. 
The  R  2  is very good. It is important to note that we cannot directly compare the  R  2  
from the untransformed response to the  R  2  of the transformed response. However, 
the observed improvement in this case does support the use of the transformation. 
The  t  tests on the individual coeffi cients continue to suggest that the log of the 

  TABLE 10.8    SAS Code for Analyzing Transformed Response Using Full Model 

   data asphalt;   
   input rut_depth viscosity surface base run fi nes voids;   
   log_rut  =  log(rut_depth);   
   log_visc  =  log(viscosity);   
   cards;   

   6.75      2.80      4.68      4.87      0      8.4      4.916   
   13.00      1.40      5.19      4.50      0      6.5      4.563   
   14.75      1.40      4.82      4.73      0      7.9      5.321   
   12.60      3.30      4.85      4.76      0      8.3      4.865   

   8.25      1.70      4.86      4.95      0      8.4      3.776   
   10.67      2.90      5.16      4.45      0      7.4      4.397   

   7.28      3.70      4.82      5.05      0      6.8      4.867   
   12.67      1.70      4.86      4.70      0      8.6      4.828   
   12.58      0.92      4.78      4.84      0      6.7      4.865   
   20.60      0.68      5.16      4.76      0      7.7      4.034   

   3.58      6.00      4.57      4.82      0      7.4      5.450   
   7.00      4.30      4.61      4.65      0      6.7      4.853   

   26.20      0.60      5.07      5.10      0      7.5      4.257   
   11.67      1.80      4.66      5.09      0      8.2      5.144   

   7.67      6.00      5.42      4.41      0      5.8      3.718   
   12.25      4.40      5.01      4.74      0      7.1      4.715   

   0.76      88.00      4.97      4.66      1      6.5      4.625   
   1.35      62.00      4.01      4.72      1      8.0      4.977   
   1.44      50.00      4.96      4.90      1      6.8      4.322   
   1.60      58.00      5.20      4.70      1      8.2      5.087   
   1.10      90.00      4.80      4.60      1      6.6      5.971   
   0.85      66.00      4.98      4.69      1      6.4      4.647   
   1.20      140.00      5.35      4.76      1      7.3      5.115   
   0.56      240.00      5.04      4.80      1      7.8      5.939   
   0.72      420.00      4.80      4.80      1      7.4      5.916   
   0.47      500.00      4.83      4.60      1      6.7      5.471   
   0.33      180.00      4.66      4.72      1      7.2      4.602   
   0.26      270.00      4.67      4.50      1      6.3      5.043   
   0.76      170.00      4.72      4.70      1      6.8      5.075   
   0.80      98.00      5.00      5.07      1      7.2      4.334   
   2.00      35.00      4.70      4.80      1      7.7      5.705   

   proc reg;   
         model log_rut  =  log_visc surface base run fi nes voids / vif;   
         plot rstudent. * (predicted. log_visc surface base run fi nes 

voids);   
         plot npp. * rstudent.;   
   run;   
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  TABLE 10.9    SAS Output for Transformed Response and Full Model 

   The REG Procedure   

   Model: MODEL1   
   Dependent Variable: log_rut   

   Number of Observations Read     31   
   Number of Observations Used     31   

   Analysis of Variance   

           Sum of      Mean               
   Source      DF      Squares      Square      F Value      Pr    >    F       

   Model      6      56.34362      9.39060      98.47       < .0001       
   Error      24      2.28876      0.09537               
   Corrected Total      30      58.63238                   

   Root MSE          0.30881      R - Square      0.9610           
   Dependent Mean          1.12251      Adj R - Sq      0.9512           
   Coeff Var          27.51101                   

   Parameter Estimates   
   Parameter      Standard              Variance   

   Variable      DF      Estimate      Error      t Value      Pr    >    |t|      Infl ation   

   Intercept      1       − 1.23294      2.34970       − 0.52      0.6046      10.86965   
   log_visc      1       − 0.55769      0.8543       − 6.53       < .0001      1.23253   
   surface      1      0.58358      0.23198      2.52      0.0190      1.33308   
   base      1       − 0.10337      0.36891       − 0.28      0.7817      9.32334   
   run      1       − 0.34005      0.33889       − 1.00      0.3257      1.47906   
   fi nes      1      0.09775      0.09407      1.04      0.3091      1.59128   
   voids      1      0.19885      0.12306      1.62      0.1192       

     Figure 10.20     Normal probability plot of the 
residuals for the asphalt data after the log 
transformation.  
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     Figure 10.21     Residuals versus the fi tted values 
for the asphalt data after the log transformation.  
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     Figure 10.23     Residuals versus surface for the 
asphalt data after the log transformation.  
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     Figure 10.24     Residuals versus base for the 
asphalt data after the log transformation.  
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     Figure 10.25     Residuals versus run for the 
asphalt data after the log transformation.  
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     Figure 10.22     Residuals versus the log of the 
viscosity for the asphalt data after the log 
transformation.  
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     Figure 10.27     Residuals versus voids for the 
asphalt data after the log transformation.  

5.5 6.0

–2

–1

4.0 4.5 5.0

0

1

2

3

D
e
le

te
d

 r
e

s
id

u
a

l

Voids

     Figure 10.26     Residuals versus fi nes for the 
asphalt data after the log transformation.  
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viscosity is important. In addition, surface also looks important. The regressor voids 
appear marginal. There are no changes in the variance infl ation factors because we 
only transformed the response, the variance infl ation factors depend only on the 
relationships among the regressors. 

 Figures  10.20 – 10.27  give the residual plots. The plots of residual versus predicted 
value and residual versus individual regressor look much better, again supporting 
the value of the transformation. Interestingly, the normal probability plot of the 
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  TABLE 10.10    SAS Code for All Possible Regressions of 
Asphalt Data 

   proc reg;   

   model log_rut  =  log_visc surface base   
         run fi nes voids / selection =  cp best  =  10;   
   run;   
   proc reg;   
   model log_rut  =  log_visc surface base run   
         fi nes voids / selection =  adjrsq best  =  10;   
   run;   
   proc reg;   
   model log_rut  = log_visc surface base   
         run fi nes voids / selection =  forward;   
   run;   
   proc reg;   
   model log_rut  =  log_visc surface base   
         run fi nes voids / selection =  backward;   
   run;   
   proc reg;   
   model log_rut  =  log_visc surface base   
         run fi nes voids / selection =  stepwise;   
   run;   

residuals actually looks a little worse. On the whole, we should feel comfortable 
using the log of the rut depth as the response. We shall restrict all further analysis 
to the transformed response.   

 Table  10.10  gives the SAS source code for the all - possible - regressions approach. 
Table  10.11  gives the annotated output.   

 Both the stepwise and backward selection techniques suggested the variables 
log of viscosity, surface, and voids. The forward selection techniques suggested the 
variables log of viscosity, surface, voids, run, and fi nes. Both of these models were 
in the top fi ve models in terms of the  C p   statistic. 

 We can obtain the PRESS statistic for a specifi c model by the following SAS 
model statement:

 model log_rut = log_visc surface voids/p clm cli;  

 Table  10.12  summarizes the  C p  , adjusted  R  2 , and PRESS information for the best 
fi ve models in terms of the  C p   statistics. This table represents one of the very rare 
situations where a single model seems to dominate.   

 Table  10.13  gives the SAS code for analyzing the model that regresses log of rut 
depth against log of viscosity, surface, and voids. Table  10.14  gives the resulting SAS 
output. The overall  F  test is very strong. The  R  2  is 0.9579, which is quite high. All 
three of the regressors are important. We see no problems with multicollinearity as 
evidenced by the variance infl ation factors. The residual plots, which we do not 
show, all look good. Observation 18 has the largest hat diagonal,  R  - student, and 
 DFFITS  value, which indicates that it is infl uential. The  DFBETAS  suggest that 
this observation impacts the intercept and the surface regressor. On the whole, we 
should feel comfortable recommending this model.   
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  TABLE 10.11    Annotated SAS Output for All Possible Regressions of Asphalt Data 

   The REG Procedure   
   Model: MODEL1   

   Dependent Variable: log_rut   

   C(p) Selection Method   

   Number of Observations Read     31   
   Number of Observations Used     31   

   Number in               
   Model      C(p)      R - Square      Variables in Model   

   3      2.9066      0.9579      log_visc surface voids   
   4      4.0849      0.9592      log_visc surface run voids   
   4      4.2564      0.9589      log_visc surface fi nes voids   
   4      4.8783      0.9579      log_visc surface base voids   
   5      5.0785      0.9608      log_visc surface run fi nes voids   
   2      5.2093      0.9509      log_visc surface   
   3      5.6161      0.9535      log_visc surface fi nes   
   4      5.7381      0.9565      log_visc surface run fi nes   
   3      5.8902      0.9530      log_visc surface run   
   5      6.0069      0.9593      log_visc surface base fi nes voids   

   The REG Procedure   
   Model: MODEL1   

   Dependent Variable: log_rut   

   Adjusted R - Square Selection Method   

   Number of Observations Read     31   
   Number of Observations Used     31   

   Number in Adjusted   
   Model      R - Square      R - Square      Variables in Model   

   3      0.9532      0.9579      log_visc surface voids   
   5      0.9530      0.9608      log_visc surface run fi nes voids   
   4      0.9529      0.9592      log_visc surface run voids   
   4      0.9526      0.9589      log_visc surface fi nes voids   
   4      0.9514      0.9579      log_visc surface base voids   
   6      0.9512      0.9610      log_visc surface base run fi nes 

voids   
   5      0.9512      0.9593      log_visc surface base fi nes voids   
   5      0.9510      0.9592      log_visc surface base run voids   
   4      0.9498      0.9565      log_visc surface run fi nes   
   3      0.9483      0.9535      log_visc surface fi nes   



364  VARIABLE SELECTION AND MODEL BUILDING 

  TABLE 10.12    Summary of the Best Models for Asphalt Data 

   Variables in Model              

   log visc     surface     voids     run     fi nes      C p       Adjusted  R  2      PRESS  

  X    X    X            2.9    0.9532    3.75  
  X    X    X    X        4.1    0.9529    4.16  
  X    X    X        X    4.3    0.9526    3.91  
  X    X    X    X    X    4.9    0.9530    4.24  
  X    X                5.1    0.9474    3.66  

  TABLE 10.13    SAS Code for Recommended Model for Asphalt Data 

   data asphalt;  
  input rut_depth viscosity surface base run fi nes voids;  
  log_rut  =  log(rut_depth);  
  log_visc  =  log(viscosity);  
  cards;   

   6.75      2.80      4.68      4.87      0      8.4      4.916   
   13.00      1.40      5.19      4.50      0      6.5      4.563   
   14.75      1.40      4.82      4.73      0      7.9      5.321   
   12.60      3.30      4.85      4.76      0      8.3      4.865   

   8.25      1.70      4.86      4.95      0      8.4      3.776   
   10.67      2.90      5.16      4.45      0      7.4      4.397   

   7.28      3.70      4.82      5.05      0      6.8      4.867   
   12.67      1.70      4.86      4.70      0      8.6      4.828   
   12.58      0.92      4.78      4.84      0      6.7      4.865   
   20.60      0.68      5.16      4.76      0      7.7      4.034   

   3.58      6.00      4.57      4.82      0      7.4      5.450   
   7.00      4.30      4.61      4.65      0      6.7      4.853   

   26.20      0.60      5.07      5.10      0      7.5      4.257   
   11.67      1.80      4.66      5.09      0      8.2      5.144   

   7.67      6.00      5.42      4.41      0      5.8      3.718   
   12.25      4.40      5.01      4.74      0      7.1      4.715   

   0.76      88.00      4.97      4.66      1      6.5      4.625   
   1.35      62.00      4.01      4.72      1      8.0      4.977   
   1.44      50.00      4.96      4.90      1      6.8      4.322   
   1.60      58.00      5.20      4.70      1      8.2      5.087   
   1.10      90.00      4.80      4.60      1      6.6      5.971   
   0.85      66.00      4.98      4.69      1      6.4      4.647   
   1.20      140.00      5.35      4.76      1      7.3      5.115   
   0.56      240.00      5.04      4.80      1      7.8      5.939   
   0.72      420.00      4.80      4.80      1      7.4      5.916   
   0.47      500.00      4.83      4.60      1      6.7      5.471   
   0.33      180.00      4.66      4.72      1      7.2      4.602   
   0.26      270.00      4.67      4.50      1      6.3      5.043   
   0.76      170.00      4.72      4.70      1      6.8      5.075   
   0.80      98.00      5.00      5.07      1      7.2      4.334   
   2.00      35.00      4.70      4.80      1      7.7      5.705   

   proc reg;   
         model log_rut  =  log_visc surface voids/infl uence vif;   
         plot rstudent. * (predicted. log_visc surface voids);   
         plot npp. * rstudent.;   
   run;   
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  PROBLEMS 

       10.1    Consider the National Football League data in Table  B.1 .
   a.     Use the forward selection algorithm to select a subset regression model.  
  b.     Use the backward elimination algorithm to select a subset regression 

model.  
  c.     Use stepwise regression to select a subset regression model.  
  d.     Comment on the fi nal model chosen by these three procedures.      

    10.2    Consider the National Football League data in Table  B.1 . Restricting your 
attention to regressors  x  1  (rushing yards),  x  2  (passing yards),  x  4  (fi eld goal 
percentage),  x  7  (percent rushing),  x  8  (opponents ’  rushing yards), and  x  9  
(opponents ’  passing yards), apply the all - possible - regressions procedure. 
Evaluate   Rp

2,  C p  , and  MS  Res  for each model. Which subset of regressors do 
you recommend?   

    10.3    In stepwise regression, we specify that  F  IN     ≥     F  OUT  (or  t  IN     ≥     t  OUT ). Justify this 
choice of cutoff values.   

    10.4    Consider the solar thermal energy test data in Table  B.2 .
   a.     Use forward selection to specify a subset regression model.  
  b.     Use backward elimination to specify a subset regression model.  
  c.     Use stepwise regression to specify a subset regression model.  
  d.     Apply all possible regressions to the data. Evaluate   Rp

2,  C p  , and  MS  Res  for 
each model. Which subset model do you recommend?  

  e.     Compare and contrast the models produced by the variable selection 
strategies in parts a – d.      

    10.5    Consider the gasoline mileage performance data in Table  B.3 .
   a.     Use the all - possible - regressions approach to fi nd an appropriate regres-

sion model.  
  b.     Use stepwise regression to specify a subset regression model. Does this 

lead to the same model found in part a?      

    10.6    Consider the property valuation data found in Table  B.4 .
   a.     Use the all - possible - regressions method to fi nd the  “ best ”  set of 

regressors.  
  b.     Use stepwise regression to select a subset regression model. Does this 

model agree with the one found in part a?      

    10.7    Use stepwise regression with  F  IN     =     F  OUT     =    4.0 to fi nd the  “ best ”  set of regres-
sor variables for the Belle Ayr liquefaction data in Table  B.5 . Repeat the 
analysis with  F  IN     =     F  OUT     =    2.0. Are there any substantial differences in the 
models obtained?   

    10.8    Use the all - possible - regressions method to select a subset regression model 
for the Belle Ayr liquefaction data in Table  B.5 . Evaluate the subset models 
using the  C p   criterion. Justify your choice of fi nal model using the standard 
checks for model adequacy.   
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    10.9    Analyze the tube - fl ow reactor data in Table  B.6  using all possible regre ssions. 
Evaluate the subset models using the   Rp

2,  C p  , and  MS  Res  criteria. Justify your 
choice of fi nal model using the standard checks for model adequacy.   

    10.10    Analyze the air pollution and mortality data in Table  B.15  using all possible 
regressions. Evaluate the subset models using the   Rp

2,  C p  , and  MS  Res  criteria. 
Justify your choice of the fi nal model using the standard checks for model 
adequacy.
   a.     Use the all - possible - regressions approach to fi nd the best subset model 

for rut depth. Use  C p   as the criterion.  
  b.     Repeat part a using  MS  Res  as the criterion. Did you fi nd the same 

model?  
  c.     Use stepwise regression to fi nd the best subset model. Did you fi nd the 

same equation that you found in either part a or b above?      

    10.11    Consider the all - possible - regressions analysis of Hald ’ s cement data in 
Example  10.1 . If the objective is to develop a model to predict new observa-
tions, which equation would you recommend and why?   

    10.12    Consider the all - possible - regressions analysis of the National Football 
League data in Problem 10.2. Identify the subset regression models that are 
 R  2  adequate (0.05).   

    10.13    Suppose that the full model is  y i      =      β   0     +      β   1  x i   1     +      β   2  x i   2     +      ε    i , i     =    1, 2,    . . .    ,  n , where 
 x i   1  and  x i   2  have been coded so that  S  11     =     S  22     =    1. We will also consider fi tting 
a subset model, say  y i      =      β   0     +      β   1  x i   1     +      ε    i  .
   a.     Let   ̂ *β1 be the least - squares estimate of   β   1  from the full model. Show that 

  Var ˆ *β σ1
2

12
21( ) = −( )r , where  r  12  is the correlation between  x  1  and  x  2 .  

  b.      Let   β̂1  be the least - squares estimate of   β   1  from the subset model. Show 
that   Var β̂ σ1

2( ) = . Is   β   1  estimated more precisely from the subset model 
or from the full model?  

  c.     Show that   E rβ̂ β β1 1 12 2( ) = + . Under what circumstances is   β̂1  an unbiased 
estimator of   β   1 ?  

  d.      Find the mean square error for the subset estimator   β̂1. Compare   MSE β̂1( ) 
with   Var ˆ *β1( ). Under what circumstances is   β̂1 a preferable estimator, with 
respect to MSE?    

 You may fi nd it helpful to reread Section  10.1.2 .   

    10.14    Table  B.11  presents data on the quality of Pinot Noir wine.
   a.     Build an appropriate regression model for quality  y  using the all - 

possible - regressions approach. Use  C p   as the model selection 
criterion, and incorporate the region information by using indicator 
variables.  

  b.     For the best two models in terms of  C p  , investigate model adequacy by 
using residual plots. Is there any practical basis for selecting between 
these models?  

  c.     Is there any difference between the two models in part b in terms of the 
PRESS statistic?      
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    10.15    Use the wine quality data in Table  B.11  to construct a regression model for 
quality using the stepwise regression approach. Compare this model to the 
one you found in Problem 10.4, part a.   

    10.16    Rework Problem 10.14, part a, but exclude the region information.
   a.     Comment on the difference in the models you have found. Is there 

indication that the region information substantially improves the 
model?  

  b.     Calculate confi dence intervals as mean quality for all points in the data 
set using the models from part a of this problem and Problem 10.14, part 
a. Based on this analysis, which model would you prefer?      

    10.17    Table  B.12  presents data on a heat treating process used to carburize gears. 
The thickness of the carburized layer is a critical factor in overall reliability 
of this component. The response variable  y     =    PITCH is the result of a 
carbon analysis on the gear pitch for a cross - sectioned part. Use all possible 
regressions and the  C p   criterion to fi nd an appropriate regression model for 
these data. Investigate model adequacy using residual plots.   

    10.18    Reconsider the heat treating data from Table  B.12 . Fit a model to the PITCH 
response using the variables

   x SOAKTIME SOAKPCT x DIFFTIME DIFFPCT1 2= × = ×and  

  as regressors. How does this model compare to the one you found by the 
all - possible - regressions approach of Problem 10.17?   

    10.19    Repeat Problem 10.17 using the two cross - product variables defi ned in 
Problem 10.18 as additional candidate regressors. Comment on the model 
that you fi nd.   

    10.20    Compare the models that you have found in Problems 10.17, 10.18, and 10.19 
by calculating the confi dence intervals on the mean of the response PITCH 
for all points in the original data set. Based on a comparison of these confi -
dence intervals, which model would you prefer? Now calculate the PRESS 
statistic for these models. Which model would PRESS indicate is likely to 
be the best for predicting new observations on PITCH?   

    10.21    Table  B.13  presents data on the thrust of a jet turbine engine and six candi-
date regressors. Use all possible regressions and the  C p   criterion to fi nd an 
appropriate regression model for these data. Investigate model adequacy 
using residual plots.   

    10.22    Reconsider the jet turbine engine thrust data in Table  B.13 . Use stepwise 
regression to fi nd an appropriate regression model for these data. Investigate 
model adequacy using residual plots. Compare this model with the one found 
by the all - possible - regressions approach in Problem 10.21.   

    10.23    Compare the two best models that you have found in Problem 10.21 in terms 
of  C p   by calculating the confi dence intervals on the mean of the 
thrust response for all points in the original data set. Based on a comparison 
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of these confi dence intervals, which model would you prefer? Now calculate 
the PRESS statistic for these models. Which model would PRESS indicate 
is likely to be the best for predicting new observations on thrust?   

    10.24    Table  B.14  presents data on the transient points of an electronic inverter. 
Use all possible regressions and the  C p   criterion to fi nd an appropriate 
regression model for these data. Investigate model adequacy using residual 
plots.   

    10.25    Reconsider the electronic inverter data in Table  B.14 . Use stepwise regres-
sion to fi nd an appropriate regression model for these data. Investigate 
model adequacy using residual plots. Compare this model with the one found 
by the all - possible - regressions approach in Problem 10.24.   

    10.26    Compare the two best models that you have found in Problem 10.24 in terms 
of  C p   by calculating the confi dence intervals on the mean of the response 
for all points in the original data set. Based on a comparison of these confi -
dence intervals, which model would you prefer? Now calculate the PRESS 
statistic for these models. Which model would PRESS indicate is likely to 
be the best for predicting new response observations?   

    10.27    Reconsider the electronic inverter data in Table  B.14 . In Problems 10.24 and 
10.25, you built regression models for the data using different variable selec-
tion algorithms. Suppose that you now learn that the second observation was 
incorrectly recorded and should be ignored.
   a.     Fit a model to the modifi ed data using all possible regressions, using  C p   

as the criterion. Compare this model to the model you found in Problem 
10.24.  

  b.     Use stepwise regression to fi nd an appropriate model for the modifi ed 
data. Compare this model to the one you found in Problem 10.25.  

  c.     Calculate the confi dence intervals as the mean response for all points in 
the modifi ed data set. Compare these results with the confi dence intervals 
from Problem 10.26. Discuss your fi ndings.      

    10.28    Consider the electronic inverter data in Table  B.14 . Delete observation 2 
from the original data. Electrical engineering theory suggests that we should 
defi ne new variables as follows:  y *      =    ln  y ,   x x1 11* = ,   x x2 2

* = ,   x x3 31* = , 
and   x x4 4

* = .
   a.     Find an appropriate subset regression model for these data using all pos-

sible regressions and the  C p   criterion.  
  b.      Plot the residuals versus   ̂ *y  for this model. Comment on the plots.  
  c.     Discuss how you could compare this model to the ones built using the 

original response and regressors in Problem 10.27.      

    10.29    Consider the Gorman and Toman asphalt data analyzed in Section  10.4 . 
Recall that run is an indicator variable.
   a.     Perform separate analyses of those data for run    =    0 and run    =    1.  
  b.      Compare and contrast the results of the two analyses from part a.  
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  c.     Compare and contrast the results of the two analyses from part a with 
the results of the analysis from Section  10.4 .      

    10.30    Table  B.15  presents data on air pollution and mortality. Use the all - possible -
 regressions selection on the air pollution data to fi nd appropriate models for 
these data. Perform a thorough analysis of the best candidate models. 
Compare your results with stepwise regression. Thoroughly discuss your 
recommendations.   

    10.31    Use the all - possible - regressions selection on the patient satisfaction data 
in Table  B.17 . Perform a thorough analysis of the best candidate models. 
Compare your results with stepwise regression. Thoroughly discuss your 
recommendations.   

    10.32    Use the all - possible - regressions selection on the fuel consumption data in 
Table  B.18 . Perform a thorough analysis of the best candidate models. 
Compare your results with stepwise regression. Thoroughly discuss your 
recommendations.   

    10.33    Use the all - possible - regressions selection on the wine quality of young red 
wines data in Table  B.19 . Perform a thorough analysis of the best candidate 
models. Compare your results with stepwise regression. Thoroughly discuss 
your recommendations.   

    10.34    Use the all - possible - regressions selection on the methanol oxidation data in 
Table  B.20 . Perform a thorough analysis of the best candidate models. 
Compare your results with stepwise regression. Thoroughly discuss your 
recommendations.      
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  CHAPTER 11 

VALIDATION OF REGRESSION MODELS     

    11.1    INTRODUCTION 

 Regression models are used extensively for prediction or estimation, data descrip-
tion, parameter estimation, and control. Frequently the user of the regression model 
is a different individual from the model developer. Before the model is released to 
the user, some assessment of its  validity  should be made. We distinguish between 
 model adequacy checking  and  model validation . Model adequacy checking includes 
residual analysis, testing for lack of fi t, searching for high - leverage or overly infl u-
ential observations, and other internal analyses that investigate the fi t of the regres-
sion model to the available data. Model validation, however, is directed toward 
determining if the model will function successfully in its intended operating 
environment. 

 Since the fi t of the model to the available data forms the basis for many of the 
techniques used in the model development process (such as variable selection), it 
is tempting to conclude that a model that fi ts the data well will also be successful 
in the fi nal application. This is not necessarily so. For example, a model may have 
been developed primarily for predicting new observations. There is no assurance 
that the equation that provides the best fi t to existing data will be a successful pre-
dictor. Infl uential factors that were unknown during the model - building stage may 
signifi cantly affect the new observations, rendering the predictions almost useless. 
Furthermore, the correlative structure between the regressors may differ in the 
model - building and prediction data. This may result in poor predictive performance 
for the model. Proper validation of a model developed to predict new observations 
should involve testing the model in that environment before it is released to the 
user. 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 Another critical reason for validation is that the model developer often has little 
or no control over the model ’ s fi nal use. For example, a model may have been 
developed as an interpolation equation, but when the user discovers that it is suc-
cessful in that respect, he or she will also extrapolate with it if the need arises, despite 
any warnings or cautions from the developer. Furthermore, if this extrapolation 
performs poorly, it is almost always the model  developer  and not the model  user  
who is blamed for the failure. Regression model users will also frequently draw 
conclusions about the process being studied from the signs and magnitudes of the 
coeffi cients in their model, even though they have been cautioned about the hazards 
of interpreting partial regression coeffi cients. Model validation provides a measure 
of protection for both model developer and user. 

 Proper validation of a regression model should include a  study of the coeffi cients  
to determine if their signs and magnitudes are reasonable. That is, can   β̂ j be reason-
ably interpreted as an estimate of the effect of  x j  ? We should also investigate the 
 stability  of the regression coeffi cients. That is, are the   ̂β j obtained from a new sample 
likely to be similar to the current coeffi cients? Finally, validation requires that the 
model ’ s  prediction performance  be investigated. Both interpolation and extrapola-
tion modes should be considered. 

 This chapter will discuss and illustrate several techniques useful in validating 
regression models. Several references on the general subject of validation are Brown, 
Durbin, and Evans [ 1975 ], Geisser [ 1975 ], McCarthy [ 1976 ], Snee [ 1977 ], and Stone 
[ 1974 ]. Snee ’ s paper is particularly recommended.  

   11.2    VALIDATION TECHNIQUES 

 Three types of procedures are useful for validating a regression model:

   1.     Analysis of the model coeffi cients and predicted values including comparisons 
with prior experience, physical theory, and other analytical models or simula-
tion results  

  2.     Collection of new (or fresh) data with which to investigate the model ’ s predic-
tive performance  

  3.     Data splitting, that is, setting aside some of the original data and using these 
observations to investigate the model ’ s predictive performance    

 The  fi nal intended use  of the model often indicates the appropriate validation 
methodology. Thus, validation of a model intended for use as a predictive equation 
should concentrate on determining the model ’ s prediction accuracy. However, 
because the developer often does not control the use of the model, we recommend 
that, whenever possible, all the validation techniques above be used. We will now 
discuss and illustrate these techniques. For some additional examples, see Snee 
[ 1977 ]. 

   11.2.1    Analysis of Model Coeffi cients and Predicted Values 

 The coeffi cients in the fi nal regression model should be studied to determine if they 
are  stable  and if their  signs and magnitudes  are reasonable. Previous experience, 
theoretical considerations, or an analytical model can often provide information 
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concerning the direction and relative size of the effects of the regressors. The coef-
fi cients in the estimated model should be compared with this information. Coeffi -
cients with unexpected signs or that are too large in absolute value often indicate 
either an inappropriate model (missing or misspecifi ed regressors) or poor estimates 
of the effects of the individual regressors. The  variance infl ation factors  and the 
other multicollinearity diagnostics in Chapter  19  also are an important guide to the 
validity of the model. If any VIF exceeds 5 or 10, that particular coeffi cient is poorly 
estimated or unstable because of near - linear dependences among the regressors. 
When the data are collected across time, we can examine the stability of the coef-
fi cients by fi tting the model on shorter time spans. For example, if we had several 
years of monthly data, we could build a model for each year. Hopefully, the coef-
fi cients for each year would be similar. 

 The predicted response values   ̂y can also provide a measure of model validity. 
Unrealistic predicted values such as negative predictions of a positive quantity or 
predictions that fall outside the anticipated range of the response, indicate poorly 
estimated coeffi cients or an incorrect model form. Predicted values inside and on 
the boundary of the regressor variable bull provide a measure of the model ’ s  inter-
polation  performance. Predicted values outside this region are a measure of  extrap-
olation  performance.    

 Example 11.1   The Bald Cement Data 

    Consider the Hald cement data introduced in Example  10.1 . We used all possible 
regressions to develop two possible models for these data, model 1,

   ˆ . . .y x x= + +52 58 1 468 0 6621 2  

  and model 2,

   ˆ . . . .y x x x= + + −71 65 1 452 0 416 0 2371 2 4   

 Note that the regression coeffi cient for  x  1  is very similar in both models, although 
the intercepts are very different and the coeffi cients of  x  2  are moderately different. 
In Table  10.5  we calculated the values of the PRESS statistic,   RPrediction

2 , and the VIFs 
for both models. For model 1 both VIFs are very small, indicating no potential 
problems with multicollinearity. However, for model 2, the VIFs associated with  x  2  
and  x  4  exceed 10, indicating that moderate problems with multicollinearity are 
present. Because multicollinearity often impacts the predictive performance of a 
regression model, a reasonable initial validation effort would be to examine the 
predicted values to see if anything unusual is apparent. Table  11.1  presents 
the predicted values corresponding to each individual observation for both models. 
The predicted values are virtually identical for both models, so there is little reason 
to believe that either model is inappropriate based on this test of prediction perfor-
mance. However, this is only a relative simple test of model prediction performance, 
not a study of how either model would perform if moderate extrapolation were 
required. Based in this simple analysis of coeffi cients and predicted values, there 
is little reason to doubt the validity of either model, but as noted in Example  10.1 , 
we would probably prefer model 1 because it has fewer parameters and smaller 
VIFs.        ■     
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   11.2.2    Collecting Fresh Data — Confi rmation Runs 

 The most effective method of validating a regression model with respect to its pre-
diction performance is to collect new data and directly compare the model predic-
tions against them. If the model gives accurate predictions of new data, the user will 
have greater confi dence in both the model and the model - building process. Some-
times these new observations are called  confi rmation runs . At least 15 – 20 new 
observations are desirable to give a reliable assessment of the model ’ s prediction 
performance. In situations where two or more alternative regression models have 
been developed from the data, comparing the prediction performance of these 
models on new data may provide a basis for fi nal model selection. 

  TABLE 11.1    Prediction Values for Two Models for Hald Cement Data 

    y       x  1       x  2       x  3       x  4      Model 1     Model 2  

  78.5    7    26    6    60    80.074    78.438  
  74.3    1    29    15    52    73.251    72.867  

  104.3    11    56    8    20    105.815    106.191  
  87.6    11    31    8    47    89.258    89.402  
  95.9    7    52    6    33    97.293    95.644  

  109.2    11    55    9    22    105.152    105.302  
  102.7    3    71    17    6    104.002    104.129  
  72.5    1    31    22    44    74.575    75.592  
  93.1    2    54    18    22    91.275    91.818  

  115.9    21    47    4    26    114.538    115.546  
  83.8    1    40    23    34    80.536    81.702  

  113.3    11    66    9    12    112.437    112.244  
  109.4    10    68    8    12    112.293    111.625  

 Example 11.2   The Delivery Time Data 

    Consider the delivery time data introduced in Example  3.1 . We have previously 
developed a least - squares fi t for these data. The objective of fi tting the regression 
model is to predict new observations. We will investigate the validity of the least -
 squares model by predicting the delivery time for fresh data. 

 Recall that the original 25 observations came from four cities: Austin, San Diego, 
Boston, and Minneapolis. Fifteen new observations from Austin, Boston, San Diego, 
and a fi fth city, Louisville, are shown in Table  11.2 , along with the corresponding 
predicted delivery times and prediction errors from the least - squares fi t 
  ̂ . . .y x x= + +2 3412 1 6159 0 01441 2 (columns 5 and 6). Note that this prediction data 
set consists of 11 observations from cities used in the original data collection process 
and 4 observations from a new city. This mix of old and new cities may provide some 
information on how well the two models predict at sites where the original data 
were collected and at new sites.   

 Column 6 of Table  11.2  shows the prediction errors for the least - squares model. 
The average prediction error is 0.4060, which is nearly zero, so that model seems to 
produce approximately unbiased predictions. There is only one relatively large 
prediction error, associated with the last observation from Louisville. Checking the 
original data reveals that this observation is an extrapolation point. Furthermore, 
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this point is quite similar to point 9, which we know to be infl uential. From an overall 
perspective, these prediction errors increase our confi dence in the usefulness of the 
model. Note that the prediction errors are generally larger than the residuals from 
the least - squares fi t. This is easily seen by comparing the residual mean square

   MSRes = 10 6239.  

  from the fi tted model and the average squared prediction error
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  from the new prediction data. Since  MS  Res  (which may be thought of as the average 
variance of the residuals from the fi t) is smaller than the average squared prediction 
error, the least - squares regression model does not predict new data as well as it fi ts 
the existing data. However, the degradation of performance is not severe, and so 
we conclude that the least - squares model is likely to be successful as a predictor. 
Note also that apart from the one extrapolation point the prediction errors from 
Louisville are not remarkably different from those experienced in the cities where 
the original data were collected. While the sample is small, this is an indication that 
the model may be portable. More extensive data collection at other sites would be 
helpful in verifying this conclusion. 

 It is also instructive to compare  R  2  from the least - squares fi t (0.9596) to the per-
centage of variability in the new data explained by the model, say

  TABLE 11.2    Prediction Data Set for the Delivery Time Example 

      (1)    (2)    (3)    (4)    (5)    (6)  

   Observation     City     Cases,  x  1      Distance,  x  2   
   Observed 

Time,  y   

   Least - Squares Fit  

     ŷ       y y− ˆ   

  26    San Diego    22    905    51.00    50.9230    0.0770  
  27    San Diego    7    520    16.80    21.1405     − 4.3405  
  28    Boston    15    290    26.16    30.7557     − 4.5957  
  29    Boston    5    500    19.90    17.6207    2.2793  
  30    Boston    6    1000    24.00    26.4366     − 2.4366  
  31    Boston    6    225    18.55    15.2766    3.2734  
  32    Boston    10    775    31.93    29.6602    2.2698  
  33    Boston    4    212    16.95    11.8576    5.0924  
  34    Austin    1    144    7.00    6.0307    0.9693  
  35    Austin    3    126    14.00    9.0033    4.9967  
  36    Austin    12    655    37.03    31.1640    5.8660  
  37    Louisville    10    420    18.62    24.5482     − 5.9282  
  38    Louisville    7    150    16.10    15.8125    0.2875  
  39    Louisville    8    360    24.38    20.4524    3.9276  
  40    Louisville    32    1530    64.75    76.0820     − 11.3320  
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 Collecting new data has indicated that the least - squares fi t for the delivery time data 
results in a reasonably good prediction equation. The interpolation parlor - mance of 
the model is likely to be better than when the model is used for extrapolation.  

   11.2.3    Data Splitting 

 In many situations, collecting new data for validation purposes is not possible. The 
data collection budget may already have been spent, the plant may have been con-
verted to the production of other products or other equipment and resources 
needed for data collection may be unavailable. When these situations occur, a rea-
sonable procedure is to split the available data into two parts, which Snee [ 1977 ] 
calls the  estimation data  and the  prediction data . The estimation data are used to 
build the regression model, and the prediction data are then used to study the pre-
dictive ability of the model. Sometimes data splitting is called  cross validation  (see 
Mosteller and Tukey [ 1968 ] and Stone [ 1974 ]). 

 Data splitting may be done in several ways. For example, the PRESS statistic
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  is a form of data splitting. Recall that PRESS can be used in computing the  R  2  - like 
statistic

   R
SS

Prediction
T

PRESS2 1= −  

  that measures in an approximate sense how much of the variability in new observa-
tions the model might be expected to explain. To illustrate, recall that in Chapter  4  
(Example  4.6 ) we calculated PRESS for the model fi t to the original 25 observations 
on delivery time and found that PRESS    =    457.4000. Therefore,
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 Now for the least - squares fi t  R  2     =    0.9596, so PRESS would indicate that the model 
is likely to be a very good predictor of new observations. Note that the  R  2  for 
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 Once again, we see that the least - squares model does not predict new obser-
vations as well as it fi ts the original data. However, the  “ loss ”  in  R  2  for prediction 
is slight.        ■   
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prediction based on PRESS is very similar to the actual prediction performance 
observed for this model with new data in Example  11.2 .   

 If the data are collected in a  time sequence , then  time  may be used as the basis 
of data splitting. That is, a particular time period is identifi ed, and all observations 
collected before this time period are used to form the estimation data set, while 
observations collected later than this time period form the prediction data set. 
Fitting the model to the estimation data and examining its prediction accuracy for 
the prediction data would be a reasonable validation procedure to determine how 
the model is likely to perform in the future. This type of validation procedure is 
relatively common practice in time series analysis for investigating the potential 
performance of a forecasting model (for some examples, see Montgomery, Johnson, 
and Gardiner [ 1990 ]). For examples involving regression models, see Cady and Allen 
[ 1972 ] and Draper and Smith [ 1998 ]. 

 In addition to time, other characteristics of the data can often be used for data 
splitting. For example, consider the delivery time data from Example  3.1  and assume 
that we had the additional 15 observations in Table  11.2  also available. Since there 
are fi ve cities represented in the sample, we could use the observations from San 
Diego, Boston, and Minneapolis (for example) as the estimation data and the obser-
vations from Austin and Louisville as the prediction data. This would give 29 obser-
vations for estimation and 11 observations for validation. In other problem situations, 
we may fi nd that operators, batches of raw materials, units of test equipment, labo-
ratories, and so forth, can be used to form the estimation and prediction data sets. 
In cases where no logical basis of data splitting exists, one could randomly assign 
observations to the estimation and prediction data sets. If random allocations are 
used, one could repeat the process several times so that different subsets of observa-
tions are used for model fi tting. 

 A potential disadvantage to these somewhat  arbitrary  methods of data splitting 
is that there is often no assurance that the prediction data set  “ stresses ”  the model 
severely enough. For example, a  random division  of the data would not necessarily 
ensure that some of the points in the prediction data set are extrapolation points, 
and the validation effort would provide no information on how well the model is 
likely to extrapolate. Using several different randomly selected estimation —
 prediction data sets would help solve this potential problem. In the absence of an 
obvious basis for data splitting, in some situations it might be helpful to have a 
formal procedure for choosing the estimation and prediction data sets. 

 Snee [ 1977 ] describes the DUPLEX algorithm for data splitting. He credits the 
development of the procedure to R. W. Kennard and notes that it is similar to the 
CADEX algorithm that Kennard and Stone [ 1969 ) proposed for design construc-
tion. The procedure utilizes the distance between all pairs of observations in the 
data set. The algorithm begins with a list of the  n  observations where the  k  regres-
sors are standardized to unit length, that is,

   z
x x
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  where   S x xjj i
n

ij j= ∑ −( )=1
2 is the corrected sum of squares of the  j th regressor. The 

standardized regressors are then  orthonormalized . This can be done by factoring 
the  Z ′ Z  matrix as
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    ′ = ′Z Z T T     (11.2)  

  where  T  is a unique  k     ×     k  upper triangular matrix. The elements of  T  can be found 
using the square root or Cholesky method (see Graybill [ 1976 , pp. 231 – 236]). Then 
make the transformation

    W ZT= −1     (11.3)  

  resulting in a new set of variables (the  w  ’ s) that are orthogonal and have unit vari-
ance. This transformation makes the factor space more spherical. 

 Using the orthonormalized points, the Euclidean distance between all   2
n( ) pairs 

of points is calculated. The pair of points that are the farthest apart is assigned to 
the estimation data set. This pair of points is removed from the list of points and 
the pair of remaining points that are the farthest apart is assigned to the prediction 
data set. Then this pair of points is removed from the list and the remaining point 
that is farthest from the pair of points in the estimation data set is included in the 
estimation data set. At the next step, the remaining unassigned point that is farthest 
from the two points in the prediction data set is added to the prediction data. The 
algorithm then continues to alternatively place the remaining points in either the 
estimation or prediction data sets until all  n  observations have been assigned. 

 Snee [ 1977 ] suggests measuring the statistical properties of the estimation and 
prediction data sets by comparing the  p th root of the determinants of the  X ′ X  
matrices for these two data sets, where  p  is the number of parameters in the model. 
The determinant of  X ′ X  is related to the volume of the region covered by the points. 
Thus, if  X E   and  X P   denote the  X  matrices for points in the estimation and prediction 
data sets, respectively, then
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  is a measure of the relative volumes of the regions spanned by the two data sets. 
Ideally this ratio should be close to unity. It may also be useful to examine the vari-
ance infl ation factors for the two data sets and the eigenvalue spectra of   ′X XE E  and 
  ′X XP P  to measure the relative correlation between the regressors. 

 In using any data - splitting procedure (including the DUPLEX algorithm), several 
points should be kept in mind:

   1.     Some data sets may be too small to effectively use data splitting. Snee [ 1977 ] 
suggests that at least  n     ≥    2 p     +    25 observations are required if the estimation 
and prediction data sets are of equal size, where  p  is the largest number of 
parameters likely to be required in the model. This sample size requirement 
ensures that there are a reasonable number of error degrees of freedom for 
the model.  

  2.     Although the estimation and prediction data sets are often of equal size, one 
can split the data in any desired ratio. Typically the estimation data set would 
be larger than the prediction data set. Such splits are found by using the data -
 splitting procedure until the prediction data set contains the required number 
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of points and then placing the remaining unassigned points in the estimation 
data set. Remember that the prediction data set should contain at least 15 
points in order to obtain a reasonable assessment of model performance.  

  3.     Replicates or points that are near neighbors in  x  space should be eliminated 
before splitting the data. Unless these replicates are eliminated, the estimation 
and prediction data sets may be very similar, and this would not necessarily 
test the model severely enough. In an extreme case where every point is rep-
licated twice, the DUPLEX algorithm would form the estimation data set with 
one replicate and the prediction data set with the other replicate. The near -
 neighbor algorithm described in Section  4.5.2  may also be helpful. Once a set 
of near neighbors is identifi ed, the average of the  x  coordinates of these points 
should be used in the data - splitting procedure.  

  4.     A potential  disadvantage  of data splitting is that it  reduces the precision  with 
which regression coeffi cients are estimated. That is, the standard errors of the 
regression coeffi cients obtained from the estimation data set will be larger 
than they would have been if all the data had been used to estimate the coef-
fi cients. In large data sets, the standard errors may be small enough that this 
loss in precision is unimportant. However, the percentage increase in the 
standard errors can be large. If the model developed from the estimation data 
set is a satisfactory, predictor, one way to improve the precision of estimation 
is to reestimate the coeffi cients using the entire data set. The estimates of the 
coeffi cients in the two analyses should be very similar if the model is an 
adequate predictor of the prediction data set.  

  5.      Double - cross validation  may be useful in some problems. This is a procedure 
in which the data are fi rst split into estimation and prediction data sets, a model 
developed from the estimation data, and its performance investigated using 
the prediction data. Then the roles of the two data sets are  reversed ; a model 
is developed using the  original prediction data , and it is used to predict the 
 original estimation data . The advantage of this procedure is that it provides 
two evaluations of model performance. The disadvantage is that there are now 
 three  models to choose from, the two developed via data splitting and the 
model fi tted to all the data. If the model is a good predictor, it will make little 
difference which one is used, except that the standard errors of the coeffi cients 
in the model fi tted to the total data set will be smaller. If there are major dif-
ferences in predictive performance, coeffi cient estimates, or functional form 
for these models, then further analysis is necessary to discover the reasons for 
these differences.    

       Example 11.3   The Delivery Time Data 

    All 40 observations for the delivery time data in Examples  3.1  and  11.2  are shown 
in Table  11.3 . We will assume that these 40 points were collected at one time and 
use the data set to illustrate data splitting with the DUPLEX algorithm. Since the 
model will have two regressors, an equal split of the data will give 17 error degrees 
of freedom for the estimation data. This is adequate, so DUPLEX can be used to 
generate the estimation and prediction data sets. An  x  1     −     x  2  plot is shown in Figure 
 11.1 . Examination of the data reveals that there are two pairs of points that are near 
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  TABLE 11.3    Delivery Time Data 

   Observation, 
 i   

   Cases, 
 x  l   

   Distance, 
 x  2   

   Delivery Time, 
 y   

   Estimation ( E ) or 
Prediction ( P ) Data Set  

  1    7    560    16.68     P   
  2    3    220    11.50     P   
  3    3    340    12.03     P   
  4    4    80    14.88     E   
  5    6    150    13.75     E   
  6    7    330    18.11     E   
  7    2    110    8.00     E   
  8    7    210    17.83     E   
  9    30    1460    79.24     E   

  10    5    605    21.50     E   
  11    16    688    40.33     P   
  12    10    215    21.00     P   
  13    4    255    13.50     E   
  14    6    462    19.75     P   
  15    9    448    24.00     E   
  16    10    776    29.00     P   
  17    6    200    15.35     P   
  18    7    132    19.00     E   
  19    3    36    9.50     P   
  20    17    770    35.10     E   
  21    10    140    17.90     E   
  22    26    810    52.32     E   
  23    9    450    18.75     E   
  24    8    635    19.83     E   
  25    4    150    10.75     E   
  26    22    905    51.00     P   
  27    7    520    16.80     E   
  28    15    290    26.16     P   
  29    5    500    19.90     E   
  30    6    1000    24.00     E   
  31    6    225    18.55     E   
  32    10    775    31.93     P   
  33    4    212    16.95     P   
  34    1    144    7.00     P   
  35    3    126    14.00     P   
  36    12    655    37.03     P   
  37    10    420    18.62     P   
  38    7    150    16.10     P   
  39    8    360    24.38     P   
  40    32    1530    64.75     P   

neighbors in the  x  space, observations 15 and 23 and observations 16 and 32. These 
two clusters of points are circled in Figure  11.1 . The  x  1     −     x  2  coordinates of these 
clusters of points are averaged and the list of points for use in the DUPLEX algo-
rithm is shown in columns 1 and 2 of Table  11.4 .     

 The standardized and orthonormalized data are shown in columns 3 and 4 of 
Table  11.4  and plotted in Figure  11.2 . Notice that the region of coverage is more 
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     Figure 11.1     Scatterplot of delivery volume  x  1  versus distance  x  2 , Example  11.3 .  
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spherical than in Figure  11.1 . Figure  11.2  and Table  11.3  and  11.4  also show how 
DUPLEX splits the original points into estimation and prediction data. The convex 
hulls of the two data sets are shown in Figure  11.2 . This indicates that the prediction 
data set contains both interpolation and extrapolation points. For these two data 
sets we fi nd that   ′ =X XE E 0 44696.  and   ′ =X XP P 0 22441. . Thus,
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 indicating that the volumes of the two regions are very similar. The VIFs for the 
estimation and prediction data are 2.22 and 4.43, respectively, so there is no strong 
evidence of multicollinearity and both data sets have similar correlative structure. 

 Panel A of Table  11.5  summarizes a least - squares fi t to the estimation data. The 
parameter estimates in this model exhibit reasonable signs and magnitudes, and the 
VIFs are acceptably small. Analysis of the residuals (not shown) reveals no severe 
model inadequacies, except that the normal probability plot indicates that the error 
distribution has heavier tails than the normal. Checking Table  11.3 , we see that point 
9, which has previously been shown to be infl uential, is in the estimation data 
set. Apart from our concern about the normality assumption and the infl uence of 
point 9, we conclude that the least - squares fi t to the estimation data is not 
unreasonable.   
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  TABLE 11.4    Delivery Time Data with Near - Neighborhood Points Averaged 

      (1)    (2)    (3)    (4)      

   Observation,  i   

   Original Variables  
   Standardized 

Orthonormalized Data  
   Estimation ( E ) 
or Prediction 
( P ) Data Set     Cases,  x  1      Distance,  x  2       w  1       w  2   

  1    7    560     − .047671    .158431     P   
  2    3    220     − .136037    .013739     P   
  3    3    340    .136037    .108082     P   
  4    4    80     − .113945     − .126981     E   
  5    6    150     − .069762     − .133254     E   
  6    7    330     − .047671     − .022393     E   
  7    2    110     − .158128     − .042089     E   
  8    7    210     − .047671     − .116736     E   
  9    30    1460    .460432    .160977     E   

  10    5    605     − .091854    .255116     E   
  11    16    688    .151152     − .016816     P   
  12    10    215    .018603     − .204765     P   
  13    4    255     − .113945    .010603     E   
  14    6    462     − .069762    .112038     P   
  15, 23    9    449     − .003488    .009857     E   
  16, 32    10    775.5    .018603    .235895     P   
  17    6    200     − .069762     − .093945     P   
  18    7    132     − .047671     − .178059     E   
  19    3    36     − .136037     − .130920     P   
  20    17    770    .173243    .016998     E   
  21    10    140    .018603     − .263729     E   
  22    26    810    .372066     − .227434     E   
  24    8    635     − .025580    .186742     E   
  25    4    150     − .113945     − .071948     E   
  26    22    905    .283700     − .030133     P   
  27    7    520     − .047671    .126983     E   
  28    15    290    .129060     − .299067     P   
  29    5    500     − .091854    .172566     E   
  30    6    1000     − .069762    .535009     E   
  31    6    225     − .069762     − .074290     E   
  33    4    212     − .113945     − .023204     P   
  34    1    144     −  .180219    .015295     P   
  35    3    126     − .136037     − .060163     P   
  36    12    655    .062786    .079853     P   
  37    10    420    .018603     − .043596     P   
  38    7    150     − .047671     − .163907     P   
  39    8    360     − .025580     − .029461     P   
  40    32    1530    .504614    .154704     P   

 Columns 2 and 3 of Table  11.6  show the results of predicting the observations in 
the prediction data set using the least - squares model developed from the estimation 
data. We see that the predicted values generally correspond closely to the observed 
values. The only unusually large prediction error is for point 40, which has the largest 
observed time in the prediction data. This point also has the largest values of  x  1  (32 
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     Figure 11.2     Estimation data ( × ) and prediction data ( • ) using orthonormalized regressors.  
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  TABLE 11.5    Summary of Least - Squares Fit to the Delivery Time Data 

   A Analysis Using Estimation Data     B. Analysis Using All Data  

   Variable  
   Coeffi cient 
Estimate  

   Standard 
Error      t  0      Variable  

   Coeffi cient 
Estimate  

   Standard 
Error      t  0   

  Intercept    2.4123    1.4165    1.70    Intercept    3.9840    0.9861    4.04  
   x  1     1.6392    0.1769    9.27     x  1     1.4877    0.1376    10.81  
   x  2     0.0136    0.0036    3.78     x  2     0.0134    0.0028    4.72  
   MS  Res     =    13.9145,  R  2     =    0.952     MS  Res     =    13.6841,  R  2     =    0.944  

cases) and  x  2  (1530   ft) in the entire data set. It is very similar to point 9 in the esti-
mation data ( x  1     =    30,  x  2     =    1460) but represents an extrapolation for the model fi t to 
the estimation data. The sum of squares of the prediction errors is   ∑ =ei

2 322 4452. , 
and the approximate  R  2  for prediction is

   R
e

SS

i

Prediction
T

2

2

1 1
322 4452
4113 5442

0 922= − = − =∑ .
.

.     
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   11.3    DATA FROM PLANNED EXPERIMENTS 

 Most of the validation techniques discussed in this chapter assume that the model 
has been developed from unplanned data. While the techniques could also be 
applied in situations where a designed experiment has been used to collect the data, 
usually validation of a model developed from such data is somewhat easier. Many 
experimental designs result in regression coeffi cients that are nearly uncorrelated, 
so multicollinearity is not usually a problem. An important aspect of experimental 
design is selection of the factors to be studied and identifi cation of the ranges they 
are to be varied over. If done properly, this helps ensure that all the important 
regressors are included in the data and that an appropriate range of values has been 
obtained for each regressor. Furthermore, in designed experiments considerable 

  TABLE 11.6    Prediction Performance for the Model Developed 
from the Estimation Data 

      (1)    (2)    (3)  

   Observation,  i      Observed,  y i    

   Least - Squares Fit  

   Predicted,   ŷi      Prediction Error,   e y yi i i= − ˆ   

  1    16.68    21.4976     − 4.8176  
  2    11.50    10.3199    1.1801  
  3    12.03    11.9508    0.0792  

  11    40.33    37.9901    2.3399  
  12    21.00    21.7264     − 0.7264  
  14    19.75    18.5265    1.2235  
  16    29.00    29.3509     − 0.3509  
  17    15.35    14.9657    0.3843  
  19    9.50    7.8192    1.6808  
  26    51.00    50.7746    0.2254  
  28    26.16    30.9417     − 4.7817  
  32    31.93    29.3373    2.5927  
  33    16.95    11.8504    5.0996  
  34    7.00    6.0086    0.9914  
  35    14.00    9.0424    4.9576  
  36    37.03    30.9848    6.0452  
  37    18.62    24.5125     − 5.8925  
  38    16.10    15.9254    0.1746  
  39    24.38    20.4187    3.9613  
  40    64.75    75.6609     − 10.9109  

 where  SS  T     =    4113.5442 is the corrected sum of squares of the responses in the 
prediction data set. Thus, we might expect this model to  “ explain ”  about 92.2% of 
the variability in new data, as compared to the 95.2% of the variability explained 
by the least - squares fi t to the estimation data. This loss in  R  2  is small, so there 
is reasonably strong evidence that the least - squares model will be a satisfactory 
predictor.        ■   
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effort is usually devoted to the data collection process itself. This helps to minimize 
problems with  “ wild ”  or dubious observations and yields data with relatively small 
measurement errors. 

 When planned experiments are used to collect data, it is usually desirable to 
perform additional trials for use in testing the predictive performance of the model. 
In the experimental design literature, these extra trials are called  confi rmation runs . 
A widely used approach is to include the points that would allow fi tting a model 
one degree higher than presently employed. Thus, if we are contemplating fi tting a 
fi rst - order model, the design should include enough points to fi t at least some of the 
terms in a second - order model.  

 PROBLEMS 

       11.1    Consider the regression model developed for the National Football League 
data in Problem 3.1.
   a.     Calculate the PRESS statistic for this model. What comments can you 

make about the likely predictive performance of this model?  
  b.     Delete half the observations (chosen at random), and refi t the regression 

model. Have the regression coeffi cients changed dramatically? How well 
does this model predict the number of games won for the deleted 
observations?  

  c.     Delete the observation for Dallas, Los Angeles, Houston, San Francisco, 
Chicago, and Atlanta and refi t the model. How well does this model 
predict the number of games won by these teams?      

    11.2    Split the National Football League data used in Problem 3.1 into estimation 
and prediction data sets. Evaluate the statistical properties of these two data 
sets. Develop a model from the estimation data and evaluate its performance 
on the prediction data. Discuss the predictive performance of this model.   

    11.3    Calculate the PRESS statistic for the model developed from the estimation 
data in Problem 11.2. How well is the model likely to predict? Compare this 
indication of predictive performance with the actual performance observed 
in Problem 11.2.   

    11.4    Consider the delivery time data discussed in Example  11.3 . Find the PRESS 
statistic for the model developed from the estimation data. How well is the 
model likely to perform as a predictor? Compare this with the observed 
performance in prediction.   

    11.5    Consider the delivery time data discussed in Example  11.3 .
   a.     Develop a regression model using the prediction data set.  
  b.     How do the estimates of the parameters in this model compare with those 

from the model developed from the estimation data? What does this 
imply about model validity?  

  c.     Use the model developed in part a to predict the delivery times for the 
observations in the original estimation data. Are your results consistent 
with those obtained in Example  11.3 ?      
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    11.6    In Problem 3.5 a regression model was developed for the gasoline mileage 
data using the regressor engine displacement  x  1  and number of carburetor 
barrels  x  6 . Calculate the PRESS statistic for this model. What conclusions 
can you draw about the model ’ s likely predictive performance?   

    11.7    In Problem 3.6 a regression model was developed for the gasoline mileage 
data using the regressor vehicle length  x  8  and vehicle weight  x  10 . Calculate 
the PRESS statistic for this model. What conclusions can you draw about 
the potential performance of this model as a predictor?   

    11.8    PRESS statistics for two different models for the gasoline mileage data were 
calculated in Problems 11.6 and 11.7. On the basis of the PRESS statistics, 
which model do you think is the best predictor?   

    11.9    Consider the gasoline mileage data in Table  B.3 . Delete eight observations 
(chosen at random) from the data and develop an appropriate regression 
model. Use this model to predict the eight withheld observations. What 
assessment would you make of this model ’ s predictive performance?   

    11.10    Consider the gasoline mileage .data in Table  B.3 . Split the data into estima-
tion and prediction sets.
   a.     Evaluate the statistical properties of these data sets.  
  b.     Fit a model involving  x  1  and  x  6  to the estimation data. Do the coeffi cients 

and fi tted values from this model seem reasonable?  
  c.     Use this model to predict the observations in the prediction data set. 

What is your evaluation of this model ’ s predictive performance?      

    11.11    Refer to Problem 11.2. What are the standard errors of the regression coef-
fi cients for the model developed from the estimation data? How do they 
compare with the standard errors for the model in Problem 3.5 developed 
using all the data?   

    11.12    Refer to Problem 11.2. Develop a model for the National Football League 
data using the prediction data set.
   a.     How do the coeffi cients and estimated values compare with those quanti-

ties for the models developed from the estimation data?  
  b.     How well does this model predict the observations in the original estima-

tion data set?      

    11.13    What diffi culties do you think would be encountered in developing a com-
puter program to implement the DUPLEX algorithm? For example, how 
effi cient is the procedure likely to be for large sample sizes? What modifi ca-
tions in the procedure would you suggest to overcome those diffi culties?   

    11.14    If  Z  is the  n     ×     k  matrix of standardized regressors and  T  is the  k     ×     k  upper 
triangular matrix in Eq.  (11.3) , show that the transformed regressors 
 W     =     ZT   − 1  are orthogonal and have unit variance.   

    11.15    Show that the least - squares estimate of   β   (say   b̂ i( )) with the  i th observation 
deleted can be written in terms of the estimate based on all  n  points as

   ˆ ˆb bi
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    11.16    Consider the heat treating data in Table  B.12 . Split the data into prediction 
and estimation data sets.
   a.     Fit a model to the estimation data set using all possible regressions. Select 

the minimum  C p   model.  
  b.     Use the model in part a to predict the responses for each observation in 

the prediction data set. Calculate  R  2  for prediction. Comment on model 
adequacy.      

    11.17    Consider the jet turbine engine thrust data in Table  B.13 . Split the data into 
prediction and estimation data sets.
   a.     Fit a model to the estimation data using all possible regressions. Select 

the minimum  C p   model.  
  b.     Use the model in part a to predict each observation in the prediction data 

set. Calculate  R  2  for prediction. Comment on model adequacy.      

    11.18    Consider the electronic inverter data in Table  B.14 . Delete the second obser-
vation in the data set. Split the remaining observations into prediction and 
estimation data sets.
   a.     Find the minimum  C p   equation for the estimation data set.  
  b.     Use the model in part a to predict each observation in the prediction data 

set. Calculate  R  2  for prediction and comment on model adequacy.      

    11.19    Table  B.11  presents 38 observations on wine quality.
   a.     Select four observations at random from this data set, then delete these 

observations and fi t a model involving only the regressor fl avor and the 
indicator variables for the region information to the remaining observa-
tions. Use this model to predict the deleted observations and calculate  R  2  
for prediction.  

  b.     Repeat part a 100 times and compute the average  R  2  for prediction for 
all 100 repetitions.  

  c.     Fit the model to all 38 observations and calculate the  R  2  for prediction 
based on PRESS.  

  d.     Comment on all three approaches from parts a – c above as measures of 
model validity.      

    11.20    Consider all 40 observations on the delivery time data. Delete 10% (4) of 
the observations at random. Fit a model to the remaining 36 observations, 
predict the four deleted values, and calculate  R  2  for prediction. Repeat these 
calculations 100 times. Calculate the average  R  2  for prediction. What infor-
mation does this convey about the predictive capability of the model? How 
does the average of the 100  R  2  for prediction values compare to  R  2  for pre-
diction based on PRESS for all 40 observations?        
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  CHAPTER 12 

INTRODUCTION TO NONLINEAR 
REGRESSION     

     Linear regression models provide a rich and fl exible framework that suits the needs 
of many analysts. However, linear regression models are not appropriate for all situ-
ations. There are many problems in engineering and the sciences where the response 
variable and the predictor variables are related through a known  nonlinear  function. 
This leads to a  nonlinear regression model . When the method of least squares is 
applied to such models, the resulting normal equations are nonlinear and, in general, 
diffi cult to solve. The usual approach is to directly minimize the residual sum of 
squares by an iterative procedure. In this chapter we describe estimating the param-
eters in a nonlinear regression model and show how to make appropriate inferences 
on the model parameters. We also illustrate computer software for noulinear 
regression.  

   12.1    LINEAR AND NONLINEAR REGRESSION MODELS 

   12.1.1    Linear Regression Models 

 In previous chapters we have concentrated on the  linear regression model 

    y x x xk k= + + + + +β β β β ε0 1 1 2 2 �     (12.1)   

 These models include not only the fi rst - order relationships, such as Eq.  (12.1) , but 
also polynomial models and other more complex relationships. In fact, we could 
write the linear regression model as

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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    y z z zr r= + + + + +β β β β ε0 1 1 2 2 �     (12.2)  

  where  z i   represents any  function  of the original regressors  x  1 ,  x  2 ,    . . .    ,  x k  , including 
transformations such as exp( x i  ),   xi , and sin( x i  ). These models are called  linear  
regression models because they are  linear in the unknown parameters , the   β  j  ,  j     =    1, 
2,    . . .    ,  k.  

 We may write the linear regression model (12.1) in a general form as
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ε,     (12.3)  

  where  x  ′     =    [1,  x  1 ,  x  2 ,    . . .    ,  x k  ]. Since the expected value of the model errors is zero, 
the expected value of the response variable is
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 We usually refer to  f ( x ,   β  ) as the  expectation function  for the model. Obviously, the 
expectation function here is just a linear function of the unknown parameters.  

   12.1.2    Nonlinear Regression Models 

 There are many situations where a linear regression model may not be appropriate. 
For example, the engineer or scientist may have direct knowledge of the form of 
the relationship between the response variable and the regressors, perhaps from 
the theory underlying the phenomena. The true relationship between the response 
and the regressors may be a differential equation or the solution to a differential 
equation. Often, this will lead to a model of nonlinear form. 

 Any model that is not linear in the unknown parameters is a  nonlinear regression 
model . For example, the model

    y e x= +θ εθ
1

2     (12.4)  

  is not linear in the unknown parameters   θ   1  and   θ   2 . We will use the symbol   θ   to 
represent a parameter in a nonlinear model to emphasize the difference between 
the linear and the nonlinear case. 

 In general, we will write the nonlinear regression model as

    y f= ( ) +x,q ε     (12.5)  

  where   θ   is a  p     ×    1 vector of unknown parameters and   ε   is an uncorrelated random -
 error term with  E (  ε  )    =    0 and Var(  ε  )    =      σ   2 . We also typically assume that the errors 
are normally distributed, as in linear regression. Since
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  we call  f ( x ,   θ  ) the  expectation function  for the nonlinear regression model. This is 
very similar to the linear regression case, except that now the expectation function 
is a  nonlinear  function of the parameters. 

 In a nonlinear regression model, at least one of the derivatives of the expectation 
function with respect to the parameters depends on at least one of the parameters. 
In linear regression, these derivatives are  not  functions of the unknown parameters. 
To illustrate these points, consider a linear regression model

   y x x xk k= + + + + +β β β β ε0 1 1 2 2 �  

  with expectation function   f xj
k

j jx, b( ) = + ∑ =β β0 1  Now
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∂
= =f

x j k
j

j
x,

, , , ,
b

β
0 1…  

  where  x  0     ≡    1. Notice that in the linear case the derivatives are  not  functions of the 
  β   ’ s 

 Now consider the nonlinear model
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 The derivatives of the expectation function with respect to   θ   1  and   θ   2  are

   
∂ ( )

∂
= ∂ ( )

∂
=f x

e
f x

xex x, ,q q
θ θ

θθ θ

1 2
1

2 2and   

 Since the derivatives are a function of the unknown parameters   θ   1  and   θ   2 , the model 
is nonlinear.   

   12.2    ORIGINS OF NONLINEAR MODELS 

 Nonlinear regression models often strike people as being very ad hoc because these 
models typically involve mathematical functions that are nonintuitive to people 
outside of the specifi c application area. Too often, people fail to appreciate the 
scientifi c theory underlying these nonlinear regression models. The scientifi c method 
uses mathematical models to describe physical phenomena. In many cases, the 
theory describing the physical relationships involves the solution of a set of differ-
ential equations, especially whenever rates of change are the basis for the mathe-
matical model. This section outlines how the differential equations that form the 
heart of the theory describing physical behavior lead to nonlinear models. We 
discuss two examples. The fi rst example deals with reaction rates and is more 
straightforward. The second example gives more details about the underlying theory 
to illustrate why nonlinear regression models have their specifi c forms. Our key 
point is that nonlinear regression models are almost always deeply rooted in the 
appropriate science.  
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 Example 12.1 

    We fi rst consider formally incorporating the effect of temperature into a second -
 order reaction kinetics model. For example, the hydrolysis of ethyl acetate is well 
modeled by a second - order kinetics model. Let  A t   be the amount of ethyl acetate 
at time  t . The second - order model is

   
dA
dt

kAt
t= − 2  

  where  k  is the rate constant. Rate constants depend on temperature, which we will 
incorporate into our model later. Let  A  0  be the amount of ethyl acetate at time zero. 
The solution to the rate equation is

   
1 1

0A A
kt

t

= +   

 With some algebra, we obtain

   A
A
A tk

t =
+

0

01
  

 We next consider the impact of temperature on the rate constant. The Arrhenius 
equation states

   k C
E
RT

a= −⎛
⎝⎜

⎞
⎠⎟

1 exp  

  where  E  a  is the activation energy and  C  1  is a constant. Substituting the Arrhenius 
equation into the rate equation yields

   A
A

A tC E RT
t

a

=
+ −( )

0

0 11 exp /
  

 Thus, an appropriate nonlinear regression model is

    A
t T

t t=
+ −( )

+θ
θ θ

ε1

2 31 exp /
    (12.7)  

  where   θ   1     =     A  0 ,   θ   2     =     C  1  A  0 , and   θ   3     =     E   a  / R .        ■   

 Example 12.2 

    We next consider the Clausius – Clapeyron equation, which is an important result in 
physical chemistry and chemical engineering. This equation describes the relation-
ship of vapor pressure and temperature. 
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 Vapor pressure is the physical property which explains why puddles of water 
evaporate away. Stable liquids at a given temperature are those that have achieved 
an equilibrium with their vapor phase. The vapor pressure is the partial pressure of 
the vapor phase at this equilibrium. If the vapor pressure equals the ambient pres-
sure, then the liquid boils. Puddles evaporate when the partial pressure of the water 
vapor in the ambient atmosphere is less than the vapor pressure of water at that 
temperature. The nonequilibrium condition presented by this difference between 
the actual partial pressure and the vapor pressure causes the puddle ’ s water to 
evaporate over time. 

 The chemical theory that describes the behavior at the vapor – liquid interface 
notes that at equilibrium the Gibbs free energies of both the vapor and liquid phases 
must be equal. The Gibbs free energy  G  is given by

   G U PV TS H TS= + − = −  

  where  U  is the  “ internal energy, ”   P  is the pressure,  V  is the volume,  T  is the  “ abso-
lute ”  temperature,  S  is the entropy, and  H     =     U     +     PV  is the enthalpy. Typically, 
in thermodynamics, we are more interested in the change in Gibbs free energy 
than its absolute value. As a result, the actual value of  U  is often of limited interest. 
The derivation of the Clausius – Clapeyron equation also makes use of the ideal 
gas law,

   PV RT=  

  where  R  is the ideal gas constant. 
 Consider the impact of a slight change in the temperature when holding the 

volume fi xed. From the ideal gas law, we observe that an increase in the temperature 
necessitates an increase in the pressure. Let  dG  be the resulting differential in the 
Gibbs free energy. We note that

   
dG

G
P

dP
G
T

dT

VdP SdT
T P

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
  

 Let the subscript 1 denote the liquid phase and the subscript v denote the vapor 
phase. Thus,  G  1  and  G  v  are the Gibbs free energies of the liquid and vapor phases, 
respectively. If we maintain the vapor – liquid equilibrium as we change the tempera-
ture and pressure, then

   
dG dG

V dP S dT V dP S dT
1

1 1

=
− = −

v

v v

  

 Rearranging, we obtain

    
dP
dT

S S
V V

= −
−

v

v

1

1
    (12.8)   
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 We observe that the volume occupied by the vapor is much larger than the volume 
occupied by the liquid. Effectively, the difference is so large that we can treat  V  1  as 
zero. Next, we observe that entropy is defi ned by

   dS
dQ
T

=  

  where  Q  is the heat exchanged reversibly between the system and its surroundings. 
For our vapor – liquid equilibrium situation, the net heat exchanged is  H  vap , which is 
the heat of vaporization at temperature  T . Thus,

   S S
H

T
v

vap− =1   

 We then can rewrite (12.8) as

   dP
dT

H

VT
= vap   

 From the ideal gas law,

   V
RT
P

=   

 We then may rewrite (12.8) as

   dP
dT

PH

RT
= vap

2
  

 Rearranging, we obtain,

   dP
P

H dT

RT
= vap

2
  

 Integrating, we obtain

    ln P
T

( ) = −C C1
1

    (12.9)  

  where  C  is an integration constant and

   C1 =
H

R
vap   

 We can reexpress (12.9) as

    P
T

= + −⎛
⎝⎜

⎞
⎠⎟

C C
C

0
1exp     (12.10)  
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  where  C  0  is another integration constant. Equation  (12.9)  suggests a simple linear 
regression model of the form

    ln P
Ti

i
i( ) = + +β β ε0 1

1
    (12.11)   

 Equation  (12.10)  on the other hand, suggests a nonlinear regression model of the 
form

    P
T

i
i

i= ⎛
⎝⎜

⎞
⎠⎟

+θ θ ε1
2exp     (12.12)   

 It is important to note that there are subtle, yet profound differences between these 
two possible models. We discuss some of the possible differences between linear and 
nonlinear models in Section  12.4 .        ■   

   12.3    NONLINEAR LEAST SQUARES 

 Suppose that we have a sample of  n  observations.on the response and the regressors, 
say  y i  ,  x i   1 ,  x i   2 ,    . . .    ,  x ik  , for  i     =    1, 2,    . . .    ,  n . We have observed previously that the method 
of least squares in linear regression involves minimizing the least - squares function

   S y xi j ij

j

k

i

n

b( ) = − +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∑∑ β β0

1

2

1

  

 Because this is a linear regression model, when we differentiate  S (  β  ) with respect 
to the unknown parameters and equate the derivatives to zero, the resulting normal 
equations are  linear  equations, and consequently, they are easy to solve. 

 Now consider the nonlinear regression situation. The model is

   y f i ni i i= ( ) + =x , , , , ,q ε 1 2 …  

  where now   ′ = [ ]xi i i ikx x x1 1 2, , , ,…  for  i     =    1, 2,    . . .    ,  n.  The least - squares function is

    S y fi i

i

n

q q( ) = − ( )[ ]
=
∑ x , 2

1

    (12.13)   

 To fi nd the least - squares estimates we must differentiate Eq.  (12.13)  with respect to 
each element of   θ  . This will provide a set of  p  normal equations for the nonlinear 
regression situation. The normal equations are

    y f
f

j pi i
i

ji

n

− ( )[ ] ∂ ( )
∂

⎡

⎣
⎢

⎤

⎦
⎥ = =

= =
∑ x

x
,

,
for , , ,q q

q qθ1

0 1 2
ˆ

…     (12.14)   

 In a nonlinear regression model the derivatives in the large square brackets will be 
functions of the unknown parameters. Furthermore, the expectation function is also 
a nonlinear function, so the normal equations can be very diffi cult to solve.   
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     Geometry of Linear and Nonlinear Least Squares     Examining the geometry of 
the least - squares problem is helpful in understanding the complexities introduced 
by a nonlinear model. For a given sample, the residual - sum - of - squares function  S (  θ  ) 
depends only on the model parameters   θ  . Thus, in the parameter space (the space 
defi ned by the   θ   1 ,   θ   2 ,    . . .    ,   θ  p  ), we can represent the function  S (  θ  ) with a contour plot, 
where each contour on the surface is a line of constant residual sum of squares. 

 Suppose the regression model is linear; that is, the parameters are   θ      =      β  , and the 
residual - sum - of - squares function is  S (  β  ) Figure  12.1  a  shows the contour plot for this 
situation. If the model is linear in the unknown parameters, the contours are ellip-
soidal and have a unique global minimum at the least - squares estimator   b̂ .   

 When the model is nonlinear, the contours will often appear as in Figure  12.1  b . 
Notice that these contours are not elliptical and are in fact quite elongated and 
irregular in shape. A  “ banana - shape ”  appearance is very typical. The specifi c shape 
and orientation of the residual sum of squares contours depend on the form of the 
nonlinear model and the sample of data that have been obtained. Often the surface 
will be very elongated near the optimum, so many solutions for   θ   will produce a 
residual sum of squares that is close to the global minimum. This results in a problem 
that is  ill - conditioned , and in such problems it is often diffi cult to fi nd the global 
minimum for   θ  . In some situations, the contours may be so irregular that there are 
several local minima and perhaps more than one global minimum. Figure  12.1  c  
shows a situation where there is one local minimum and a global minimum.  

 Example 12.3   Normal Equations for a Nonlinear Model 

    Consider the nonlinear regression model in Eq. (12.4):

   y e x= +θ εθ
1

2   

 The least - squares normal equations for this model are
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 After simplifi cation, the normal equations are
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 These equations are not linear in   θ̂1 and   θ̂2 , and no simple closed - form solution 
exists. In general,  iterative methods  must be used to fi nd the values of   θ̂1 and   θ̂2. To 
further complicate the problem, sometimes there are multiple solutions to the 
normal equations. That is, there are multiple stationary values for the residual sum 
of squares function  S (  θ  ).        ■   
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       Figure 12.1     Contours of the residual - sum - of - squares function: ( a ) linear model; ( b ) nonlin-
ear model; ( c ) nonlinear model with local and global minima.  
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  Maximum - Likelihood Estimation     We have concentrated on least squares in the 
nonlinear case. If the error terms in the model are normally and independently 
distributed with constant variance, application of the method of maximum likeli-
hood to the estimation problem will lead to least squares. For example, consider the 
model in Eq. (12.4):

    y e i ni
x

i
i= + =θ εθ

1
2 1 2, , , ,…     (12.17)   

 If the errors are normally and independently distributed with mean zero and vari-
ance   σ   2 , then the likelihood function is

    L y en i
x

i

n
iθ σ

πσ σ
θ θ, exp2

2 2 2 1
2

1

1

2

1
2

2( ) =
( )

− −[ ]⎡

⎣
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⎤

⎦
⎥

=
∑     (12.18)   

 Clearly, maximizing this likelihood function is equivalent to minimizing the residual 
sum of squares. Therefore, in the normal - theory case, least - squares estimates are the 
same as maximum - likelihood estimates.    

   12.4    TRANFORMATION TO A LINEAR MODEL 

 It is sometimes useful to consider a  transformation  that induces linearity in the 
model expectation function. For example, consider the model

    

y f x

e x

= ( ) +
= +

,q ε
θ εθ

1
2     (12.19)   

 The Clausius – Clapeyron equation  (12.12)  is an example of this model. Now since 
  E y f x e x( ) = ( ) =,q θ θ

1
2 , we can linearize the expectation function by taking 

logarithms,

   ln lnE y x( ) = +θ θ1 2  

  which we saw in Eq.  (12.11)  in our derivation of the Clausius – Clapeyron equation. 
Therefore, it is tempting to consider rewriting the model as
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ln lny x

x

= + +
= + +

θ θ ε
β β ε

1 2

0 1     (12.20)  

  and using simple  linear  regression to estimate   β   0  and   β   1 . However, the linear least -
 squares estimates of the parameters in Eq. (12.20) will not in general be equivalent 
to the nonlinear parameter estimates in the original model (12.19). The reason is 
that in the  original nonlinear model  least squares implies minimization of the sum 
of squared residuals on  y , whereas in the  transformed model  (12.20) we are mini-
mizing the sum of squared residuals on ln  y . 

 Note that in Eq.  (12.19)  the error structure is  additive , so taking logarithms 
 cannot  produce the model in Eq.  (12.20) . If the error structure is  multiplicative , say

    y e x= θ εθ
1

2     (12.21)  

  then taking logarithms will be appropriate, since

    

ln ln ln
*

y x

x

= + +
= + +

θ θ ε
β β ε

1 2

0 1     (12.22)  

  and if  ε  *  follows a normal distribution, all the standard linear regression model 
properties and associated inference will apply. 

 A nonlinear model that can be transformed to an equivalent linear form is said 
to be  intrinsically linear . However, the issue often revolves around the error struc-
ture, namely, do the standard assumptions on the errors apply to the original non-
linear model or to the linearized one? This is sometimes not an easy question to 
answer.  

 Example 12.4   The Puromycin Data 

    Bates and Watts [ 1988 ] use the  Michaelis – Menten  model for chemical kinetics to 
relate the initial velocity of an enzymatic reaction to the substrate concentration  x . 
The model is

    y
x

x
=

+
+θ

θ
ε1

2

    (12.23)   

 The data for the initial rate of a reaction for an enzyme treated with puromycin 
are shown in Table  12.1  and plotted in Figure  12.2 .     

 We note that the expectation function can be linearized easily, since

   

1 1 12

1 1

2

1

0 1

f x
x

x x

x

,q( )
= + = +

= +

θ
θ θ

θ
θ

β β
 

  so we are tempted to fi t the  linear  model

   y u* = + +β β ε0 1  
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  where  y  *     =    1/ y  and  u     =    1/ x . The resulting least - squares fi t is

   ˆ . .*y u= +0 005107 0 0002472   

 Figure  12.3  a  shows a scatterplot of the transformed data  y  *  and  u  with the straight -
 line fi t superimposed. As there are replicates in the data, it is easy to see from Figure 
 12.2  that the variance of the original data is approximately constant, while Figure 
 12.3  a  indicates that in the transformed scale the constant - variance assumption is 
unreasonable.   

 Now since

   β
θ

β θ
θ0

1
1

2

1

1= =and  

  TABLE 12.1    Reaction Velocity and Substrate 
Concentration for Puromycin Experiment 

   Substrate Concentration 
 (ppm)  

    Velocity 
 [(counts/min)/min]  

  0.02    47    76  
  0.06    97    107  
  0.11    123    139  
  0.22    152    159  
  0.56    191    201  
  1.10    200    207  

       Figure 12.2     Plot of reaction velocity versus substrate concentration for the puromycin 
experiment.  (Adapted from Bates and Watts [ 1988 ], with permission of the publisher.)   
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       Figure 12.3     ( a ) Plot of inverse velocity versus inverse concentration for the puromycin data. 
( b ) Fitted curve in the original scale.  (Adapted from Bates and Watts [ 1988 ], with permission 
of the publisher.)   
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   12.5    PARAMETER ESTIMATION IN A NONLINEAR SYSTEM 

   12.5.1    Linearization 

 A method widely used in computer algorithms for nonlinear regression is  lineariza-
tion  of the nonlinear function followed by the Gauss – Newton iteration method of 
parameter estimation. Linearization is accomplished by a  Taylor series expansion  
of  f ( x   i  ,   θ  ) about the point   ′ = [ ]q0 10 20 0θ θ θ, , ,… p  with only the linear terms retained. 
This yields

    f f
f

i i
i

j
j j

j

p

x x
x

, ,
,q q q

q q

( ) = ( ) + ∂ ( )
∂

⎡

⎣
⎢

⎤

⎦
⎥ −( )

==
∑0 0

1 0
θ

θ θ     (12.24)   

  we have

   0 005107
1

0 0002472
1

2

1

. and .= =ˆ

ˆ

ˆθ
θ
θ

 

  and so we can estimate   θ   1  and   θ   2  in the original model as

   ˆ . ˆ .θ θ1 2195 81 0 04841= =and   

 Figure  12.3  b  shows the fi tted curve in the original scale along with the data. Observe 
from the fi gure that the fi tted asymptote is too small. The variance at the replicated 
points has been distorted by the transformation, so runs with low concentration 
(high reciprocal concentration) dominate the least - squares fi t, and as a result the 
model does not fi t the data well at high concentrations.        ■   
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 If we set
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  we note that the nonlinear regression model can be written as

    y f Z i ni i j ij i

j

p

− = + =
=

∑0 0 0

1

1 2β ε , , , ,…     (12.25)   

 That is, we now have a linear regression model. We usually call   θ   0  the starting values 
for the parameters. 

 We may write Eq.  (12.25)  as

    y Z0 0 0= +b e     (12.26)  

  so the estimate of   β   0  is

    b̂0 0 0
1

0 0 0 0
1

0 0= ′( ) ′ = ′( ) ′ −( )− −Z Z Z y Z Z Z y f     (12.27)   

 Now since   β   0     =      θ      −      θ   0 , we could defi ne

    ˆ ˆq b q1 0 0= +     (12.28)  

  as revised estimates of   θ  . Sometimes   b̂0 is called the  vector of increments . We may 
now place the revised estimates   q̂1 in Eq.  (12.24)  (in the same roles played by the 
initial estimates   θ   0 ) and then produce another set of revised estimates, say   q̂2, and 
so forth. 

 In general, we have at the  k th iteration

    ˆ ˆ ˆ ˆq q b qk k k k k k k k+
−= + = + ′( ) ′ −( )1

1Z Z Z y f     (12.29)  

  where

   Zk ij
kZ= [ ]  

   fk
k k

n
kf f f= [ ]′1 2, , ,…  

   ˆ , , ,qk k k pk= [ ]′θ θ θ1 2 …   

 This iterative process continues until convergence, that is, until

   ˆ ˆ / ˆ , , , ,,θ θ θ δj k jk jk j p+ −( )⎡⎣ ⎤⎦ < =1 1 2 …  

  where   δ   is some small number, say 1.0    ×    10  − 6 . At each iteration the residual sum of 
squares   S kq̂( ) should be evaluated to ensure that a reduction in its value has been 
obtained. 
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  TABLE 12.2    Data, Fitted Values, Residuals, and Derivatives for the Puromycin Data 
at   ˆ′ [ ]′q0 = 205, 0.08  

    i       x i        y i         fi
0       y fi i− 0        Zi1

0        Zi2
0   

  1    0.02    76    41.00    35.00    0.2000     − 410.00  
  2    0.02    47    41.00    6.00    0.2000     − 410.00  
  3    0.06    97    87.86    9.14    0.4286     − 627.55  
  4    0.06    107    87.86    19.14    0.4286     − 627.55  
  5    0.11    123    118.68    4.32    0.5789     − 624.65  
  6    0.11    139    118.68    20.32    0.5789     − 624.65  
  7    0.22    159    150.33    8.67    0.7333     − 501.11  
  8    0.22    152    150.33    1.67    0.7333     − 501.11  
  9    0.56    191    179.38    11.62    0.8750     − 280.27  

  10    0.56    201    179.38    21.62    0.8750     − 280.27  
  11    1.10    207    191.10    15.90    0.9322     − 161.95  
  12    1.10    200    191.10    8.90    0.9322     − 161.95  

 Example 12.5   The Puromycin Data 

    Bates and Watts [ 1988 ] use the Gauss – Newton method to fi t the Michaelis – Menten 
model to the puromycin data in Table  12.1  using the starting values   θ   10     =    205 and 
  θ   20     =    0.08. Later we will discuss how these starting values were obtained. At this 
starting point, the residual sum of squares  S (  θ   0 )    =    3155. The data, fi tted values, 
residuals, and derivatives evaluated at each observation are shown in Table  12.2 . To 
illustrate how the required quantities are calculated, note that
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  and since the fi rst observation on  x  is  x  1     =    0.02, we have
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 The derivatives   Zij
0 are now collected into the matrix  Z  0  and the vector of increments 

calculated from Eq.  (12.27)  as
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 The revised estimate   ̂q1 from Eq.  (12.28)  is
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 The residual sum of squares at this point is   S q̂1 1206( ) = , which is considerably 
smaller than  S (  θ   0 ). Therefore,   q̂1 is adopted as the revised estimate of   θ  , and another 
iteration would be performed. 

 The Gauss – Newton algorithm converged at   ̂ . , .′ = [ ]′q 212 7 0 0641  with   S q̂( ) = 1195. 
Therefore, the fi tted model obtained by linearization is

   ˆ
ˆ
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x
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q
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 Figure  12.4  shows the fi tted model. Notice that the nonlinear model provides a much 
better fi t to the data than did the transformation followed by linear regression in 
Example  12.4  (compare Figures  12.4  and  12.3  b ).     

 Residuals can be obtained from a fi tted nonlinear regression model in the usual 
way, that is,

   e y y i ni i i= − =ˆ , , , ,1 2 …   

       Figure 12.4     Plot of fi tted nonlinear regression model, Example  12.5 .  
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       Figure 12.5     Plot of residuals versus predicted values, Example  12.5 .  
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 The residuals are plotted versus the predicted values in Figure  12.5 . A normal 
probability plot of the residuals is shown in Figure  12.6 . There is one moderately 
large residual; however, the overall fi t is satisfactory, and the model seems to be a 
substantial improvement over that obtained by the transformation approach in 
Example  12.4 .        ■     

  Computer Programs     Several PC statistics packages have the capability to fi t 
nonlinear regression models. Both JMP and Minitab (version 16 and higher) have 
this capability. Table  12.3  is the output from JMP that results from fi tting the 
Michaelis – Menten model to the puromycin data in Table  12.1 . JMP required 13 
iterations to converge to the fi nal parameter estimates. The output provides the 
estimates of the model parameters, approximate standard errors of the parameter 
estimates, the error or residual sum of squares, and the correlation matrix of the 
parameter estimates. We make use of some of these quantities in later sections.    

  Estimation of   σ    2      When the estimation procedure converges to a fi nal vector of 
parameter estimates   q̂ , we can obtain an estimate of the error variance   σ   2  from the 
residual mean square
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       Figure 12.6     Normal probability plot of residuals, Example  12.5 .  
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  TABLE 12.3    JMP Output for Fitting the Michaelis – Menten Model to the Puromycin 
Data 

    Nonlinear Fit   
    Response: Velocity, Predictor: Michaelis Menten Model (2P)   

    Criterion       Current       Stop Limit   
   Iteration      13      60   
   Obj Change      2.001932e - 12      1e - 15   
   Relative Gradient      3.5267226e - 7      0.000001   
   Gradient      0.0001344207      0.000001   

    Parameter       Current Value   
   theta1      212.68374295   
   theta2      0.0641212814   
   SSE      1195.4488144   
   N      12   

    Solution   
    SSE       DFE       MSE       RMSE   

   1195.4488144      10      119.54488      10.933658   

    Parameter       Estimate       ApproxStdErr   
   theta1      212.68374295      6.94715515   
   theta2      0.0641212814      0.00828095   

   Solved By: Analytic NR   

    Correlation of Estimates   
         theta1       theta2   

   theta1      1.0000      0.7651   
   theta2      0.7651      1.0000   



406  INTRODUCTION TO NONLINEAR REGRESSION

  where  p  is the number of parameters in the nonlinear regression model. For the 
puromycin data in Example  12.5 , we found that the residual sum of squares at the 
fi nal iteration was   S q̂( ) = 1195 (also see the JMP output in Table  12.3 ), so the esti-
mate of   σ    2  is

   ˆ
ˆ

.σ 2 1195
12 2

119 5=
( )
−

=
−

=
S

n p

q
  

 We may also estimate the  asymptotic (large - sample) covariance matrix  of the 
parameter vector   q̂  by

    Var q̂( ) = ′( )−σ 2 1Z Z     (12.31)  

  where  Z  is the matrix of partial derivatives defi ned previously, evaluated at the 
fi nal - iteration least - squares estimate   q̂ . 

 The covariance matrix of the   q̂  vector for the Michaelis – Menten model in 
Example  12.5  is

   Var ˆ ˆ .
. .

. .
q( ) = ′( ) =

×
× ×

−
−

−
σ 2 1

5

5
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0 4037 36 82 10
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Z Z
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⎤
⎦⎥8

  

 The main diagonal elements of this matrix are approximate variances of the esti-
mates of the regression coeffi cients. Therefore, approximate  standard errors  on the 
coeffi cients are

   se Varˆ ˆ . . .θ θ1 1 119 5 0 4037 6 95( ) = ( ) = ( ) =  

  and

   se Varˆ ˆ . . .θ θ2 2
8 3119 5 57 36 10 8 28 10( ) = ( ) = ×( ) = ×− −  

  and the correlation between   θ̂1 and   θ̂2 is about
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×
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−   

 These values agree closely with those reported in the JMP output, Table  12.3 .  

  Graphical Perspective on Linearization     We have observed that the residual -
 sum - of - squares function  S (  θ  ) for a nonlinear regression model is usually an irregular 
 “ banana - shaped ”  function, as shown in panels  b  and  c  of Figure  12.1 . On the other 
hand, the residual - sum - of - squares function for linear least squares is very well 
behaved; in fact, it is elliptical and has the global minimum at the bottom of the 
 “ bowl. ”  Refer to Figure  12.1  a . The linearization technique converts the nonlinear 
regression problem into a sequence of linear ones, starting at the point   θ   0 . 

 The fi rst iteration of linearization replaces the irregular contours with a set of 
elliptical contours. The irregular contours of  S (  θ  ) pass exactly through the starting 
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point   θ   0 , as shown in Figure  12.7  a . When we solve the linearized problem, we are 
moving to the global minimum on the set of elliptical contours. This is done by 
ordinary linear least squares. Then the next iteration just repeats the process, starting 
at the new solution   q̂1. The eventual evolution of linearization is a sequence of linear 
problems for which the solutions  “ close in ”  on the global minimum of the nonlinear 
function. This is illustrated in Figure  12.7  b . Provided that the nonlinear problem is 
not too ill - conditioned, either because of a poorly specifi ed model or inadequate 
data, the linearization procedure should converge to a good estimate of the global 
minimum in a few iterations.   

 Linearization is facilitated by a good starting value   θ   0 , that is, one that is reason-
ably close to the global minimum. When   θ   0  is close to   q̂ , the actual residual - sum - of -
 squares contours of the nonlinear problem are usually well - approximated by the 
contours of the linearized problem. We will discuss obtaining starting values in 
Section  12.5.3 .   

   12.5.2    Other Parameter Estimation Methods 

 The basic linearization method described in Section  12.5.1  may converge very slowly 
in some problems. In other problems, it may generate a move in the wrong direction, 
with the residual - sum - of - squares function   S kq̂( ) actually  increasing  at the  k th itera-
tion. In extreme cases, it may fail to converge at all. Consequently, several other 
techniques for solving the nonlinear regression problem have been developed. Some 
of them are modifi cations and refi nements of the linearization scheme. In this 
section we give a brief description of some of these procedures. 

  Method of Steepest Descent     The method of steepest descent attempts to fi nd 
the global minimum on the residual - sum - of - squares function by direct minimiza-
tion. The objective is to move from an initial starting point   θ   0  in a vector direction 
with components given by the derivatives of the residual - sum - of - squares function 
with respect to the elements of   θ  . Usually these derivatives are estimated by fi tting 
a fi rst - order or planar approximation around the point   θ   0 , The regression coeffi cients 
in the fi rst - order model are taken as approximations to the fi rst derivatives. 

       Figure 12.7     A geometric view of linearization: ( a ) the fi rst iteration; ( b ) evolution of suc-
cessive linearization iterations.  
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 The method of steepest descent is widely used in response surface methodology 
to move from an initial estimate of the optimum conditions for a process to a region 
more likely to contain the optimum. The major disadvantage of this method in 
solving the nonlinear regression problem is that it may converge very slowly. Steep-
est descent usually works best when the starting point is a long way from the 
optimum. However, as the current solution gets closer to the optimum, the proce-
dure will produce shorter and shorter moves and a  “ zig - zag ”  behavior. This is the 
convergence problem mentioned previously.  

  Fractional Increments     A standard modifi cation to the linearization technique is 
the use of  fractional increments . To describe this method, let   b̂k be the standard 
increment vector in Eq.  (12.29)  at the  k th iteration, but continue to the next itera-
tion only if   S Sk k

ˆ ˆq q+( ) < ( )1 . If   S Sk k
ˆ ˆq q+( ) > ( )1 , use   ˆ /bk 2 as the vector of increments. 

This halving could be used several times during an iteration, if necessary. If after a 
specifi ed number of trials a reduction in   S kq̂ +( )1  is not obtained, the procedure is 
terminated. The general idea behind this method is to keep the linearization proce-
dure from making a step at any iteration that is too big. The fractional increments 
technique is helpful when convergence problems are encountered in the basic lin-
earization procedure.  

  Marquardt ’ s Compromise     Another popular modifi cation to the basic lineariza-
tion algorithm was developed by Marquardt [ 1963 ]. He proposed computing the 
vector of increments at the  k th iteration from

    ′ +( ) = ′ −( )Z Z I Z y fk k p k k kλ b̂     (12.32)  

  where  λ     >    0. Note the similarity to the ridge regression estimator in Chapter  11 . 
Since the regressor variables are derivatives of the same function, the linearized 
function invites multicollinearity. Thus, the ridgelike procedure in Eq.  (12.32)  is 
intuitively reasonable. Marquardt [ 1963 ] used a search procedure to fi nd a value of 
 λ  that would reduce the residual sum of squares at each stage. 

 Different computer programs select  λ  in different ways. For example, PROC 
NLIN in SAS begins with  λ     =    10  − 8 . A series of trial - and - error computations are done 
at each iteration with  λ  repeatedly multiplied by 10 until

    S Sk k
ˆ ˆq q+( ) < ( )1     (12.33)   

 The procedure also involves reducing  λ  by a factor of 10 at each iteration as long 
as Eq.  (12.33)  is satisfi ed. The strategy is to keep  λ  as small as possible while ensur-
ing that the residual sum of squares is reduced at each iteration. This general pro-
cedure is often called Marquardt ’ s compromise, because the resulting vector of 
increments produced by his method usually lies between the Gauss – Newton vector 
in the linearization vector and the direction of steepest descent.   

   12.5.3    Starting Values 

 Fitting a nonlinear regression model requires starting values   θ   0  of the model param-
eters. Good starting values, that is, values of   θ   0  that are close to the true parameter 
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values, will minimize convergence diffi culties. Modifi cations to the linearization 
procedure such as Marquardt ’ s compromise have made the procedure less sensitive 
to the choice of starting values, but it is always a good idea to select   θ   0  carefully. A 
poor choice could cause convergence to a local minimum on the function, and we 
might be completely unaware that a suboptimal solution has been obtained. 

 In nonlinear regression models the parameters often have some physical meaning, 
and this can be very helpful in obtaining starting values. It may also be helpful to 
plot the expectation function for several values of the parameters to become famil-
iar with the behavior of the model and how changes in the parameter values affect 
this behavior. 

 For example, in the Michaelis – Menten function used for the puromycin data, the 
parameter   θ   1  is the asymptotic velocity of the reaction, that is, the maximum value 
of  f  as  x     →     ∞ . Similarly,   θ   2  represents the half concentration, or the value of  x  such 
that when the concentration reaches that value, the velocity is one - half the maximum 
value. Examining the scatter diagram in Figure  12.2  would suggest that   θ   1     =    205 and 
  θ   2     =    0.08 would be reasonable starting values. These values were used in Example 
 12.5 . 

 In some cases we may transform the expectation function to obtain starting 
values. For example, the Michaelis – Menten model can be  “ linearized ”  by taking the 
reciprocal of the expectation function. Linear least squares can be used on the 
reciprocal data, as we did in Example  12.4 , resulting in estimates of the linear 
parameters. These estimates can then be used to obtain the necessary starting values 
  θ   0 . Graphical transformation can also be very effective. A nice example of this is 
given in Bates and Watts [ 1988 , p. 47].   

   12.6    STATISTICAL INFERENCE IN NONLINEAR REGRESSION 

 In a  linear regression model  when the errors are normally and independently dis-
tributed, exact statistical tests and confi dence intervals based on the  t  and  F  distribu-
tions are available, and the parameter estimates have useful and attractive statistical 
properties. However, this is not the case in nonlinear regression, even when the 
errors are normally and independently distributed. That is, in nonlinear regression 
the least - squares (or maximum - likelihood) estimates of the model parameters do 
not enjoy any of the attractive properties that their counterparts do in linear regres-
sion, such as unbiasedness, minimum variance, or normal sampling distributions. 
Statistical inference in nonlinear regression depends on  large - sample  or  asymptotic  
results. The large - sample theory generally applies for both normally and nonnor-
mally distributed errors. 

 The key asymptotic results may be briefl y summarized as follows. In general, 
when the sample size  n  is large, the expected value of   ̂q  is approximately equal 
to   θ  , the true vector of parameter estimates, and the covariance matrix of   q̂  is 
approximately   σ   2 ( Z  ′  Z )  − 1 , where  Z  is the matrix of partial derivatives evaluated at 
the fi nal - iteration least - squares estimate   q̂ . Furthermore, the sampling distribution 
of   q̂  is approximately normal. Consequently, statistical inference for nonlinear 
regression when the sample size is large is carried out exactly as it is for linear 
regression. The statistical tests and confi dence intervals are only approximate 
procedures. 
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 Example 12.6   The Puromycin Data 

    Reconsider the Michaelis – Menten model for the puromycin data from Example 
 12.5 . The JMP output for the model is shown in Table  12.3 . To test for signifi cance 
of regression (that is,  H  0 :   θ   1     =      θ   2     =    0) we could use an ANOVA - like procedure. We 
can compute the total sum of squares of the  y  ’ s as  SS  T     =    271,909.0. So the model or 
regression sum of squares is:

   

SS SS SSmodel T Res= −
= −
=

271 410 1195 4

270 214 6

, .

, .
  

 Therefore, the test for signifi cance of regression is

   F
SS
MS

0
2 270 241 6 2

119 5
1130 61= = =model

Error

/ , . /
.

.  

  and compute an approximate  P  value from the  F  2,10  distribution. This  P  value is 
considerably less than 0.0001, so we are safe in rejecting the null hypothesis and 
concluding that at least one of the model parameters is nonzero. To test hypotheses 
on the individual model parameters,  H  0 :   θ   1     =    0 and  H  0 :   θ   2     =    0, we could compute 
approximate  t  statistics as

   t0
1

1

212 7
6 9471

30 62= ( ) = =
ˆ

ˆ
.

.
.

θ
θse
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 The approximate  P  values for these two test statistics are both less than 0.01. There-
fore, we would conclude that both parameters are nonzero. 

 Approximate 95% confi dence intervals on   θ   1  and   θ   2  are found as follows:
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     Validity of Approximate Inference     Since the tests, procedures, and confi dence 
intervals in nonlinear regression are based on large - sample theory and typically the 
sample size in a noulinear regression problem may not be all that large, it is logical 
to inquire about the validity of the procedures. It would be desirable to have a 
guideline or  “ rule of thumb ”  that would tell us when the sample size is large enough 
so that the asymptotic results are valid. Unfortunately, no such general guideline is 
available. However, there are some  indicators  that the results may be valid in a 
particular application.

   1.     If the nonlinear regression estimation algorithm converges in only a few itera-
tions, then this indicates that the linear approximation used in solving the 
problem was very satisfactory, and it is likely that the asymptotic results will 
apply nicely. Convergence requiring many iterations is a symptom that the 
asymptotic results may not apply, and other adequacy checks should be 
considered.  

  2.     Several measures of model curvature and nonlinearity have been developed. 
This is discussed by Bates and Watts [ 1988 ]. These measures describe quanti-
tatively the adequacy of the linear approximation. Once again, an inadequate 
linear approximation would indicate that the asymptotic inference results are 
questionable.  

  3.     In Chapter  15  will illustrate a resampling technique called the  bootstrap  that 
can be used to study the sampling distribution of estimators, to compute 
approximate standard errors, and to fi nd approximate confi dence intervals. We 
could compute bootstrap estimates of these quantities and compare them to 
the approximate standard errors and confi dence intervals produced by the 
asymptotic results. Good agreement with the bootstrap estimates is an indica-
tion that the large - sample inference results are valid.    

 When there is some indication that the asymptotic inference results are not valid, 
the model - builder has few choices. One possibility is to consider an alternate form 
of the model, if one exists, or perhaps a different nonlinear regression model. Some-
times, graphs of the data and graphs of different nonlinear model expectation func-
tions may be helpful in this regard. Alternatively, one may use the inference results 
from resampling or the bootstrap. However, if the model is wrong or poorly speci-
fi ed, there is little reason to believe that resampling results will be any more valid 
than the results from large - sample inference.    

   12.7    EXAMPLES OF NONLINEAR REGRESSION MODELS 

 Ideally a nonlinear regression model is chosen based on  theoretical considerations  
from the subject - matter fi eld. That is, specifi c chemical, physical, or biological knowl-
edge leads to a  mechanistic model  for the expectation function rather than an 

  respectively. In constructing these intervals, we have used the results from the com-
puter output in Table  12.3 . Other approximate confi dence intervals and prediction 
intervals would be constructed by inserting the appropriate nonlinear regression 
quantities into the corresponding equations from linear regression.        ■   
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empirical one. Many nonlinear regression models fall into categories designed for 
specifi c situations or environments. In this section we discuss a few of these models. 

 Perhaps the best known category of nonlinear models are  growth models . These 
models are used to describe how something grows with changes in a regressor vari-
able. Often the regressor variable is time. Typical applications are in biology, where 
plants and organisms grow with time, but there are also many applications in eco-
nomics and engineering. For example, the reliability growth in a complex system 
over time may often be described with a nonlinear regression model. 

 The  logistic  growth model is

    y
x

=
+ −( )

+θ
θ θ

ε1

2 31 exp
    (12.34)   

 The parameters in this model have a simple physical interpretation. For  x     =    0,  y     =      θ   1 /
(1    +      θ   2 ) is the level of  y  at time (or level) zero. The parameter   θ   1  is the limit to 
growth as  x     →     ∞ . The values of   θ   2  and   θ   3  must be positive. Also, the term  −   θ   3  x  in 
the denominator exponent of Eq.  (12.34)  could be replaced by a more general 
structure in several regressors. The logistic growth model is essentially the model 
given by Eq.  (12.7)  derived in Example  (12.1) .   

 The  Gompertz  model given by

    y e x= −( ) +−θ θ εθ
1 2

3exp     (12.35)  

  is another widely used growth model. At  x     =    0 we have   y e= −θ θ
1

3 and   θ   1  is the limit 
to growth as  x     →     ∞ . 

 The  Weibull  growth model is

    y x= − −( ) +θ θ θ εθ
1 2 3

4exp     (12.36)   

 When  x     =    0, we have  y     =      θ   1     −      θ   2 , while the limiting growth is   θ   1  as  x     →     ∞ . 
 In some applications the expected response is given by the solution to a set of 

linear differential equations. These models are often called  compartment models , 
and since chemical reactions can frequently be described by linear systems of fi rst -
 order differential equations, they have frequent application in chemistry, chemical 
engineering, and pharmacokinetics. Other situations specify the expectation func-
tion as the solution to a nonlinear differential equation or an integral equation that 
has no analytic solution. There are special techniques for the modeling and solution 
of these problems. The interested reader is referred to Bates and Watts [ 1988 ].  

   12.8    USING SAS AND R 

 SAS developed PROC NLIN to perform nonlinear regression analysis. Table  12.4  
gives the source code to analyze the puromycin data introduced in Example  12.4 . 
The statement PROC NLIN tells the software that we wish to perform a nonlinear 
regression analysis. By default, SAS uses the Gauss – Newton method to fi nd the 
parameter estimates. If the Gauss – Newton method has problems converging to fi nal 
estimates, we suggest using Marquardt ’ s compromise. The appropriate SAS 
command to request the Marquardt compromise is   
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  proc nlin method  =  marquardt;  

 The parms statement specifi es the names for the unknown parameters and gives the 
starting values for the parameter estimates. We highly recommend the use of specifi c 
starting values for the estimation procedure, especially if we can linearize the expec-
tation function. In this particular example, we have used the solutions for the esti-
mated parameters found in Example  12.2  when we linearized the model. SAS allows 
a grid search as an alternative. Please see the SAS help menu for more details. The 
following statement illustrates how to initiate a grid search in SAS for the puromy-
cin data:   

  parms tl  =  190 to 200 by 1 
                      t2  =  0.04 to 0.05 by .01;  

  TABLE 12.4    SAS Code for Puromycin Data Set 

   data puromycin;  
  input x y;  
  cards;  
  0.02   76  
  0.02   47  
  0.06   97  
  0.06   107  
  0.11   123  
  0.11   139  
  0.22   159  
  0.22   152  
  0.56   191  
  0.56   201  
  1.10   207  
  1.10   200  
  proc nlin;  
     parms tl  =  195.81  
                       t2  =  0.04841;  
     model y  =  tl * x/ (t2  +  x);  
     der.tl  =  x/ (t2  +  x);  
     der.t2  =   - tl * x/ ((t2  +  x)  *  (t2  +  x));  
     output out  =  puro2 student  =  rs p  =  yp;  
  run;  
  goptions device  =  win hsize  =  6 vsize  =  6;  
     symbol value  =  star;  
  proc gplot data  =  puro2;  
     plot rs * yp rs * x;  
     plot y * x =   “   *   ”  yp * x =   “   +   ”  /overlay;  
  run;  
  proc capability data  =  puro2;  
     var rS;  
     qqplot rs;  
  run;   



414  INTRODUCTION TO NONLINEAR REGRESSION

 The model statement gives the specifi c model. Often, our nonlinear models are 
suffi ciently complicated that it is useful to defi ne new variables to simplify the model 
expression. The Michaelis – Menten model is simple enough that we do not require 
new variables. However, the following statements illustrate how we could defi ne 
these variables.  These statements must come between the parms and model 
statements.  

  denom  =  X  +  t2; 
 model y  =  t1 * x/denom;  

 The two statements that begin with der. are the derivatives of the expectation 
function with regard to the unknown parameters. der.t1 is the derivative with respect 
to   θ   1 , and der.t2 is the derivative with respect to   θ   2 . We can specify these derivatives 
using any variables that we had defi ned in order to simplify the expression of the 
model. We highly recommend specifying these derivatives because the effi ciency of 
the estimation algorithm often depends heavily upon this information. SAS does 
not require the derivative information; however, we strongly recommend it. 

 The output statement tells SAS what information we wish to add to the original 
puromycin data set. In this example, we add residual information so that we can 
create  “ nice ”  residual plots. The portion out    =    puro2 names the resulting data set 
puro2. The portion student    =    rs tells SAS to add the studentized residuals to puro2 
and call them rs. Similarly, the portion p    =    yp tells SAS to add the predicted values 
and call them yp. See both Appendix  D.4  and the SAS help menu for more back-
ground on the output statement. 

 The remainder of the code is very similar to the code used to generate nice 
residual plots for linear regression that we illustrated in Section  4.2.3 . This section 
of code produces the residual - versus - predicted - value plot, the residual - versus -
 regressor plot, an overlay of the original data and the predicted values, and a normal 
probability plot of the residuals. These plots are not shown. An annotated version 
of the resulting SAS output fi le is given in Table  12.5 . We only want the normal 
probability plot of the residuals from the PROC CAPABILITY analysis.   

 We now outline the appropriate R code to analyze the puromycin data. This 
analysis assumes that the data are in a fi le named  “ puromycin.txt. ”  The R code to 
read the data into the package is: 

  puro  <  -  read.table(“puromycin.txt”,header = TRUE, sep = ””)  

 The object puro is the R data set. The commands 

  puro.model <  - nls(y ∼ t1 * x/(t2 + x),start = list(t1 = 205,t2 = .08),data 
= puro) 
 summary(puro.model)  

 tell R to estimate the model and to print the estimated coeffi cients and their tests. 
The commands 

  yhat  <  -  fi tted(puro.model) 
 e  <  -  residuals(trans.model) 
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  TABLE 12.5    SAS Output for Purtomycin Data 

        The NLIN Procedure   
        Dependent Variable y   
        Method: Gauss – Newton   

        Iterative Phase   

    Iter       t1       t2   
    Sum of 
Squares   

   0      195.8      0.0484      1920.0   
   1      210.9      0.0614      1207.0   
   2      212.5      0.0638      1195.6   
   3      212.7      0.0641      1195.5   
   4      212.7      0.0641      1195.4   
   5      212.7      0.0641      1195.4   
       NOTE: Convergence criterion met.   

       Estimation Summary   

    Method       Gauss – Newton   
   Iterations      5   
   R      9.867E - 6   
   PPC(t2)      4.03E - 6   
   RPC(t2)      0.000042   
   Object      1.149E - 8   
   Objective      1195.449   
   Observations Read      12   
   Observations Used      12   
   Observations Missing      0   
   NOTE: An intercept was not specifi ed for this model.   

    Source       DF   
    Sum of 
Squares   

    Mean 
Square       F Value   

    Approx  
  Pr    >    F   

   Model      2      270214      135107      1130.18       < .0001   
   Error      10      1195.4      119.5           
   Uncorrected                       
   Total      12      271409               

    Parameter       Estimate   
    Approx 

Std Error       Approximate       95% Confi dence Limits   

   t1      212.7      6.9471      197.2      228.2   
   t2      0.0641      0.00828      0.0457      0.0826   

    The SAS System   2   
    The NLIN Procedure   

    Approximate Correlation Matrix   
         t1       t2   

   t1      1.0000000      0.7650834   
   t2      0.7650834      1.0000000   
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 qqnorm(e) 
 plot(yhat,e) 
 plot(puro$x,t)  

 set up and then create the appropriate residual plots. The commands 

  puro2  <  -  cbind(puro,yhat,e) 
 write.table(puro2, “puromycin_output.txt”)  

 create a fi le  “ puromycin_output.txt ”  which the user than can import into his/her 
favorite package for doing graphics.   

 PROBLEMS 

       12.1    Consider the Michaelis – Menten model introduced in Eq.  (12.23) . Graph the 
expectation function for this model for   θ   1     =    200 and   θ   2     =    0.04, 0.06, 0.08, 0.10. 
Overlay these curves on the same set of  x  –  y  axes. What effect does the 
parameter   θ   2  have on the behavior of the expectation function?   

    12.2    Consider the Michaelis – Menten model introduced in Eq.  (12.23) . Graph the 
expectation function for   θ   1     =    100, 150, 200, 250 for   θ   2     =    0.06. Overlay these 
curves on the same set of  x  –  y  axes. What effect does the parameter   θ   1  have 
on the behavior of the expectation function?   

    12.3    Graph the expectation function for the logistic growth model (12.34) for 
  θ   1     =    10,   θ   2     =    2, and values of   θ   3     =    0.25, 1, 2, 3, respectively. Overlay these plots 
on the same set of  x  –  y  axes. What effect does the parameter   θ   3  have on the 
expectation function?   

    12.4    Sketch the expectation function for the logistic growth model (12.34) for 
  θ   1     =    1,   θ   3     =    1, and values of   θ   2     =    1, 4, 8, respectively. Overlay these plots on 
the same  x  –  y  axes. Discuss the effect of   θ   2  on the shape of the function.   

    12.5    Consider the Gompertz model in Eq.  (12.35) . Graph the expectation func-
tion for   θ   1     =    1,   θ   3     =    1, and   θ2

1
8= , 1, 8, 64 over the range 0    ≤     x     ≤    10.

   a.     Discuss the behavior of the model as a function of   θ   2 .  
  b.     Discuss the behavior of the model as  x     →     ∞ .  
  c.     What is  E ( y ) when  x     =    0?      

    12.6    For the models shown below, determine whether it is a linear model, an 
intrinsically linear model, or a nonlinear model. If the model is intrinsically 
linear, show how it can be linearized by a suitable transformation.
   a.       y e x= ++θ εθ θ

1
2 3   

  b.       y x x= + + +θ θ θ εθ
1 2 1 2 2

3   
  c.      y     =      θ   1     +      θ   2 /  θ   1  x     +     ε   
  d.       θ εθ θ

1 1 2
2 3x x( ) ( ) +   

  e.       θ θ εθ
1 2

3+ +e x       
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    12.7    Reconsider the regression models in Problem 12.6, parts a – e. Suppose the 
error terms in these models were multiplicative, not additive. Rework the 
problem under this new assumption regarding the error structure.   

    12.8    Consider the following observations:

    x        y   

  0.5    0.68    1.58  
  1    0.45    2.66  
  2    2.50    2.04  
  4    6.19    7.85  
  8    56.1    54.2  
  9    89.8    90.2  

  10    147.7    146.3  

      a.     Fit the nonlinear regression model

   y e x= +θ εθ
1

2  

  to these data. Discuss how you obtained the starting values.  
  b.     Test for signifi cance of regression.  
  c.     Estimate the error variance   σ   2 .  
  d.     Test the hypotheses  H  0 :   θ   1     =    0 and  H  0 :   θ   2     =    0. Are both model parameters 

different from zero? If not, refi t an appropriate model.  
  e.     Analyze the residuals from this model. Discuss model adequacy.      

    12.9    Reconsider the data in the previous problem. The response measurements 
in the two columns were collected on two different days. Fit a new model

   y x e x= + +θ θ εθ
3 2 1

2 1  

  to these data, where  x  1  is the original regressor from Problem 12.8 and  x  2  is 
an indicator variable with  x  2     =    0 if the observation was made on day 1 and 
 x  2     =    1 if the observation was made on day 2. Is there any indication that 
there is a difference between the two days (use   θ   30     =    0 as the starting value).   

    12.10    Consider the model

   y e x= − +−θ θ εθ
1 2

3   

 This is called the Mitcherlich equation, and it is often used in chemical 
engineering. For example,  y  may be yield and  x  may be reaction time.
   a.     Is this a nonlinear regression model?  
  b.     Discuss how you would obtain reasonable starting values of the param-

eters   θ   1 ,   θ   2 , and   θ   3 .  
  c.     Graph the expectation function for the parameter values   θ   1     =    0.5, 

  θ   2     =     − 0.10, and   θ   3     =    0.10. Discuss the shape of the function.  
  d.     Graph the expectation function for the parameter values   θ   1     =    0.5,   θ   2     =    0.10, 

and   θ   3     =    0.10. Compare the shape with the one obtained in part c.      
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    12.11    The data below represent the fraction of active chlorine in a chemical 
product as a function of time after manufacturing.

   Available Chlorine,  y i       Time,  x i    

  0.49, 0.49    8  
  0.48, 0.47, 0.48, 0.47    10  
  0.46, 0.46, 0.45, 0.43    12  
  0.45, 0.43, 0.43    14  
  0.44, 0.43, 0.43    16  
  0.46, 0.45    18  
  0.42, 0.42, 0.43    20  
  0.41, 0.41, 0.40    22  
  0.42, 0.40, 0.40    24  
  0.41, 0.40, 0.41    26  
  0.41, 0.40    28  
  0.40, 0.40, 0.38    30  
  0.41, 0.40    32  
  0.40    34  
  0.41, 0.38    36  
  0.40, 0.40    38  
  0.39    40  
  0.39    42  

      a.     Construct a scatterplot of the data.  
  b.     Fit the Mitcherlich law (see Problem 12.10) to these data. Discuss how 

you obtained the starting values.  
  c.     Test for signifi cance of regression.  
  d.     Find approximate 95% confi dence intervals on the parameters   θ   1 ,   θ   2 , and 

  θ   3 . Is there evidence to support the claim that all three parameters are 
different from zero?  

  e.     Analyze the residuals and comment on model adequacy.      

    12.12    Consider the data below. 

     

2

6

4x1

x2

50

4.70

2.68

6.35

6.10

7.85

9.25

75

5.52

3.75

5.88

7.69

9.00

9.78

100

3.98

4.22

6.28

7.12

11.43

9.62

 

 These data were collected in an experiment where  x  1     =    reaction time in 
minutes and  x  2       =    temperature in degrees Celsius. The response variable  y  is 
concentration (grams per liter). The engineer is considering the model

   y x x= ( ) ( ) +θ εθ θ
1 1 2

2 3  
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   a.     Note that we can linearize the expectation function by taking logarithms. 
Fit the resulting linear regression model to the data.  

  b.     Test for signifi cance of regression. Does it appear that both variables  x  1  
and  x  2  have important effects?  

  c.     Analyze the residuals and comment on model adequacy.      

    12.13     Continuation of Problem 12.12 
   a.     Fit the nonlinear model given in Problem 12.12 using the solution you 

obtained by linearizing the expectation function as the starting values.  
  b.     Test for signifi cance of regression. Does it appear that both variables  x  1  

and  x  2  have important effects?  
  c.     Analyze the residuals and comment on model adequacy.  
  d.     Which model do you prefer, the nonlinear model or the linear model from 

Problem 12.12?      

    12.14     Continuation of Problem 12.12.  The two observations in each cell of the data 
table in Problem 12.12 are two replicates of the experiment. Each replicate 
was run from a unique batch of raw material. Fit the model

   y x x x= + ( ) ( ) +θ θ εθ θ
4 3 1 1 2

2 3  

  where  x  3     =    0 if the observation comes from replicate 1 and  x  3     =    1 if the 
observation comes from replicate 2. Is there an indication of a difference 
between the two batches of raw material?   

    12.15    The following table gives the vapor pressure of water for various tempera-
tures, previously reported in Exercise 5.2.

   Temperature ( ° K)     Vapor Pressure (mm Hg)  

  273    4.6  
  283    9.2  
  293    17.5  
  303    31.8  
  313    55.3  
  323    92.5  
  333    149.4  
  343    233.7  
  353    355.1  
  363    525.8  
  373    760.0  

      a.     Plot a scatter diagram. Does it seem likely that a straight - line model will 
be adequate?  

  b.     Fit the straight - line model. Compute the summary statistics and the resid-
ual plots. What are your conclusions regarding model adequacy?  

  c.     From physical chemistry the Clausius – Clapeyron equation states that

   ln p
T

v( ) ∝ − 1
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 Repeat part b using the appropriate transformation based on this 
information.  

  d.     Fit the appropriate non - linear model.  
  e.     Discuss the differences in these models. Discuss which model you prefer.      

    12.16    The following data were collected on specifi c gravity and spectrophotometer 
analysis for 26 mixtures of NG (nitroglycerine), TA (triacetin), and 2 NDPA 
(2 - nitrodiphenylamine).

    
   Mixture      x  l  (% NG)      x  2  (% TA)      x  3  (% 2 NDPA)  

    y  (Specifi c 
Gravity)  

  1    79.98    19.85    0    1.4774  
  2    80.06    18.91    1.00    1.4807  
  3    80.10    16.87    3.00    1.4829  
  4    77.61    22.36    0    1.4664  
  5    77.60    21.38    1.00    1.4677  
  6    77.63    20.35    2.00    1.4686  
  7    77.34    19.65    2.99    1.4684  
  8    75.02    24.96    0    1.4524  
  9    75.03    23.95    1.00    1.4537  

  10    74.99    22.99    2.00    1.4549  
  11    74.98    22.00    3.00    1.4565  
  12    72.50    27.47    0    1.4410  
  13    72.50    26.48    1.00    1.4414  
  14    72.50    25.48    2.00    1.4426  
  15    72.49    24.49    3.00    1.4438  
  16    69.98    29.99    0    1.4279  
  17    69.98    29.00    1.00    1.4287  
  18    69.99    27.99    2.00    1.4291  
  19    69.99    26.99    3.00    1.4301  
  20    67.51    32.47    0    1.4157  
  21    67.50    31.47    1.00    1.4172  
  22    67.48    30.50    2.00    1.4183  
  23    67.49    29.49    3.00    1.4188  
  24    64.98    34.00    1.00    1.4042  
  25    64.98    33.00    2.00    1.4060  
  26    64.99    31.99    3.00    1.4068  

  Source :   Raymond H. Myers,  Technometrics,  vol. 6, no. 4 (November 1964): 343 – 356. 

 There is a need to estimate activity coeffi cients from the model

   y
x x x

=
+ +

=1

1 1 1 2 3 3β β β
ε   

 The quantity parameters   β   1 ,   β   2 , and   β   3  are ratios of activity coeffi cients to 
the individual specifi c gravity of the NG, TA, and 2 NDPA, respectively.
   a.     Determine starting values for the model parameters.  
  b.     Use nonlinear regression to fi t the model.  
  c.     Investigate the adequacy of the nonlinear model.          
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  CHAPTER 13 

GENERALIZED LINEAR MODELS     

    13.1    INTRODUCTION 

 In Chapter  5 , we developed and illustrated data transformation as an approach to 
fi tting regression models when the assumptions of a normally distributed response 
variable with constant variance are not appropriate. Transformation of the response 
variable is often a very effective way to deal with both response nonnormality and 
inequality of variance. Weighted least squares is also a potentially useful way to 
handle the non - constant variance problem. In this chapter, we present an alternative 
approach to data transformation when the  “ usual ”  assumptions of normality and 
constant variance are not satisfi ed. This approach is based on the  generalized linear 
model  (GLM). 

 The GLM is a unifi cation of both linear and nonlinear regression models that 
also allows the incorporation of nonnormal response distributions. In a GLM, the 
response variable distribution must only be a member of the  exponential family , 
which includes the normal, Poisson, binomial, exponential, and gamma distributions 
as members. Furthermore, the normal - error linear model is just a special case of the 
GLM, so in many ways, the GLM can be thought of as a unifying approach to many 
aspects of empirical modeling and data analysis. 

 We begin our presentation of these models by considering the case of  logistic 
regression . This is a situation where the response variable has only two possible 
outcomes, generically called success and failure and denoted by 0 and 1. Notice that 
the response is essentially qualitative, since the designation success or failure is 
entirely arbitrary. Then we consider the situation where the response variable is a 
count, such as the number of defects in a unit of product or the number of relatively 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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rare events such as the number of Atlantic hurricanes that make landfall on the 
United States in a year. Finally, we discuss how all these situations are unifi ed by 
the GLM. For more details of the GLM, refer to Myers, Montgomery, Vining, and 
Robinson  [2010] .  

   13.2    LOGISTIC REGRESSION MODELS 

   13.2.1    Models with a Binary Response Variable 

 Consider the situation where the response variable in a regression problem takes 
on only two possible values, 0 and 1. These could be arbitrary assignments resulting 
from observing a qualitative response. For example, the response could be the 
outcome of a functional electrical test on a semiconductor device for which the 
results are either a success, which means the device works properly, or a failure, 
which could be due to a short, an open, or some other functional problem. 

 Suppose that the model has the form

    yi i i= ′ +x b ε     (13.1)  

  where   ′ = [ ]xi i i ikx x x1 1 2, , , ,… ,   β   ′     =    [  β   0 ,   β   1 ,   β   2 ,    . . .    ,   β  k  ], and the response variable  y j  , 
takes on the value either 0 or 1. We will assume that the response variable  y i   is a 
 Bernoulli random variable  with probability distribution as follows: 

    y i       Probability  

  1     P ( y i      =    1)    =      π  i    
  0     P ( y i      =    0)    =    1    −      π  i    

 Now since  E (  ε    i  )    =    0, the expected value of the response variable is

   E yi i i i( ) = ( ) + −( ) =1 0 1π π π   

 This implies that

   E yi i i( ) = ′ =x b π   

 This means that the expected response given by the response function   E yi i( ) = ′x b 
is just the probability that the response variable takes on the value 1. 

 There are some very basic problems with the regression model in Eq.  (13.1) . First, 
note that if the response is binary, then the error terms   ε    i   can only take on two 
values, namely,

   ε i i iy= − ′ =1 1x b when  

   ε i i iy= − ′ =x b when 0   
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 Consequently, the errors in this model cannot possibly be normal. Second, the error 
variance is not constant, since

   σ π π π π π πy i i i i i i i ii E y E y2 2 2 21 0 1 1= − ( ){ } = −( ) + −( ) −( ) = −( )   

 Notice that this last expression is just

   σ y i ii E y E y2 1= ( ) − ( )[ ]  

  since   E yi i i( ) = ′ =x b π . This indicates that the variance of the observations (which is 
the same as the variance of the errors because   ε    i      =     y i      −      π  i  , and   π  i   is a constant) is a 
function of the mean. Finally, there is a constraint on the response function, because

   0 1≤ ( ) = ≤E yi iπ   

 This restriction can cause serious problems with the choice of a  linear response 
function , as we have initially assumed in Eq.  (13.1)  It would be possible to fi t a 
model to the data for which the predicted values of the response lie outside the 0, 
1 interval. 

 Generally, when the response variable is binary, there is considerable empirical 
evidence indicating that the shape of the response function should be nonlinear. A 
monotonically increasing (or decreasing)  S  - shaped (or reverse  S  - shaped) function, 
such as shown in Figure  13.1 , is usually employed. This function is called the  logistic 
response function  and has the form

    E y( ) =
′( )

+ ′( )
=

+ − ′( )
exp

exp exp
x

x x
b
b b1

1
1

    (13.2)     

 The logistic response function can be easily linearized. One approach defi nes 
the structural portion of the model in terms of a function of the response function 
mean. Let

    η = ′x b     (13.3)  

  be the  linear predictor  where   η   is defi ned by the transformation

    η π
π

=
−

ln
1

    (13.4)   

 This transformation is often called the  logit transformation  of the probability   π  , and 
the ratio   π  /(1    −      π  ) in the transformation is called the  odds . Sometimes the logit 
transformation is called the log - odds.  

   13.2.2    Estimating the Parameters in a Logistic Regression Model 

 The general form of the logistic regression model is
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    y E yi i i= ( ) + ε     (13.5)  

  where the observations  y i   are independent Bernoulli random variables with expected 
values

    E yi i
i

i

( ) = =
′( )

+ ′( )
π exp

exp
x

x
b
b1

    (13.6)   

 We use the method of  maximum likelihood  to estimate the parameters in the linear 
predictor   ′xib. 

 Each sample observation follows the Bernoulli distribution, so the probability 
distribution of each sample observation is

   f y i ni i i
y

i
yi i( ) = −( ) =−π π1 1 21 , , , ,…  

  and of course each observation  y i   takes on the value 0 or 1. Since the observations 
are independent, the likelihood function is just

    L y y y f yn i i

i

n

i
y

i
y

i

n
i i

1 2

1

1

1

1, , , ,… b( ) = ( ) = −( )
=

−

=
∏ ∏π π     (13.7)   

     Figure 13.1     Examples of the logistic response function: ( a )  E ( y )    =    1/(1    +     e   − 6.0    +    1.0   x  ); ( b )  E ( y )    =    1/
(1    +     e   − 6.0    +    1.0   x  ); ( c )   E y e x x( ) = +( )− + +1 1 5 0 0 65 0 41 2/ . . . ; ( d )   E y e x x x x( ) = +( )− + + +1 1 5 0 0 65 0 4 0 151 2 1 2/ . . . . .  
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 It is more convenient to work with the log - likelihood
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ln ln

L y y y f y

y

n i i

i

n

i
i
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1
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 Now since   1 1 1− = + ′( )[ ]−π i iexp x b  and   η π πi i i i= −( )[ ] = ′ln / 1 x b, the log - likelihood 
can be written as

    ln , ln expL yi i

i

n

i

i

n

y x xb b b( ) = ′ − + ′( )[ ]
= =
∑ ∑

1 1

1     (13.8)   

 Often in logistic regression models we have repeated observations or trials at each 
level of the  x  variables. This happens frequently in designed experiments. Let  y i   
represent the number of 1 ’ s observed for the  i th observation and  n i   be the number 
of trials at each observation. Then the log - likelihood becomes

    

ln , ln ln ln

l

L y n y

y

i i

i

n

i i

i
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i i
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(13.9)

   

 Numerical search methods could be used to compute the maximum - likelihood 
estimates (or MLEs)   b̂ . However, it turns out that we can use iteratively reweighted 
least squares (IRLS) to actually fi nd the MLEs. For details of this procedure, refer 
to Appendix  C.14 . There are several excellent computer programs that implement 
maximum - likelihood estimation for the logistic regression model, such as SAS 
PROC GENMOD, JMP and Minitab. 

 Let   b̂ be the fi nal estimate of the model parameters that the above algorithm 
produces. If the model assumptions are correct, then we can show that 
asymptotically

    E ˆ ˆb b b( ) = ( ) = ′( )−and Var X VX 1     (13.10)  

  where the matrix  V  is an  n     ×     n  diagonal matrix containing the estimated variance 
of each observation on the main diagonal; that is, the  i th diagonal element of  V  is

   V nii i i i= −( )ˆ ˆπ π1   

 The estimated value of the linear predictor is   ˆ ˆηi i= ′x b, and the fi tted value of the 
logistic regression model is written as

    ˆ ˆ
exp ˆ

exp ˆ

exp ˆ

exp ˆ exp
yi i

i

i

i

i

= = ( )
+ ( )

=
′( )

+ ′( ) =
+ − ′

π
η

η1 1

1

1

x

x

b

b xxi b̂( )     (13.11)  

    



426  GENERALIZED LINEAR MODELS

 Example 13.1   The Pneumoconiosis Data 

    A 1959 article in the journal  Biometrics  presents data concerning the proportion of 
coal miners who exhibit symptoms of severe pneumoconiosis and the number of 
years of exposure. The data are shown in Table  13.1 . The response variable of inter-
est,  y , is the proportion of miners who have severe symptoms. A graph of the 
response variable versus the number of years of exposure is shown in Figure  13.2 . 
A reasonable probability model for the number of severe cases is the binomial, so 
we will fi t a logistic regression model to the data.     

 Table  13.2  contains some of the output from Minitab. In subsequent sections, we 
will discuss in more detail the information contained in this output. The section of 
the output entitled Logistic Regression Table presents the estimates of the regres-
sion coeffi cients in the linear predictor.   

 The fi tted logistic regression model is

   ˆ ˆ
. .

y
e x

= =
+ + −π 1

1 4 7965 0 0935
 

  where  x  is the number of years of exposure. Figure  13.3  presents a plot of the fi tted 
values from this model superimposed on the scatter diagram of the sample data. 
The logistic regression model seems to provide a reasonable fi t to the sample data. 
If we let CASES be the number of severe cases and MINERS be the number of 
miners the appropriate SAS code to analyze these data is    

 proc genmod; 
 model CASES  =  MINERS  /  dist  =  binomial type1 type3;  

 Minitab will also calculate and display the covariance matrix of the model param-
eters. For the model of the pneumoconiosis data, the covariance matrix is

   Var ˆ . .

. .
b( ) =

−
−

⎡
⎣⎢

⎤
⎦⎥

0 323283 0 0083480

0 0083480 0 0002380
  

 The standard errors of the model parameter estimates reported in Table  13.2  are 
the square roots of the main diagonal elements of this matrix.       ■   

  TABLE 13.1    The Pneumoconiosis Data 

   Number of Years of 
Exposure  

   Number of Severe 
Cases  

   Total Number of 
Miners  

   Proportion of Severe 
Cases,  y   

  5.8    0    98    0  
  15.0    1    54    0.0185  
  21.5    3    43    0.0698  
  27.5    8    48    0.1667  
  33.5    9    51    0.1765  
  39.5    8    38    0.2105  
  46.0    10    28    0.3571  
  51.5    5    11    0.4545  
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     Figure 13.2     A scatter diagram of the 
pneumoconiosis data from Table  13.1 .  
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  TABLE 13.2    Binary Logistic Regression: Severe Cases, Number of Miners versus Years 

   Link Function Logit   

   Response Information   

   Variable      Value      Count                           
   Severe cases      Success      44                           
       Failure      327                           
   Number of 
miners   

   Total      371                           

   Logistic Regression Table   

   Predictor      Coef      SE Coef          Z      P   
   Odds 
Ratio   

   95% 
Lower   

   CI 
Upper   

   Constant       − 4.79648      0.568580           − 8.44                   
   Years      0.0934629      0.0154258          6.06      0.000      1.10      1.07      1.13   

   Log -  Likelihood  =   − 109.664   
   Test that all slopes are zero: G  =  50.852, DF  =  1, P - Value  =  0.000   

   Goodness - of - Fit Tests   
   Method      Chi - Square      DF          P                   
   Pearson      5.02854      6          0.540                   
   Deviance      6.05077      6          0.418                   
   Hosmer – Lemeshow      5.00360      5          0.415                   

   Table of Observed and Expected Frequencies:   
   (See Hosmer – Lemeshow Test for the Pearson Chi - Square Statistic)   

   Group   
   Value      1      2      3      4      5      6      7      Total   
   Success                                   
      Obs      0      1      3      8      9      8      15      44   
      Exp      1.4       1.8       2.5      4.7       8.1       9.5       16.1        
   Failure                                   
      Obs      98      53      40      40      42      30      24      327   
      Exp      96.6      52.2      40.5      43.3       42.9      28.5      22.9       
   Total      98      54      43      48      51      38      39      371   

     Figure 13.3     The fi tted logistic regression 
model for pneumoconiosis data from Table 
 13.1 .  
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 Example 13.2   The Pneumoconiosis Data 

    In Example  13.1  we fi t the logistic regression model

   ˆ
. .

y
e x

=
+ + −

1
1 4 7965 0 0935

 

  to the pneumoconiosis data of Table  13.1 . Since the linear predictor contains only 
one regressor variable and   ˆ .β1 0 0935= , we can compute the odds ratio from Eq. 
 (13.12)  as

   ˆ .ˆ .O e eR = = =β1 0 0935 1 10   

   13.2.3    Interpretation of the Parameters in a Logistic Regression Model 

 It is relatively easy to interpret the parameters in a logistic regression model. Con-
sider fi rst the case where the linear predictor has only a single regressor, so that the 
fi tted value of the linear predictor at a particular value of  x , say  x i  , is

   ˆ ˆ ˆη β βx xi i( ) = +0 1   

 The fi tted value at  x i      +    1 is

   ˆ ˆ ˆη β βx xi i+( ) = + +( )1 10 1  

  and the difference in the two predicted values is

   ˆ ˆ ˆη η βx xi i+( ) − ( ) =1 1   

 Now   η̂ xi( ) is just the log - odds when the regressor variable is equal to  x i  , and   η̂ xi +( )1  
is just the log - odds when the regressor is equal to  x i      +    1. Therefore, the difference 
in the two fi tted values is

   

ˆ ˆ ln ln

ln

η ηx xi i x x

x

x

i i

i

i

+( ) − ( ) = ( ) − ( )

= ⎛
⎝

+

+

1 1

1

odds odds

odds
odds⎜⎜

⎞
⎠
⎟ = β̂1

  

 If we take antilogs, we obtain the  odds ratio 

    ˆ ˆ
O ex

x

i

i

R
odds
odds

= =+1 1β     (13.12)   

 The odds ratio can be interpreted as the estimated increase in the probability of 
success associated with a one - unit change in the value of the predictor variable. In 
general, the estimated increase in the odds ratio associated with a change of  d  units 
in the predictor variable is   exp dβ̂1( ).   
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  TABLE 13.3    A 2    ×    2 Contingency Table 

   Response      x  l     =    0, Active Drug      x  l     =    1, Placebo  

   y     =    0, not infected     n  00      n  01   
   y     =    1, infected     n  10      n  11   

 There is a close connection between the odds ratio in logistic regression and the 
2    ×    2 contingency table that is widely used in the analysis of categorical data. Con-
sider Table  13.3  which presents a 2    ×    2 contingency table where the categorical 
response variable represents the outcome (infected, not infected) for a group 
of patients treated with either an active drug or a placebo. The  n ij   are the 
numbers of patients in each cell. The odds ratio in the 2    ×    2 contingency table is 
defi ned as

   
Proportion infected active drug
Proportional infected place

|
| bbo

= = ⋅
⋅

n n
n n

n n
n n

11 01

10 00

11 00

10 01

/
/

    

 Consider a logistic regression model for these data. The linear predictor is

   ln
π

π
β β

1
0 1 1−

⎛
⎝⎜

⎞
⎠⎟

= + x   

 When  x  1     =    0, we have

   β0
1

1

1 0
0 0

= = =( )
= =( )

ln
|
|

P y x
P y x

  

 Now let  x  1     =    1:

   

ln

ln
|
|

ln
|

π
π

β β
1

1 1
0 1

1 0

0 1 1

1

1

1

−
⎛
⎝⎜

⎞
⎠⎟

= +

= =( )
= =( )

= = =( )

x

P y x
P y x

P y x
PP y x= =( )

+
0 01

1
|

β
  

 Solving for   β   1  yields

   β1
1 1

1 1

111 1 0 0
0 1 1 0

=
= =( ) ⋅ = =( )
= =( ) ⋅ = =( )

= ⋅
ln

| |
| |

ln
P y x P y x

P y x P y x
n nn
n n

00

01 10⋅
 

 This implies that every additional year of exposure increases the odds of contract-
ing a severe case of pneumoconiosis by 10%. If the exposure time increases by 10 
years, then the odds ratio becomes   exp d ˆ exp . .β1 10 0 0935 2 55( ) = ( )[ ] = . This indicates 
that the odds more than double with a 10 - year exposure.       ■   
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  so exp(  β   1 ) is equivalent to the odds ratio in the 2    ×    2 contingency table. However, 
the odds ratio from logistic regression is much more general than the traditional 
2    ×    2 contingency table odds ratio. Logistic regression can incorporate other predic-
tor variables, and the presence of these variables can impact the odds ratio. For 
example, suppose that another variable,  x  2     =    age, is available for each patient in the 
drug study depicted in Table  13.3 . Now the linear predictor for the logistic regression 
model for the data would be

   ln
π

π
β β β

1
0 1 1 2 2−

⎛
⎝⎜

⎞
⎠⎟

= + +x x   

 This model allows the predictor variable age to impact the estimate of the odds ratio 
for the drug variable. The drug odds ratio is still exp(  β   1 ), but the estimate of   β   1  is 
potentially affected by the inclusion of  x  2     =    age in the model. It would also be pos-
sible to include an interaction term between drug and age in the model, say

   ln
π

π
β β β β

1
0 1 1 2 2 12 1 2−

⎛
⎝⎜

⎞
⎠⎟

= + + +x x x x   

 In this model the odds ratio for drug depends on the level of age and would be 
computed as exp(  β   1     +      β   12  x  2 ). 

 The interpretation of the regression coeffi cients in the multiple logistic regression 
model is similar to that for the case where the linear predictor contains only one 
regressor. That is, the quantity   exp β̂( ) is the odds ratio for regressor  x j  , assuming 
that all other predictor variables are constant.  

   13.2.4    Statistical Inference on Model Parameters 

 Statistical inference in logistic regression is based on certain properties of maximum -
 likelihood estimators and on likelihood ratio tests. These are large - sample or 
 asymptotic  results. This section discusses and illustrates these procedures using the 
logistic regression model fi t to the pneumoconiosis data from Example  13.1 . 

  Likelihood Ratio Tests     A likelihood ratio test can be used to compare a  “ full ”  
model with a  “ reduced ”  model that is of interest. This is analogous to the  “ extra - sum -
 of - squares ”  technique that we have used previously to compare full and reduced 
models. The likelihood ratio test procedure compares twice the logarithm of the value 
of the likelihood function for the full model ( FM ) to twice the logarithm of the value 
of the likelihood function of the reduced model ( RM ) to obtain a test statistic, say

    LR
L FM
L RM

L FM L RM= ( )
( )

= ( ) − ( )[ ]2 2ln ln ln     (13.13)   

 For large samples, when the reduced model is correct, the test statistic  LR  follows 
a chi - square distribution with degrees of freedom equal to the difference in the 
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number of parameters between the full and reduced models. Therefore, if the test 
statistic  LR  exceeds the upper   α   percentage point of this chi - square distribution, 
we would reject the claim that the reduced model is appropriate. 

 The likelihood ratio approach can be used to provide a test for signifi cance of 
regression in logistic regression. This test uses the current model that had been fi t 
to the data as the full model and compares it to a reduced model that has constant 
probability of success. This constant - probability - of - success model is

   E y
e

e
( ) = =

+
π

β

β

0

01
 

  that is, a logistic regression model with no regressor variables. The maximum -
 likelihood estimate of the constant probability of success is just  y / n , where  y  is the 
total number of successes that have been observed and  n  is the number of observa-
tions. Substituting this into the log - likelihood function in Equation  (13.9)  gives the 
maximum value of the log - likelihood function for the reduced model as

   ln ln ln lnL RM y y n y n y n n( ) = ( ) + −( ) −( ) − ( )   

 Therefore the likelihood ratio test statistic for testing signifi cance of regression is

    

LR y n y

y y n y n

i i

i

n

i i i

i

n

= + −( ) −( )⎧
⎨
⎩

− ( ) + −( ) −

= =
∑ ∑2 1

1 1

ln lnˆ ˆ

ln ln

π π

yy n n( ) − ( )[ ]
⎫
⎬
⎪

⎭⎪
ln

    

(13.14)

   

 A large value of this test statistic would indicate that at least one of the regressor 
variables in the logistic regression model is important because it has a nonzero 
regression coeffi cient. 

 Minitab computes the likelihood ratio test for signifi cance of regression in logistic 
regression. In the Minitab output in Table  13.2  the test statistic in Eq.  (13.14)  is 
reported as  G     =    50.852 with one degree of freedom (because the full model has only 
one predictor). The reported  P  value is 0.000 (the default reported by Minitab when 
the calculated  P  value is less than 0.001).  

  Testing Goodness of Fit     The goodness of fi t of the logistic regression model 
can also be assessed using a likelihood ratio test procedure. This test compares 
the current model to a  saturated model , where each observation (or group of 
observations when  n i      >    1) is allowed to have its own parameter (that is, a success 
probability). These parameters or success probabilities are  y i  / n i  , where  y i   is the 
number of successes and  n i   is the number of observations. The  deviance  is defi ned 
as twice the difference in log - likelihoods between this saturated model and the full 
model (which is the current model) that has been fi t to the data with estimated 
success probability   ˆ exp ˆ / exp ˆπ i i i= ′( ) + ′( )⎡⎣ ⎤⎦x xb b1 . The deviance is defi ned as
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    D
L

L FM
y

y
n

n y
n

i
i

i i
i i= ( )

( )
= ⎛

⎝⎜
⎞
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+ −( )2 2ln ln ln
saturated model

π
ii i

i ii

n y
n

−
−( )

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥=

∑ 11 π̂
    (13.15)   

 In calculating the deviance, note that   y y nln / π̂( ) = 0 if  y     =    0, and if  y     =     n  we have 
  n y n y n−( ) −( ) −( )[ ] =ln / 1 0π̂ . When the logistic regression model is an adequate fi t 
to the data and the sample size is large, the deviance has a chi - square distribution 
with  n     −     p  degrees of freedom, where  p  is the number of parameters in the model. 
Small values of the deviance (or a large  P  value) imply that the model provides a 
satisfactory fi t to the data, while large values of the deviance imply that the current 
model is not adequate. A good rule of thumb is to divide the deviance by its number 
of degrees of freedom. If the ratio  D /( n     −     p ) is much greater than unity, the current 
model is not an adequate fi t to the data. 

 Minitab calculates the deviance goodness - of - fi t statistic. In the Minitab output in 
Table  13.2 , the deviance is reported under Goodness - of - Fit Tests. The value reported 
is  D     =    6.05077 with  n     −     p     =    8    −    2    =    6 degrees of freedom. The  P  value iis 0.418 and 
the ratio  D /( n     −     p ) is approximately unity, so there is no apparent reason to doubt 
the adequacy of the fi t. 

 The deviance has an analog in ordinary normal - theory linear regression. In the 
linear regression model  D     =     SS  Res /  σ   2 . This quantity has a chi - square distribution with 
 n     −     p  degrees of freedom if the observations are normally and independently dis-
tributed. However, the deviance in normal - theory linear regression contains the 
unknown nuisance parameter   σ   2 , so we cannot compute it directly. However, despite 
this small difference, the deviance and the residual sum of squares are essentially 
equivalent. 

 Goodness of fi t can also be assessed with a  Pearson chi - square  statistic that com-
pares the observed and expected probabilities of success and failure at each group 
of observations. The expected number of successes is   ni iπ̂  and the expected number 
of failures is   ni i1−( )π̂ ,  i     =    1, 2,    . . .    ,  n . The Pearson chi - square statistic is

    χ
π

π
π

π
2

2 21
1

= −( ) + −( ) − −( )[ ]
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⎧
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    (13.16)   

 The Pearson chi - square goodness - of - fi t statistic can be compared to a chi - square 
distribution with  n     −     p  degrees of freedom. Small values of the statistic (or a large 
 P  value) imply that the model provides a satisfactory fi t to the data. The Pearson 
chi - square statistic can also be divided by the number of degrees of freedom  n     −     p  
and the ratio compared to unity. If the ratio greatly exceeds unity, the goodness of 
fi t of the model is questionable. 

 The Minitab output in Table  13.2  reports the Pearson chi - square statistic under 
Goodness - of - Fit Tests. The value reported is  χ  2     =    6.02854 with  n     −     p     =    8    −    2    =    6 
degrees of freedom. The  P  value is 0.540 and the ratio  D /( n     −     p ) does not exceed 
unity, so there is no apparent reason to doubt the adequacy of the fi t. 

 When there are no replicates on the regressor variables, the observations can be 
grouped to perform a goodness - of - fi t test called the Hosmer - Lemeshow test. In this 
procedure the observations are classifi ed into  g  groups based on the estimated prob-
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abilities of success. Generally, about 10 groups are used (when  g     =    10 the groups are 
called the deciles of risk) and the observed number of successes  O j   and failures 
 N j      −     O j   are compared with the expected frequencies in each group,   N j jπ  and 
  N j j1−( )π , where  N j   is the number of observations in the  j th group and the average 
estimated success probability in the  j th group is   π πj i j i jN= ∑ ∈group ˆ / . The Hosmer –
 Lemeshow statistic is really just a Pearson chi - square goodness - of - fi t statistic com-
paring observed and expected frequencies:

    HL
O N

N
j j j

j j jj

n

=
−( )

−( )=
∑ π

π π

2

1 1
    (13.17)   

 If the fi tted logistic regression model is correct, the  HL  statistic follows a chi -
 square distribution with  g     −    2 degrees of freedom when the sample size is large. 
Large values of the  HL  statistic imply that the model is not an adequate fi t to the 
data. It is also useful to compute the ratio of the Hosmer – Lemeshow statistic to 
the number of degrees of freedom  g     −     p  with values close to unity implying an 
adequate fi t. 

 MINlTAB computes the Hosmer – Lemeshow statistic. For the pneumoconiosis 
data the  HL  statistic is reported in Table  13.2  under Goodness - of - Fit Tests. This 
computer package has combined the data into  g     =    7 groups. The grouping and cal-
culation of observed and expected frequencies for success and failure are reported at 
the bottom of the MINlTAB output. The value of the test statistic is  HL     =    5.00360 
with  g     −     p     =    7    −    2    =    5 degrees of freedom. The  P  value is 0.415 and the ratio  HL / df  
is very close to unity, so there is no apparent reason to doubt the adequacy of 
the fi t.  

  Testing Hypotheses on Subsets of Parameters Using Deviance     We can also 
use the deviance to test hypotheses on subsets of the model parameters, just as we 
used the difference in regression (or error) sums of squares to test similar hypoth-
eses in the normal - error linear regression model case. Recall that the model can be 
written as

    h b b b= = +X X X1 1 2 2     (13.18)  

  where the  full model  has  p  parameters,   β   1  contains  p     −     r  of these parameters,   β   2  
contains  r  of these parameters, and the columns of the matrices  X  1  and  X  2  contain 
the variables associated with these parameters. 

 The deviance of the full model will be denoted by  D (  β  ). Suppose that we wish 
to test the hypotheses

    H H0 2 1 2: , :b b= ≠0 0     (13.19)   

 Therefore, the  reduced model  is

    h b= X1 1     (13.20)   
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 Now fi t the reduced model, and let  D (  β   1 ) be the deviance for the reduced model. 
The deviance for the reduced model will always be larger than the deviance for the 
full model, because the reduced model contains fewer parameters. However, if the 
deviance for the reduced model is not much larger than the deviance for the full 
model, it indicates that the reduced model is about as good a fi t as the full model, 
so it is likely that the parameters in   β   2  are equal to zero. That is, we cannot reject 
the null hypothesis above. However, if the difference in deviance is large, at least 
one of the parameters in   β   2  is likely not zero, and we should reject the null hypoth-
esis. Formally, the difference in deviance is

    D D Db b b b2 1 1|( ) = ( ) − ( )     (13.21)  

  and this quantity has  n     −    ( p     −     r )    −    ( n     −     p )    =     r  degrees of freedom. If the null hypoth-
esis is true and if  n  is large, the difference in deviance in Eq.  (13.21)  has a chi - square 
distribution with  r  degrees of freedom. Therefore, the test statistic and decision 
criteria are

    
if reject the null hypothesis

if 

D

D
rb b

b b
2 1

2

2 1

|
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( ) ≥
( ) <
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α

α rr
2 do not reject the null hypothesis

    (13.22)   

 Sometimes the difference in deviance  D (  β   2 |  β   1 ) is called the  partial deviance .    

 Example 13.3   The Pneumoconiosis Data 

    Once again, reconsider the pneumoconiosis data of Table  13.1 . The model we ini-
tially fi t to the data is

   ˆ ˆ
. .

y
e x

= =
+ + −π 1

1 4 7965 0 0935
  

 Suppose that we wish to determine whether adding a quadratic term in the linear 
predictor would improve the model. Therefore, we will consider the full model 
to be

   y
e x x

=
+ − + +( )

1

1 0 1 11
2β β β   

 Table  13.4  contains the output from Minitab for this model. Now the linear predictor 
for the full model can be written as

   

η

β β β

=
= +
= + +

X

X X

b
b b1 1 2 2

0 1 11
2x x
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 From Table  13.4 , we fi nd that the deviance for the full model is

   D b( ) = 3 28164.  

  with  n     −     p     =    8    −    3    =    5 degrees of freedom. Now the reduced model has 
 X  l   β   1     =      β   0     +      β   1  x , so  X  2   β   2     =      β   11  x  2  with  r     =    1 degree of freedom. The reduced model 
was originally fi t in Example  13.1 , and Table  13.2  shows the deviance for the reduced 
model to be

   D b1 6 05077( ) = .  

  with  p     −     r     =    3    −    1    =    2 degrees of freedom. Therefore, the difference in deviance 
between the full and reduced models is computed using Eq.  (13.21)  as

   

D D Db b b b2 1 1

6 05077 3 28164

2 76913

|

. .

.

( ) = ( ) − ( )
= −
=

 

  which would be referred to a chi - square distribution with  r     =    1 degree of freedom. 
Since the  P  value associated with the difference in deviance is 0.0961, we might 
conclude that there is some marginal value in including the quadratic term in the 
regressor variable  x     =    years of exposure in the linear predictor for the logistic 
regression model.       ■   

  Tests on Individual Model Coeffi cients     Tests on individual model coeffi cients, 
such as

    H Hj j0 10 0: , :β β= ≠     (13.22)  

  can be conducted by using the difference - in - deviance method as illustrated in 
Example  13.3 .There is another approach, also based on the theory of maximum 
likelihood estimators. For large samples, the distribution of a maximum - likelihood 
estimator is approximately normal with little or no bias. Furthermore, the variances 
and covariances of a set of maximum - likelihood estimators can be found from the 
second partial derivatives of the log - likelihood function with respect to the model 
parameters, evaluated at the maximum - likelihood estimates. Then a  t  - like statistic 
can be constructed to test the above hypotheses. This is sometimes referred to as 
 Wald inference . 

 Let  G  denote the  p     ×     p  matrix of second partial derivatives of the log - likelihood 
function, that is,

   G i j kij
i j

= ∂ ( )
∂ ∂

=
2

0 1
L b
β β

, , , , ,…   
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  G  is called the  Hessian matrix . If the elements of the Hessian are evaluated at the 
maximum - likelihood estimators   b b= ˆ , the large - sample approximate covariance 
matrix of the regression coeffi cients is

    Var ˆ ˆb b( ) = − ( ) = ′( )
− −G X VX

1 1     (13.23)   

 Notice that this is just the covariance matrix of   b̂ given earlier. The square 
roots of the diagonal elements of this covariance matrix are the large - sample 
standard errors of the regression coeffi cients, so the test statistic for the null 
hypothesis in

   H Hj j0 10 0: , :β β= ≠  

  is

    Z j

j
0 = ( )

ˆ

ˆ
β
βse

    (13.24)   

 The reference distribution for this statistic is the standard normal distribution. Some 
computer packages square the  Z  0  statistic and compare it to a chi - square distribu-
tion with one degree of freedom.    

 Example 13.4   The Pneumoconiosis Data 

    Table  13.3  contains output from MlNITAB for the pneumoconiosis data, originally 
given in Table  13.1 . The fi tted model is

   ˆ
. . .

y
e x x

=
+ + − +

1

1 6 7108 0 2276 0 0021 2   

 The Minitab output gives the standard errors of each model coeffi cient and the Z 0  
test statistic in Eq.  (13.24) . Notice that the  P  value for   β   1  is  P     =    0.014, implying that 
years of exposure is an important regressor. However, notice that the  P  value for 
  β   1  is  P     =    0.127, suggesting that the squared term in years of exposure does not con-
tribute signifi cantly to the fi t. 
 Recall from the previous example that when we tested for the signifi cance of   β   11  
using the partial deviance method we obtained a different  P  value. Now in linear 
regression, the  t  test on a single regressor is equivalent to the partial  F  test on a 
single variable (recall that the square of the  t  statistic is equal to the partial  F  sta-
tistic). However, this equivalence is only true for  linear models , and the GLM is a 
 nonlinear model .       ■   

  Confi dence Intervals     It is straightforward to use Wald inference to construct 
confi dence intervals in logistic regression. Consider fi rst fi nding confi dence intervals 
on individual regression coeffi cients in the linear predictor. An approximate 
100(1    −      α  ) percent confi dence interval on the  j th model coeffi cient is

    ˆ ˆ ˆ ˆ
/ /β β β β βα αj j j j jZ Z− ( ) ≤ ≤ + ( )2 2se se     (13.25)     



438  GENERALIZED LINEAR MODELS

 Example 13.5   The Pneumoconiosis Data 

    Using the Minitab output in Table  13.3 , we can fi nd an approximate 95% confi dence 
interval on   β   11  from Eq.  (13.25)  as follows:

    

ˆ ˆ ˆ ˆ

. . .

. .β β β β β11 0 025 11 11 0 025 11

0 0021 1 96 0 0

− ( ) ≤ ≤ + ( )
− −

Z Zse se11

00136 0 0021 1 96 0 00136

0 0048 0 0006
11

11

( ) ≤ ≤ − + ( )
− ≤ ≤

β
β

. . .

. .

        

■
   

 Notice that the confi dence interval includes zero, so at the 5% signifi cance level, we 
would not reject the hypothesis that this model coeffi cient is zero. The regression 
coeffi cient   β  j   is also the logarithm of the odds ratio. Because we know how to fi nd 
a confi dence interval (CI) for   β  j  , it is easy to fi nd a CI for the odds ratio. The point 
estimate of the odds ratio is   ˆ exp ˆO jR = ( )β  and the 100(1    −      α  ) percent CI for the 
odds ratio is

    exp se exp seR
ˆ ˆ ˆ ˆ

/ /β β β βα αj j j jZ O Z− ( )⎡⎣ ⎤⎦ ≤ ≤ + ( )⎡⎣ ⎤⎦2 2     (13.26)   

 The CI for the odds ratio is generally not symmetric around the point estimate. 
Furthermore, the point estimate   ˆ exp ˆO jR = ( )β  actually estimates the median of the 
sampling distribution of   ÔR.   

 Example 13.6   The Pneumoconiosis Data 

    Reconsider the original logistic regression model that we fi t to the pneumoconiosis 
data in Example  13.1 . From the Minitab output for this data shown in Table  13.2  
we fi nd that the estimate of   β   1  is   ˆ .β1 0 0934629=  and the odds ratio   ˆ exp ˆ .O jR = ( ) =β 1 10. 
Because the standard error of   β̂1 is   se ˆ .β1 0 0154258( ) = , we can fi nd a 95% CI on the 
odds ratio as follows:

   

exp . . . exp . . .0 0934629 1 96 0 0154258 0 0934629 1 96 0 01542− ( )[ ] ≤ ≤ −OR 558

0 063228 0 123697

1 07 1 13

( )[ ]
( ) ≤ ≤ ( )

≤ ≤
exp . exp .

. .

O

O
R

R

  

 This agrees with the 95% CI reported by Minitab in Table  13.2 .       ■   

 It is possible to fi nd a CI on the linear predictor at any set of values of the pre-
dictor variables that is of interest. Let   ′ = [ ]x0 01 02 01, , , ,x x x k…  be the values of the 
regressor variables that are of interest. The linear predictor evaluated at  x  0  is   ′x0b̂. 
The variance of the linear predictor at this point is

   Var Var′( ) = ′ ( ) = ′ ′( )−x x x x X VX x0 0 0 0
1

0
ˆ ˆb b  

  so the 100(1    −      α  ) percent CI on the linear predictor is
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    ′ − ′ ′( ) ≤ ′ ≤ ′ + ′ ′( )− −x x X VX x x x x X VX x0 2 0
1

0 0 0 2 0
1

0
ˆ ˆ

/ /b b bZ Zα α     (13.27)   

 The CI on the linear predictor given in Eq.  (13.27)  enables us to fi nd a CI on the 
estimated probability of success   π   0  at the point of interest   ′ = [ ]x0 01 02 01, , , ,x x x k… . Let

   L Zx x x X VX x0 0 2 0
1

0( ) = ′ − ′ ′( )−ˆ
/b α  

  and

   U Zx x x X VX x0 0 2 0
1

0( ) = ′ + ′ ′( )−ˆ
/b α  

  be the lower and upper 100(1    −      α  ) percent confi dence bounds on the linear predic-
tor at the point  x  0  from Eq.  (13.27) . Then the point estimate of the probability of 
success at this point is   ˆ exp ˆ / exp ˆπ 0 0 01= ′( ) + ′( )⎡⎣ ⎤⎦x xb b  and the 100(1    −      α  ) percent CI 
on the probability of success at  x  0  is

    
exp

exp
exp

exp
L

L
U

U
x

x
x

x
0

0
0

0

01 1
( )[ ]

+ ( )[ ]
≤ ≤ ( )[ ]

+ ( )[ ]
π     (13.28)       

 Example 13.7   The Pneumoconiosis Data 

    Suppose that we want to fi nd a 95% CI on the probability of miners with  x     =    40 
years of exposure contracting pneumoconiosis. From the fi tted logistic regression 
model in Example  13.1 , we can calculate a point estimate of the probability at 40 
years of exposure as

   ˆ
. .

. .

.

π 0

4 7965 0 0935 40

4 7965 0 0935 40

1 0565

11 1
=

+
=

+

− + ( )

− + ( )

−

−

e
e

e
e ..

.
0565

0 2580=   

 To fi nd the CI, we need to calculate the variance of the linear predictor at this point. 
The variance is

   

Var ′( ) = ′ ′( )

= [ ]
−

−

−x x X VX x0 0
1

0

1 40
0 32383 0 0083480

0 0083480 0

ˆ

. .

.

b

..
.

0002380

1

40
0 036243⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=
  

 Now

   L x0 1 0565 1 96 0 036343 1 4296( ) = − − = −. . . .  

  and

   U x0 1 0565 1 96 0 036343 0 6834( ) = − + = −. . . .   
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   13.2.5    Diagnostic Checking in Logistic Regression 

 Residuals can be used for diagnostic checking and investigating model adequacy in 
logistic regression. The ordinary residuals are defi ned as usual,

    e y y y n i ni i i i i i= − = − =ˆ ˆ , , , ,π 1 2 …     (13.29)   

 In linear regression the ordinary residuals are components of the residual sum of 
squares; that is, if the residuals are squared and summed, the residual sum of squares 
results. In logistic regression, the quantity analogous to the residual sum of squares 
is the deviance. This leads to a  deviance residual , defi ned as

    d y
y

n
n y

n y
n

i i
i

i i
i i

i i

i i

= ± ⎛
⎝⎜

⎞
⎠⎟

+ −( ) −
−( )

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣
⎢

⎤
⎦
⎥2

1
ln ln

ˆ ˆπ π
⎧⎧
⎨
⎩

⎫
⎬
⎭

=
1 2

1 2, , , ,i n…     (13.30)   

 The sign of the deviance residual is the same as the sign of the corresponding 
ordinary residual. Also, when  y i      =    0,   d ni i= − − −( )2 1ln π̂ , and when  y i      =     n i  , 
  d ni i= −2 lnπ̂ . Similarly, we can defi ne a  Pearson residual 

    r
y n

n
i ni

i i i

i i i

= −
−( )

=
ˆ

ˆ ˆ
, , , ,

π
π π1

1 2 …     (13.31)   

 It is also possible to defi ne a hat matrix analog for logistic regression,

    H V X X VX X V= ′( ) ′−1 2 1 1 2     (13.32)  

  where  V  is the diagonal matrix defi ned earlier that has the variances of each obser-
vation on the main diagonal,   V nii i i i= −( )ˆ ˆπ π1 , and these variances are calculated 
using the estimated probabilities that result from the fi tted logistic regression model. 
The diagonal elements of  H ,  h ii  , can be used to calculate a  standardized Pearson 
residual 

    sr
r

h

y n

h n
i ni

i

ii

i i i

ii i i i

=
−

= −
−( ) −( )

=
1 1 1

1 2
ˆ

ˆ ˆ
, , , ,

π
π π

…     (13.33)   

 The deviance and Pearson residuals are the most appropriate for conducting model 
adequacy checks. Plots of these residuals versus the estimated probability and a 

 Therefore the 95% CI on the estimated probability of contracting pneumoconiosis 
for miners that have 40 years of exposure is

    

exp
exp

exp
exp

exp .

L
L

U
U

x
x

x
x

0

0
0

0

01 1

1 4296

( )[ ]
+ ( )[ ]

≤ ≤ ( )[ ]
+ ( )[ ]

−

π

(( )
+ −( )

≤ ≤ −( )
+ −( )

≤ ≤
1 1 4296

0 6834
1 0 6834

0 1932 0

0

0

exp .
exp .

exp .

.

π

π ..3355

        

■
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normal probability plot of the deviance residuals are useful in checking the fi t of 
the model at individual data points and in checking for possible outliers. 

 Table  13.5  displays the deviance residuals, Pearson residuals, hat matrix diagonals, 
and the standardized Pearson residuals for the pneumoconiosis data. To illustrate the 
calculations, consider the deviance residual for the third observation. From Eq.  (13.30) 

   

d y
y

n
n y

n y
n

3 3
3

3 3
3 3

3 3

3 3

2
1

= ⎛
⎝⎜

⎞
⎠⎟

+ −( ) −
−( )

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣
⎢

⎤
⎦
⎥

⎧
ln

ˆ
ln

ˆπ π⎨⎨
⎩

⎫
⎬
⎭

= +
( )

⎛
⎝
⎜

⎞
⎠
⎟ + −( ) −

−

1 2

2 3
3

43 0 058029
43 3

43 3
43 1 0 058029

ln
.

ln
.(( )

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣
⎢

⎤
⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

=

1 2

0 3196.

   

which closely matches the value reported by Minitab in Table  13.5 . The sign of the 
deviance residual  d  3  is positive because the ordinary residual   e y n3 3 3 3= − π̂  is 
positive. 

 Figure  13.4  is the normal probability plot of the deviance residuals and  Figure 
13.5  plots the deviance residuals versus the estimated probability of success. Both 

     Figure 13.4     Normal probability plot of 
the deviance residuals.  
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  TABLE 13.5    Residuals for the Pneumoconiosis Data 

   Observation  
   Observed 

Probability  
   Estimated 
Probability  

   Deviance 
Residuals  

   Pearson 
Residuals      h ii    

   Standardized 
Pearson 

Residuals  

  1    0.000000    0.014003     − 1.66251     − 1.17973    0.317226     − 1.42772  
  2    0.018519    0.032467     − 0.62795     − 0.57831    0.214379     − 0.65246  
  3    0.069767    0.058029    0.31961    0.32923    0.174668    0.36239  
  4    0.166667    0.097418    1.48516    1.61797    0.186103    1.79344  
  5    0.176471    0.159029    0.33579    0.34060    0.211509    0.38358  
  6    0.210526    0.248861     − 0.55678     − 0.54657    0.249028     − 0.63072  
  7    0.357143    0.378202     − 0.23067     − 0.22979    0.387026     − 0.29350  
  8    0.454545    0.504215     − 0.32966     − 0.32948    0.260001     − 0.38301  

     Figure 13.5     Plot of deviance residuals versus 
estimated probabilities.  

 πi

d
i

0.0 0.1 0.2 0.3 0.4 0.5
–2.0

–1.5

–1.0

–0.0

0.0

0.5

1.0

1.5

^



442  GENERALIZED LINEAR MODELS

plots indicate that there may be some problems with the model fi t. The plot of devi-
ance residuals versus the estimated probability indicates that the problems may be 
at low estimated probabilities. However, the number of distinct observations is small 
( n     =    8), so we should not attempt to read too much into these plots.    

   13.2.6    Other Models for Binary Response Data 

 In our discussion of logistic regression we have focused on using the logit, defi ned 
as ln[  π  /(1    −      π  )], to force the estimated probabilities to lie between zero and unity. 
This leads to the logistic regression model

   π =
′( )

+ ′( )
exp

exp
x

x
b
b1

  

 However, this is not the only way to model a binary response. Another possibility 
is to make use of the cumulative normal distribution, say  Φ   − 1 (  π  ). The function  Φ   − 1 (  π  ) 
is called the  Probit . A linear predictor can be related to the probit,  x  ′   β      =     Φ   − 1 (  π  ), 
resulting in a regression model

    π = ′( )Φ x b     (13.34)   

 Another possible model is provided by the  complimentary log - log  relationship 
log[ − log(1    −      π  )    =     x  ′   β  . This leads to the regression model

    π = − − ′( )[ ]1 exp exp x b     (13.35)   

 A comparison of all three possible models for the linear predictor  x  ′   β      =    1    +    5 x  is 
shown in Figure  13.6 . The logit and probit functions are very similar, except when 
the estimated probabilities are very close to either 0 or 1. Both of these functions 
have estimated probability   π = 1

2  when  x     =     −   β   0 /  β   1  and exhibit symmetric behavior 
around this value. The complimentary log - log function is not symmetric. In general, 
it is very diffi cult to see meaningful differences between these three models when 
sample sizes are small.    

   13.2.7    More Than Two Categorical Outcomes 

 Logistic regression considers the situation where the response variable is categori-
cal, with only two outcomes. We can extend the classical logistic regression 
model to cases involving more than two categorical outcomes. First consider a 
case where there are  m     +    1 possible categorical outcomes but the outcomes are 
 nominal . By this we mean that there is no natural ordering of the response catego-
ries. Let the outcomes be represented by 0, 1, 2,    . . .    ,  m . The probabilities that 
the responses on observation  i  take on one of the  m     +    1 possible outcomes can be 
modeled as
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 Notice that there are  m  parameter vectors. Comparing each response category to a 
 “ baseline ”  category produces logits
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(13.37)
  

  where our choice of zero as the baseline category is arbitrary. Maximum - likelihood 
estimation of the parameters in these models is fairly straightforward and can be 
performed by several software packages. 

     Figure 13.6     Logit, probit, and complimentary log - log functions for the linear predictor 
 x  ′   β      =    1    +    5 x.   
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 A second case involving multilevel categorical response is an  ordinal  response. 
For example, customer satisfaction may be measured on a scale as not satisfi ed, 
indifferent, somewhat satisfi ed, and very satisfi ed. These outcomes would be coded 
as 0, 1, 2, and 3, respectively. The usual approach for modeling this type of response 
data is to use logits of cumulative probabilities:

   ln , , , ,
P y k

P y k
k mi

i
k i

≤( )
− ≤( )

= + ′ =
1

0 1α x b …   

 The cumulative probabilities are

   P y k k mi
k i

k i

≤( ) = + ′( )
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=exp
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α

α
x

x
b
b1

0 1…   

 This model basically allows each response level to have its own unique intercept. 
The intercepts increase with the ordinal rank of the category. Several software pack-
ages can also fi t this variation of the logistic regression model.   

   13.3    POISSON REGRESSION 

 We now consider another regression modeling scenario where the response variable 
of interest is not normally distributed. In this situation the response variable repre-
sents a count of some relatively rare event, such as defects in a unit of manufactured 
product, errors or  “ bugs ”  in software, or a count of particulate matter or other pol-
lutants in the environment. The analyst is interested in modeling the relationship 
between the observed counts and potentially useful regressor or predictor variables. 
For example, an engineer could be interested in modeling the relationship between 
the observed number of defects in a unit of product and production conditions when 
the unit was actually manufactured. 

 We assume that the response variable  y i   is a count, such that the observation 
 y i      =    0, 1,    . . .    . A reasonable probability model for count data is often the Poisson 
distribution

    f y
e

y
y

y

( ) = =
−μ μ

!
, , ,0 1…     (13.38)  

  where the parameter   μ      >    0. The Poisson is another example of a probability distribu-
tion where the mean and variance are related. In fact, for the Poisson distribution 
it is straightforward to show that

   E y y( ) = ( ) =μ μand Var   

 That is, both the mean  and  variance of the Poisson distribution are equal to the 
parameter   μ .  
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 The Poisson regression model can be written as

    y E y i ni i i= ( ) + =ε , , , ,1 2 …     (13.39)   

 We assume that the expected value of the observed response can be written as

   E yi i( ) = μ  

  and that there is a function  g  that relates the mean of the response to a linear pre-
dictor, say

    g x xi i k k iμ η β β β( ) = = + + + = ′0 1 1 � x b     (13.40)   

 The function  g  is usually called the  link function . The relationship between the mean 
and the linear predictor is

    μ ηi i ig g= ( ) = ′( )− −1 1 x b     (13.41)   

 There are several link functions that are commonly used with the Poisson distribu-
tion. One of these is the  identity link 

    g i i iμ μ( ) = = ′x b     (13.42)   

 When this link is used,   E yi i i( ) = = ′μ x b  since   μi i ig= ′( ) = ′−1 x xb b. Another popular 
link function for the Poisson distribution is the  log link 

    g i i iμ μ( ) = ( ) = ′ln x b     (13.43)   

 For the log link in Eq.  (13.43) , the relationship between the mean of the response 
variable and the linear predictor is

    μi ig e i= ′( ) =− ′1 x xb b     (13.44)   

 The log link is particularly attractive for Poisson regression because it ensures that 
all of the predicted values of the response variable will be nonnegative. 

 The method of maximum likelihood is used to estimate the parameters in Poisson 
regression. The development follows closely the approach used for logistic regres-
sion. If we have a random sample of  n  observations on the response  y  and the 
predictors  x , then the likelihood function is
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  where   μi ig= ′( )−1 x b . Once the link function is selected, we maximize the log - 
likelihood
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 Iteratively reweighted least squares can be used to fi nd the maximum - likelihood 
estimates of the parameters in Poisson regression, following an approach similar 
to that used for logistic regression. Once the parameter estimates   b̂ are obtained, 
the fi tted Poisson regression model is

    ˆ ˆy gi i= ′( )−1 x b     (13.47)   

 For example, if the identity link is used, the prediction equation becomes

   ˆ ˆ ˆy gi i i= ′( ) = ′−1 x xb b  

  and if the log link is selected, then

   ˆ ˆ exp ˆy gi i i= ′( ) = ′( )−1 x xb b   

 Inference on the model and its parameters follows exactly the same approach 
as used for logistic regression. That is, model deviance and the Pearson chi - 
square statistic are overall measures of goodness of fi t, and tests on subsets of 
model parameters can be performed using the difference in deviance between 
the full and reduced models. These are likelihood ratio tests. Wald inference, 
based on large - sample properties of maximum - likelihood estimators, can be used 
to test hypotheses and construct confi dence intervals on individual model 
parameters.    

 Example 13.8   The Aircraft Damage Data 

    During the Vietnam War, the United States Navy operated several types of attack 
(a  bomber  in USN parlance) aircraft, often for low - altitude strike missions against 
bridges, roads, and other transportation facilities. Two of these included the McDon-
nell Douglas A - 4 Skyhawk and the Grumman A - 6 Intruder. The A - 4 is a single -
 engine, single - place light - attack aircraft used mainly in daylight. It was also fl own 
by the Blue Angels, the Navy ’ s fl ight demonstration team, for many years. The 
A - 6 is a twin - engine, dual - place, all - weather medium - attack aircraft with excellent 
day/night capabilities. However, the Intruder could not be operated from the 
smaller Essex - class aircraft carriers, many of which were still in service during the 
confl ict. 

 Considerable resources were deployed against the A - 4 and A - 6, including 
small arms, AAA or antiaircraft artillery, and surface - to - air missiles. Table  13.6  
contains data from 30 strike missions involving these two types of aircraft. The 
regressor  x  1  is an indicator variable (A - 4    =    0 and A - 6    =    1), and the other regressors 
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 x  2  and  x  3  are bomb load (in tons) and total months of aircrew experience. The 
response variable is the number of locations where damage was infl icted on the 
aircraft.   

 We will model the damage response as a function of the three regressors. Since 
the response is a count, we will use a Poisson regression model with the log link. 
Table  13.7  presents some of the output from SAS PROC GENMOD a widely used 
software package for fi tting generalized linear models, which include Poisson regres-
sion. The SAS code for this example is    

 proc genmod; 
 model y  =  xl x2 x3  /  dist  =  poisson type1 type3;  

 The Type 1 analysis is similar to the Type 1 sum of squares analysis, also known 
as the sequential sum of squares analysis. The test on any given term is conditional 

  TABLE 13.6    Aircraft Damage Data 

   Observation      y       x  l       x  2       x  3   

  1    0    0    4    91.5  
  2    1    0    4    84.0  
  3    0    0    4    76.5  
  4    0    0    5    69.0  
  5    0    0    5    61.5  
  6    0    0    5    80.0  
  7    1    0    6    72.5  
  8    0    0    6    65.0  
  9    0    0    6    57.5  

  10    2    0    7    50.0  
  11    1    0    7    103.0  
  12    1    0    7    95.5  
  13    1    0    8    88.0  
  14    1    0    8    80.5  
  15    2    0    8    73.0  
  16    3    1    7    116.1  
  17    1    1    7    100.6  
  18    1    1    7    85.0  
  19    1    1    10    69.4  
  20    2    1    10    53.9  
  21    0    1    10    112.3  
  22    1    1    12    96.7  
  23    1    1    12    81.1  
  24    2    1    12    65.6  
  25    5    1    8    50.0  
  26    1    1    8    120.0  
  27    1    1    8    104.4  
  28    5    1    14    88.9  
  29    5    1    14    73.7  
  30    7    1    14    57.8  
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  TABLE 13.7     SAS   PROC   GENMOD  Output for Aircraft Damage Data in Example  13.8  

    The GENMOD Procedure   

    Model Information   

    Description       Value   
   Data Set      WORK.PLANE   
   Distribution      POISSON   
   Link Function      LOG   
   Dependent Variable      Y   
   Observations Used      30   

    Criteria for Assessing Goodness of Fit   
    Criterion       DF       Value       Va1ue/DF   
   Deviance      26      28.4906      1.0958   
   Scaled Deviance      26      28.4906      1.0958   
   Pearson Chi - Square      26      25.4279      0.9780   
   Scaled Pearson X2      26      25.4279      0.9780   
   Log Likelihood           − 11.3455       

    Analysis of Parameter Estimates   
    Parameter       DF       Estimate       Std Err       Chi Square       Pr    >    Chi   
   INTERCEPT      1       − 0.3824      0.8630      0.1964      0.6577   
   Xl      1      0.8805      0.5010      3.0892      0.0788   
   X2      1      0.1352      0.0653      4.2842      0.0385   
   X3      1       − 0.0127      0.0080      2.5283      0.1118   
   SCALE      0      1.0000      0.0000           
   Note: The scale parameter was held fi xed.   

    LR Statistics for Type 1 Analysis   
    Source       Deviance       DF       Chi Square       Pr    >    Chi   
   INTERCEPT      57.5983      0           
   Xl      38.3497      1      19.2486      0.0001   
   X2      31.0223      1      7.3274      0.0068   
   X3      28.4906      1      2.5316      0.1116   

    LR Statistics for Type 3 Analysis   
    Source       DF       Chi Square       Pr    >    Chi   
   Xl      1      3.1155      0.0775   
   X2      1      4.3911      0.0361   
   X3      1      2.5316      0.1116   

    The GENMOD Procedure   

    Model Information   

    Description       Value   
   Data Set      WORK.PLANE   
   Distribution      POISSON   
   Link Function      LOG   
   Dependent Variable      Y   
   Observations Used      30   
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based on all previous terms in the analysis being included in the model. The 
intercept is always assumed in the model, which is why the Type 1 analysis begins 
with the term  x 1, which is the fi rst term specifi ed in the model statement. The Type 
3 analysis is similar to the individual  t  - tests in that it is a test of the contribution of 
the specifi c term given all the other terms in the model. The model in the fi rst page 
of the table uses all three regressors. The model adequacy checks based on deviance 
and the Pearson chi - square statistics are satisfactory, but we notice that  x  3     =    crew 
experience is not signifi cant, using both the Wald test and the type 3 partial deviance 
(notice that the Wald statistic reported is   ˆ / ˆβ βse( )⎡⎣ ⎤⎦

2
, which is referred to a 

chi - square distribution with a single degree of freedom). This is a reasonable indica-
tion that  x  3  can be removed from the model. When  x  3  is removed, however, it turns 
out that now  x  1     =    type of aircraft is no longer signifi cant (you can easily verify that 
the type 3 partial deviance for  x  1  in this model has a  P  value of 0.1582). A moment 
of refl ection on the data in Table  13.6  will reveal that there is a lot of multicollinear-
ity in the data. Essentially, the A - 6 is a larger aircraft so it will carry a heavier bomb 
load, and because it has a two - man crew, it may tend to have more total months of 
crew experience. Therefore, as  x  1  increases, there is a tendency for both of the other 
regressors to also increase. 

 To investigate the potential usefulness of various subset models, we fi t all three 
two - variable models and all three one - variable models to the data in Table  13.6 . A 
brief summary of the results obtained is as follows: 

    Criteria for Assessing Goodness of Fit   

    Criterion       DF       Value       Va1ue/DF   
   Deviance      28      33.0137      1.1791   
   Scaled Deviance      28      33.0137      1.1791   
   Pearson Chi - Square      28      33.4108      1.1932   
   Scaled Pearson X2      28      33.4108      1.1932   
   Log Likelihood           − 13.6071       

    Analysis of Parameter Estimates   

    Parameter       DF       Estimate       Std Err       Chi Square       Pr    >    Chi   
   INTERCEPT      1       − 1.6491      0.4996      10.8980      0.0010   
   X2      1      0.2282      0.0462      24.3904      0.0001   
   SCALE      0      1.0000      0.0000           
   Note: The scale parameter was held fi xed.   

    LR Statistics for Type 1 Analysis   

    Source       Deviance       DF       Chi Square       Pr    >    Chi   
   INTERCEPT      57.5983      0           
   X2      33.0137      1      24.5846      0.0001   

    LR Statistics for Type 3 Analysis   

    Source       DF       Chi Square       Pr    >    Chi   
   X2      1      24.5846      0.0001   

TABLE 13.7 (Continued)
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   13.4    THE GENERALIZED LINEAR MODEL 

 All of the regression models that we have considered in the two previous sections 
of this chapter belong to a family of regression models called the  generalized 
linear model  (GLM). The GLM is actually a unifying approach to regression and 
experimental design models, uniting the usual normal - theory linear regression 
models and nonlinear models such as logistic and Poisson regression. 

 A key assumption in the GLM is that the response variable distribution is 
a member of the  exponential family  of distributions, which includes (among 
others) the normal, binomial, Poisson, inverse normal, exponential, and gamma 
distributions. Distributions that are members of the exponential family have the 
general form

    f y y b a h yi i i i i i, , exp / ,θ φ θ θ φ φ( ) = − ( )[ ] ( ) + ( ){ }     (13.48)  

  where   ϕ   is a scale parameter and   θ  i   is called the natural location parameter. For 
members of the exponential family,
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 (13.49)   

   Model     Deviance  

   Difference in 
Deviance Compared 

to Full Model      P  Value  

   x  1  x  2  x  3     28.4906          
   x  1  x  2     31.0223    2.5316    0.1116  
   x  1  x  3     32.8817    4.3911    0.0361  
   x  2  x  3     31.6062    3.1155    0.0775  
   x  1     38.3497    9.8591    0.0072  
   x  2     33.0137    4.5251    0.1041  
   x  3     54.9653    26.4747     < 0.0001  

 From examining the difference in deviance between each of the subset models and 
the full model, we notice that deleting either  x  1  or  x  2  results in a two - variable model 
that is signifi cantly worse than the full model. Removing  x  3  results in a model that 
is not signifi cantly different than the full model, but as we have already noted,  x  1  is 
not signifi cant in this model. This leads us to consider the one - variable models. Only 
one of these models, the one containing  x  2 , is not signifi cantly different from the full 
model. The SAS PROC GENMOD output for this model is shown in the second 
page of Table  13.7 . The Poisson regression model for predicting damage is

   ˆ . .y e x= − +1 6491 0 2282 2   

 The deviance for this model is  D (  β  )    =    33.0137 with 28 degrees of freedom, 
and the  P  value is 0.2352, so we conclude that the model is an adequate fi t to the 
data.      ■   
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  where Var(  μ  ) denotes the dependence of the variance of the response on its mean. 
This is a characteristic of all distributions that are a member of the exponential 
family, except for the normal distribution. As a result of Eq.  (13.50) , we have
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 In Appendix  C.14  we show that the normal, binomial, and Poisson distributions are 
members of the exponential family. 

   13.4.1    Link Functions and Linear Predictors 

 The basic idea of a GLM is to develop a linear model for an appropriate function of 
the expected value of the response variable. Let   η  i   be the  linear predictor  defi ned by

    η μi i i ig E y g= ( )[ ] = ( ) = ′x b     (13.52)   

 Note that the expected response is just

    E y g gi i i( ) = ( ) = ′( )− −1 1η x b     (13.53)   

 We call the function  g  the  link function . Recall that we introduced the concept of 
a link function in our description of Poisson regression. There are many possible 
choices of the link function, but if we choose

    η θi i=     (13.54)  

  we say that   η  i   is the  canonical link . Table  13.8  shows the canonical links for the most 
common choices of distributions employed with the GLM. 

  TABLE 13.8    Canonical Links for the Generalized Linear Model 

   Distribution     Canonical Link  

  Normal      η  i      =      μ  i   (identity link)  

  Binomial      η
π

πi
i

i

=
−

⎛
⎝⎜

⎞
⎠⎟

ln
1

 (logistic link)  

  Poisson      η  i      =    ln( λ ) (log link)  

  Exponential      η
λi

i

= 1  (reciprocal link)  

  Gamma      η
λi

i

= 1  (reciprocal link)  
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 There are other link functions that could be used with a GLM, including:

   1.     The probit link,

   ηi iE y= ( )[ ]−Φ 1  

  where  Φ  represents the cumulative standard normal distribution function.    
  2.     The complementary log - log link,

   ηi iE y= − ( )[ ]{ }ln ln 1    

  3.     The power family link,

   η
λ
λ

λ

i
i

i

E y

E y
= ( ) ≠

( )[ ] =
⎧
⎨
⎩

,
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0

0
     

 A very fundamental idea is that there are two components to a GLM: the response 
distribution and the link function. We can view the selection of the link function in 
a vein similar to the choice of a transformation on the response. However, unlike a 
transformation, the link function takes advantage of the  natural  distribution of the 
response. Just as not using an appropriate transformation can result in problems 
with a fi tted linear model, improper choices of the link function can also result in 
signifi cant problems with a GLM.  

   13.4.2    Parameter Estimation and Inference in the  GLM  

 The method of maximum likelihood is the theoretical basis for parameter estimation 
in the GLM. However, the actual implementation of maximum likelihood results in 
an algorithm based on IRLS. This is exactly what we saw previously for the special 
cases of logistic and Poisson regression. We present the details of the procedure in 
Appendix  C.14 . In this chapter, we rely on SAS PROC GENMOD for model fi tting 
and inference. 

 If   b̂ is the fi nal value of the regression coeffi cients that the IRLS algorithm pro-
duces and if the model assumptions, including the choice of the link function, are 
correct, then we can show that asymptotically

    E aˆ ˆb b b( ) = ( ) = ( ) ′( )−and Var φ X VX 1     (13.55)  

  where the matrix  V  is a diagonal matrix formed from the variances of the estimated 
parameters in the linear predictor, apart from  a (  ϕ  ). 

 Some important observations about the GLM are as follows:

   1.     Typically, when experimenters and data analysts use a transformation, they use 
OLS to actually fi t the model in the transformed scale.  

  2.     In a GLM, we recognize that the variance of the response is not constant, and 
we use weighted least squares as the basis of parameter estimation.  
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  3.     This suggests that a GLM should outperform standard analyses using trans-
formations when a problem remains with constant variance after taking the 
transformation.  

  4.     All of the inference we described previously on logistic regression carries over 
directly to the GLM. That is, model deviance can be used to test for overall 
model fi t, and the difference in deviance between a full and a reduced model 
can be used to test hypotheses about subsets of parameters in the model. Wald 
inference can be applied to test hypotheses and construct confi dence intervals 
about individual model parameters.    

      Example 13.9   The Worsted Yarn Experiment 

    Table  13.9  contains data from an experiment conducted to investigate the three factors 
 x  1     =    length,  x  2     =    amplitude, and  x  3     =    load on the cycles to failure  y  of worsted yarn. 
The regressor variables are coded, and readers who have familiarity with designed 
experiments will recognize that the experimenters here used a 3 3  factorial design. The 
data also appear in Box and Draper [ 1987 ] and Myers, Montgomery, and Anderson -
 Cook [ 2009 ]. These authors use the data to illustrate the utility of variance - stabilizing 

  TABLE 13.9    Data from the Worsted Yarn Experiment 

    x  1       x  2       x  3       y   

   − 1     − 1     − 1    674  
  0     − 1     − 1    1414  
  1     − 1     − 1    3636  

   − 1    0     − 1    338  
  0    0     − 1    1022  
  1    0     − 1    1568  

   − 1    1     − 1    170  
  0    1     − 1    442  
  1    1     − 1    1140  

   − 1     − 1    0    370  
  0     − 1    0    1198  
  1     − 1    0    3184  

   − 1    0    0    266  
  0    0    0    620  
  1    0    0    1070  

   − 1    1    0    118  
  0    1    0    332  
  1    1    0    884  

   − 1     − 1    1    292  
  0     − 1    1    634  
  1     − 1    1    2000  

   − 1    0    1    210  
  0    0    1    438  
  1    0    1    566  

   − 1    1    1    90  
  0    1    1    220  
  1    1    1    360  



454  GENERALIZED LINEAR MODELS

   13.4.3    Prediction and Estimation with the  GLM  

 For any generalized linear model, the estimate of the mean response at some point 
of interest, say  x  0 , is

    ˆ ˆ ˆy g0 0
1

0= = ′( )−μ x b     (13.56)  

transformations. Both Box and Draper [ 1987 ] and Myers, Montgomery, and Anderson -
 Cook [ 2009 ] show that the log transformation is very effective in stabilizing the vari-
ance of the cycles - to - failure response. The least - squares model is

   ˆ exp . . . .y x x x= + − −( )6 33 0 83 0 63 0 391 2 3     

 The response variable in this experiment is an example of a nonnegative response 
that would be expected to have an asymmetric distribution with a long right tail. 
Failure data are frequently modeled with exponential, Weibull, lognormal, or gamma 
distributions both because they possess the anticipated shape and because some-
times there is theoretical or empirical justifi cation for a particular distribution. 

 We will model the cycles - to - failure data with a GLM using the gamma distribu-
tion and the log link. From Table  13.8  we observe that the canonical link here is the 
inverse link; however, the log link is often a very effective choice with the gamma 
distribution. 

 Table  13.10  presents some summary output information from SAS PROC 
GENMOD for the worsted yarn data. The appropriate SAS code is    

 proc genmod; 
 model y  =  x 1  x 2  x 3  / dist  =  gamma link  =  log type1 type3;  

 Notice that the fi tted model is

   ˆ exp . . . .y x x x= + − −( )6 35 0 84 0 63 0 391 2 3  

  which is virtually identical to the model obtained via data transformation. Actually, 
since the log transformation works very well here, it is not too surprising that 
the GLM produces an almost identical model. Recall that we observed that the 
GLM is most likely to be an effective alternative to a data transformation when the 
transformation fails to produce the desired properties of constant variance and 
approximate normality in the response variable. 

 For the gamma response case, it is appropriate to use the  scaled deviance  in the 
SAS output as a measure of the overall fi t of the model. This quantity would be 
compared to the chi - square distribution with  n     −     p  degrees of freedom, as usual. 
From Table  13.10  we fi nd that the scaled deviance is 27.1276, and referring this to 
a chi - square distribution with 23 degrees of freedom gives a  P  value of approxi-
mately 0.25, so there is no indication of model inadequacy from the deviance crite-
rion. Notice that the scaled deviance divided by its degrees of freedom is also close 
to unity. Table  13.10  also gives the Wald tests and the partial deviance statistics (both 
type 1 or  “ effects added in order ”  and type 3 or  “ effects added last ”  analyses) for 
each regressor in the model. These test statistics indicate that all three regressors 
are important predictors and should be included in the model.       ■   
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  TABLE 13.10     SAS   PROC   GENMOD  Output for the Worsted Yarn Experiment 

    The GENMOD Procedure   

    Model Information   

    Description       Value   
   Data Set      WORK.WOOL   
   Distribution      GAMMA   
   Link Function      LOG   
   Dependent Variable      CYCLES   
   Observations Used      27   

    Criteria for Assessing Goodness of Fit   

    Criterion       DF       Value       Value/DF   
   Deviance      23      0.7694      0.0335   
   Scaled Deviance      23      27.1276      1.1795   
   Pearson Chi [Square      23      0.7274      0.0316   
   Scaled Pearson X2      23      25.6456      1.1150   
   Log Likelihood           − 161.3784       

    Analysis of Parameter Estimates   

    .Parameter       DF       Estimate       Std Err       Chi Square       Pr    >    Chi   
   INTERCEPT      1      6.3489      0.0324      38373.0419      0.0001   
   A      1      0.8425      0.0402      438.3606      0.0001   
   B      1       - 0.6313      0.0396      253.7576      0.0001   
   C      1       - 0.3851      0.0402      91.8566      0.0001   
   SCALE      1      35.2585      9.5511           
   Note: The scale parameter was estimated by maximum likelihood.   

    LR Statistics for Type 1 Analysis   

    .Source       Deviance       DF       Chi Square       Pr    >    Chi   
   INTERCEPT      22.8861      0           
   A      10.2104      1      23.6755      0.0001   
   B      3.3459      1      31.2171      0.0001   
   C      0.7694      1      40.1106      0.0001   

    LR Statistics for Type 3 Analysis   
    Source       DF       Chi Square       Pr    >    Chi   
   A      1      77.2935      0.0001   
   B      1      63.4324      0.0001   
   C      1      40.1106      0.0001   

  where  g  is the link function and it is understood that  x  0  may be expanded to model 
form if necessary to accommodate terms such as interactions that may have been 
included in the linear predictor. An approximate confi dence interval on the mean 
response at this point can be computed as follows. Let   Σ   be the asymptotic variance –
 covariance matrix for   b̂ ; thus,

   S = ( ) ′( )−a φ X VX 1   
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 The asymptotic variance of the estimated linear predictor at  x  0  is

   Var Varˆ ˆη0 0 0 0( ) = ′( ) = ′x x xb S   

 Thus, an estimate of this variance is   ′x x0 0Ŝ , where   Ŝ is the estimated variance –
 covariance matrix of   b̂ . The 100(1    −      α  ) percent confi dence interval on the true mean 
response at the point  x  0  is

    L U≤ ( ) ≤μ x0     (13.57)  

  where

    L g Z U g Z= ′ − ′( ) = ′ + ′( )− −1
0 2 0 0

1
0 2 0 0x x x x x xˆ ˆ ˆ ˆ

/ /b bα αS Sand     (13.58)   

 This method is used to compute the confi dence intervals on the mean response 
reported in SAS PROC GENMOD. This method for fi nding the confi dence intervals 
usually works well in practice, because   b̂  is a maximum - likelihood estimate, and 
therefore any function of   b̂  is also a maximum - likelihood estimate. The above pro-
cedure simply constructs a confi dence interval in the space defi ned by the linear 
predictor and then transforms that interval back to the original metric. 

 It is also possible to use Wald inference to derive other expressions for approxi-
mate confi dence intervals on the mean response. Refer to Myers, Montgomery, and 
Anderson - Cook [ 2009 ] for the details.    

 Example 13.10   The Worsted Yarn Experiment 

    Table  13.11  presents three sets of confi dence intervals on the mean response for the 
worsted yarn experiment originally described in Example  13.10 . In this table, we 
have shown 95% confi dence intervals on the mean response for all 27 points in the 
original experimental data for three models: the least - squares model in the log scale, 
the untransformed response from this least - squares model, and the GLM (gamma 
response distribution and log link). The GLM confi dence intervals were computed 
from Eq.  (13.58) . The last two columns of Table  13.11  compare the lengths of the 
normal - theory least - squares confi dence intervals from the untransformed response 
to those from the GLM. Notice that the lengths of the GLM intervals are uniformly 
shorter that those from the least - squares analysis based on transformations. So even 
though the prediction equations produced by these two techniques are very similar 
(as we noted in Example  13.9 ), there is some evidence to indicate that the predic-
tions obtained from the GLM are more precise in the sense that the confi dence 
intervals will be shorter.       ■     

   13.4.4    Residual Analysis in the  GLM  

 Just as in any model - fi tting procedure, analysis of residuals is important in fi tting 
the GLM. Residuals can provide guidance concerning the overall adequacy of the 
model, assist in verifying assumptions, and give an indication concerning the appro-
priateness of the selected link function. 
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 The ordinary or  raw residuals  from the GLM are just the differences between 
the observations and the fi tted values,

    e y y yi i i i i= − = −ˆ μ̂     (13.59)   

 It is generally recommended that residual analysis in the GLM be performed using 
 deviance residuals . Recall that the  i th deviance residual is defi ned as the square root 
of the contribution of the  i th observation to the deviance multiplied by the sign of 
the ordinary residual. Equation  (13.30)  gave the deviance residual for logistic regres-
sion. For Poisson regression with a log link, the deviance residuals are

   d y
y

e
y e i ni i

i
i

i

i= ± ⎛
⎝⎜

⎞
⎠⎟

− −( )⎡
⎣⎢

⎤
⎦⎥

=
′

′ln
x

x
ˆ

ˆ
, , , ,

b
b

1 2

1 2 …  

  where the sign is the sign of the ordinary residual. Notice that as the observed value 
of the response  y i   and the predicted value   ̂

ˆ
y ei

i= ′x b  become closer to each other, the 
deviance residuals approach zero. 

 Generally, deviance residuals behave much like ordinary residuals do in a stan-
dard normal - theory linear regression model. Thus, plotting the deviance residuals 
on a normal probability scale and versus fi tted values is a logical diagnostic. When 
plotting deviance residuals versus fi tted values, it is customary to transform the fi tted 
values to a constant information scale. Thus, 

  1.     For normal responses, use   ̂yi.  
  2.     For binomial responses, use   2 1sin− π̂ i .  
  3.     For Poisson responses, use   2 ŷi .  
  4.     For gamma responses, use   2ln ŷi( ).         

 Example 13.11   The Worsted Yarn Experiment 

    Table  13.12  presents the actual observations from the worsted yarn experiment in 
Example  13.9 , along with the predicted values from the GLM (gamma response 
with log link) that was fi t to the data, the raw residuals, and the deviance residuals. 
These quantities were computed using SAS PROC GENMOD. Figure  13.7  a  is a 
normal probability plot of the deviance residuals and Figure  13.7  b  is a plot of the 
deviance residuals versus the  “ constant information ”  fi tted values,   2ln ŷi( ). The 
normal probability plot of the deviance residuals is generally satisfactory, while the 
plot of the deviance residuals versus the fi tted values indicates that one of the 
observations may be a very mild outlier. Neither plot gives any signifi cant indication 
of model inadequacy, however, so we conclude that the GLM with gamma response 
variable distribution and a log link is a very satisfactory model for the cycles - to -
 failure response.       ■       

   13.4.5    Using R to Perform  GLM  Analysis 

 The workhorse routine within R for analyzing a GLM is  “ glm. ”  The basic form of 
this statement is:  
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  TABLE 13.12    Predicted Values and Residuals from the Worsted Yarn Experiment 

   Response     Predicted     Linear Predictor  
    y i         ̂y      x  ′   β        e i        d i    

  674    680.5198    6.5229     − 6.5198     − 0.009611  
  370    462.9981    6.1377     − 92.9981     − 0.2161  
  292    315.0052    5.7526     − 23.0052     − 0.0749  
  338    361.9609    5.8915     − 23.9609     − 0.0677  
  266    246.2636    5.5064    19.7364    0.0781  
  210    167.5478    5.1213    42.4522    0.2347  
  170    192.5230    5.2602     − 22.5230     − 0.1219  
  118    130.9849    4.8751     − 12.9849     − 0.1026  
  90    89.1168    4.4899    0.8832    0.009878  

  1414    1580.2950    7.3654     − 166.2950     − 0.1092  
  1198    1075.1687    6.9802    122.8313    0.1102  
  634    731.5013    6.5951     − 97.5013     − 0.1397  

  1022    840.5414    6.7340    181.4586    0.2021  
  620    571.8704    6.3489    48.1296    0.0819  
  438    389.0774    5.9638    48.9226    0.1208  
  442    447.0747    6.1027     − 5.0747     − 0.0114  
  332    304.1715    5.7176    27.8285    0.0888  
  220    206.9460    5.3325    13.0540    0.0618  

  3636    3669.7424    8.2079     − 33.7424     − 0.009223  
  3184    2496.7442    7.8227    687.2558    0.2534  
  2000    1698.6836    7.4376    301.3164    0.1679  
  1568    1951.8954    7.5766     − 383.8954     − 0.2113  
  1070    1327.9906    7.1914     − 257.9906     − 0.2085  
  566    903.5111    6.8063     − 337.5111     − 0.4339  

  1140    1038.1916    6.9452    101.8084    0.0950  
  884    706.3435    6.5601    177.6565    0.2331  
  360    480.5675    6.1750     − 120.5675     − 0.2756  

     Figure 13.7     Plots of the deviance residuals from the GLM for the worsted yarn data. 
( a ) Normal probability plot of deviance results. ( b ) Plot of the deviance residuals versus 
  2ln ŷi( )   
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 glm(formula, family, data)  

 The formula specifi cation is exactly the same as for a standard linear model. For 
example, the formaula for the model   η      =      β   0     +      β   1  x  1     +      β   2  x  2  is  

 y  ∼  x1 + x2  

 The choices for family and the links available are:

    •      binomial (logit, probit, log, complementary loglog),  
   •      gaussian (identity, log, inverse),  
   •      Gamma (identity, inverse, log)  
   •      inverse.gaussian (1/  μ   2 , identity, inverse, log)  
   •      poisson (identity, log, square root), and  
   •      quasi (logit, probit, complementary loglog, identity, inverse, log, 1/  μ   2 , square 

root).    

 R is case - sensitive, so the family is Gamma, not gamma. By default, R uses the 
canonical link. To specify the probit link for the binomial family, the appropriate 
family phrase is binomial (link    =    probit). 

 R can produce two different predicted values. The  “ fi t ”  is the vector of predicted 
values on the original scale. The  “ linear.predictor ”  is the vector of the predicted 
values for the linear predictor. R can produce the raw, the Pearson, and the deviance 
residuals. R also can produce the  “ infl uence measures, ”  which are the individual 
observation deleted statistics. The easiest way to put all this together is through 
examples. 

 We fi rst consider the pneumoconiosis data from Example  13.1 . The data set is 
small, so we do not need a separate data fi le. The R code is:  

  >  years  <  -  c(5.8, 15.0, 21.5, 27.5, 33.5, 39.5, 46.0, 51.5) 
  >  cases  <  -  c(0, 1, 3, 8, 9, 8, 10, 5) 
  >  miners  <  -  c(98, 54, 43, 48, 51, 38, 28, 11) 
  >  ymat  <  -  cbind(cases, miners - cases) 
  >  ashford  <  -  data.frame(ymat, years) 
  >  anal  <  -  glm(ymat  ∼  years, family = binomial, data = ashford) 
 summary(anal) 
 pred_prob  <  -  anal$fi t 
 eta_hat  <  -  anal$linear.predictor 
 dev_res  <  -  residuals(anal, c = ”deviance”) 
 infl uence.measures(anal) 
 df  <  -  dfbetas(anal) 
 df_int  <  -  df[,1] 
 df_years  <  -  df[,2] 
 hat  <  -  hatvalues(anal) 
 qqnorm(dev_res) 
 plot(pred_prob,dev_res) 
 plot(eta_hat,dev_res) 
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 plot(years,dev_res) 
 plot(hat,dev_res) 
 plot(pred_prob,df_years) 
 plot(hat,df_years) 
 ashford2  <  -  cbind(ashford,pred_prob,eta_hat,dev_res,df_int,
df_years,hat) 
 write.table(ashford2,  ″ ashford_output.txt ″ )  

 We next consider the Aircraft Damage example from Example  13.8 . The data are 
in the fi le aircraft_damage_data.txt. The appropriate R code is  

 air  <  -  read.table( ″ aircraft_damage_data.txt ″ ,header = TRUE, sep =  ″  ″ ) 
 air.model  <  -  glm(y ∼ x1 + x2 + x3, dist =  ″ poisson ″ , data = air) 
 summary(air.model) 
 print(infl uence.measures(air.model)) 
 yhat  <  -  air.model$fi t 
 dev_res  <  -  residuals(air.model, c =  ″ deviance ″ ) 
 qqnorm(dev_res) 
 plot(yhat,dev_res) 
 plot(air$x1,dev_res) 
 plot(air$x2,dev_res) 
 plot(air$x3,dev_res) 
 air2  <  -  cbind(air,yhat,dev_res) 
 write.table(air2,  ″ aircraft damage_output.txt ″ )  

 Finally, consider the Worsted Yarn example from Example  13.9 . The data are in the 
fi le worsted_data.txt. The appropriate R code is  

 yarn  <  -  read.table( ″ worsted_data.txt ″ ,header = TRUE, sep =  ″  ″ ) 
 yarn.model  <  -  glm(y ∼ x1 + x2 + x3, dist = Gamma(link = log), data = air) 
 summary(yarn.model) 
 print(infl uence.measures(yarn.model)) 
 yhat  <  -  air.model$fi t 
 dev_res  <  -  residuals(yarn.model, c =  ″ deviance ″ ) 
 qqnorm(dev_res) 
 plot(yhat,dev_res) 
 plot(yarn$x1,dev_res) 
 plot(yarn$x2,dev_res) 
 plot(yarn$x3,dev_res) 
 yarn2  <  -  cbind(yarn,yhat,dev_res) 
 write.table(yarn2,  ″ yarn_output.txt ″ )   

   13.4.6    Overdispersion 

 Overdispersion is a phenomenon that sometimes occurs when we are modeling 
response data with either a binomial or Poisson distribution. Basically, it means that 
the variance of the response is greater than one would anticipate for that choice of 
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response distribution. An overdispersion condition is often diagnosed by evaluating 
the value of model deviance divided by degrees of freedom. If this value greatly 
exceeds unity, then overdispersion is a possible source of concern. 

 The most direct way to model this situation is to allow the variance function of the 
binomial or Poisson distributions to have a multiplicative dispersion factor   ϕ  , so that

   Var binomial distributiony( ) = −( )φμ μ1  

   Var Poisson distributiony( ) = φμ   

 The models are fi t in the usual manner, and the values of the model parameters are 
not affected by the value of   ϕ  . The parameter   ϕ   can be specifi ed directly if its value 
is known or it can be estimated if there is replication of some data points. Alterna-
tively, it can be directly estimated. A logical estimate for   ϕ   is the deviance divided 
by its degrees of freedom. The covariance matrix of model coeffi cients is multiplied 
by   ϕ   and the scaled deviance and log - likelihoods used in hypothesis testing are 
divided by   ϕ  . 

 The function obtained by dividing a log - likelihood by   ϕ   for the binomial or 
Poisson error distribution case is no longer a proper log - likelihood function. It is an 
example of a  quasi - likelihood function . Fortunately, most of the asymptotic theory 
for log - likelihoods applies to quasi - likelihoods, so we can justify computing approxi-
mate standard errors and deviance statistics just as we have done previously.  

 PROBLEMS 

       13.1    The table below presents the test - fi ring results for 25 surface - to - air antiair-
craft missiles at targets of varying speed. The result of each test is either a 
hit ( y     =    1) or a miss ( y     =    0). 

   Test     Target Speed,  x  (knots)      y      Test     Target Speed,  x  (knots)      y   

  1    400    0    14    330    1  
  2    220    1    15    280    1  
  3    490    0    16    210    1  
  4    210    1    17    300    1  
  5    500    0    18    470    1  
  6    270    0    19    230    0  
  7    200    1    20    430    0  
  8    470    0    21    460    0  
  9    480    0    22    220    1  

  10    310    1    23    250    1  
  11    240    1    24    200    1  
  12    490    0    25    390    0  
  13    420    0              

      a.     Fit a logistic regression model to the response variable  y . Use a simple 
linear regression model as the structure for the linear predictor.  

  b.     Does the model deviance indicate that the logistic regression model from 
part a is adequate?  
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  c.     Provide an interpretation of the parameter   β   1  in this model.  
  d.     Expand the linear predictor to include a quadratic term in target speed. 

Is there any evidence that this quadratic term is required in the model?      

    13.2    A study was conducted attempting to relate home ownership to family 
income. Twenty households were selected and family income was estimated, 
along with information concerning home ownership ( y     =    1 indicates yes and 
 y     =    0 indicates no). The data are shown below. 

   Household     Income  

   Home 
Ownership 

Status     Household     Income  

   Home 
Ownership 

Status  

  1    38,000    0    11    38,700    1  
  2    51,200    1    12    40,100    0  
  3    39,600    0    13    49,500    1  
  4    43,400    1    14    38,000    0  
  5    47,700    0    15    42,000    1  
  6    53,000    0    16    54,000    1  
  7    41,500    1    17    51,700    1  
  8    40,800    0    18    39,400    0  
  9    45,400    1    19    40,900    0  
  10    52,400    1    20    52,800    1  

      a.     Fit a logistic regression model to the response variable  y.  Use a simple 
linear regression model as the structure for the linear predictor.  

  b.     Does the model deviance indicate that the logistic regression model from 
part a is adequate?  

  c.     Provide an interpretation of the parameter   β   1  in this model.  
  d.     Expand the linear predictor to include a quadratic term in income. Is 

there any evidence that this quadratic term is required in the model?      

    13.3    The compressive strength of an alloy fastener used in aircraft construction 
is being studied. Ten loads were selected over the range 2500 – 4300   psi and 
a number of fasteners were tested at those loads. The numbers of fasteners 
failing at each load were recorded. The complete test data are shown 
below. 

   Load,  x  (psi)     Sample Size,  n      Number Failing,  r   

  2500    50    10  
  2700    70    17  
  2900    100    30  
  3100    60    21  
  3300    40    18  
  3500    85    43  
  3700    90    54  
  3900    50    33  
  4100    80    60  
  4300    65    51  
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      a.     Fit a logistic regression model to the data. Use a simple linear regression 
model as the structure for the linear predictor.  

  b.     Does the model deviance indicate that the logistic regression model from 
part a is adequate?  

  c.     Expand the linear predictor to include a quadratic term. Is there any 
evidence that this quadratic term is required in the model?  

  d.     For the quadratic model in part c, fi nd Wald statistics for each individual 
model parameter.  

  e.     Find approximate 95% confi dence intervals on the model parameters for 
the quadratic model from part c.      

    13.4    The market research department of a soft drink manufacturer is investigat-
ing the effectiveness of a price discount coupon on the purchase of a two -
 liter beverage product. A sample of 5500 customers was given coupons for 
varying price discounts between 5 and 25 cents. The response variable was 
the number of coupons in each price discount category redeemed after one 
month. The data are shown below. 

   Discount,  x      Sample Size,  n      Number Redeemed,  r   

  5    500    100  
  7    500    122  
  9    500    147  

  11    500    176  
  13    500    211  
  15    500    244  
  17    500    277  
  19    500    310  
  21    500    343  
  23    500    372  
  25    500    391  

      a.     Fit a logistic regression model to the data. Use a simple linear regression 
model as the structure for the linear predictor.  

  b.     Does the model deviance indicate that the logistic regression model from 
part a is adequate?  

  c.     Draw a graph of the data and the fi tted logistic regression model.  
  d.     Expand the linear predictor to include a quadratic term. Is there any 

evidence that this quadratic term is required in the model?  
  e.     Draw a graph of this new model on the same plot that you prepared in 

part c. Does the expanded model visually provide a better fi t to the data 
than the original model from part a?  

  f.     For the quadratic model in part d, fi nd Wald statistics for each individual 
model parameter.  

  g.     Find approximate 95% confi dence intervals on the model parameters for 
the quadratic logistic regression model from part d.      
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    13.5    A study was performed to investigate new automobile purchases. A sample 
of 20 families was selected. Each family was surveyed to determine the age 
of their oldest vehicle and their total family income. A follow - up survey was 
conducted 6 months later to determine if they had actually purchased a new 
vehicle during that time period ( y     =    1 indicates yes and  y     =    0 indicates no). 
The data from this study are shown in the following table. 

   Income,  x  1      Age,  x  2       y      Income,  x  1      Age,  x  2       y   

  45,000    2    0    37,000    5    1  
  40,000    4    0    31,000    7    1  
  60,000    3    1    40,000    4    1  
  50,000    2    1    75,000    2    0  
  55,000    2    0    43,000    9    1  
  50,000    5    1    49,000    2    0  
  35,000    7    1    37,500    4    1  
  65,000    2    1    71,000    1    0  
  53,000    2    0    34,000    5    0  
  48,000    1    0    27,000    6    0  

      a.     Fit a logistic regression model to the data.  
  b.     Does the model deviance indicate that the logistic regression model from 

part a is adequate?  
  c.     Interpret the model coeffi cients   β   1  and   β   2 .  
  d.     What is the estimated probability that a family with an income of $45,000 

and a car that is 5 years old will purchase a new vehicle in the next 6 
months?  

  e.     Expand the linear predictor to include an interaction term. Is there any 
evidence that this term is required in the model?  

  f.     For the model in part a, fi nd statistics for each individual model 
parameter.  

  g.     Find approximate 95% confi dence intervals on the model parameters for 
the logistic regression model from part a.      

    13.6    A chemical manufacturer has maintained records on the number of failures 
of a particular type of valve used in its processing unit and the length of time 
(months) since the valve was installed. The data are shown below. 

   Valve  
   Number of 

Failures     Months     Valve  
   Number of 

Failures     Months  

  1    5    18    9    0    7  
  2    3    15    10    0    12  
  3    0    11    11    0    3  
  4    1    14    12    1    7  
  5    4    23    13    0    2  
  6    0    10    14    7    30  
  7    0    5    15    0    9  
  8    1    8              
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      a.     Fit a Poisson regression model to the data.  
  b.     Does the model deviance indicate that the Poisson regression model from 

part a is adequate?  
  c.     Construct a graph of the fi tted model versus months. Also plot the 

observed number of failures on this graph.  
  d.     Expand the linear predictor to include a quadratic term. Is there any 

evidence that this term is required in the model?  
  e.     For the model in part a, fi nd Wald statistics for each individual model 

parameter.  
  f.     Find approximate 95% confi dence intervals on the model parameters for 

the Poisson regression model from part a.      

    13.7    Myers [ 1990 ] presents data on the number of fractures ( y ) that occur in the 
upper seams of coal mines in the Appalachian region of western Virginia. 
Four regressors were reported:  x  1     =    inner burden thickness (feet), the short-
est distance between seam fl oor and the lower seam;  x  2     =    percent extraction 
of the lower previously mined seam;  x  3     =    lower seam height (feet); and 
 x  4     =    time (years) that the mine has been in operation. The data are shown 
below. 

   Observation  
   Number of Fractures per 

Subregion,  y       x  1       x  2       x  3       x  4   

  1    2    50    70    52    1.0  
  2    1    230    65    42    6.9  
  3    0    125    70    45    1.0  
  4    4    75    65    68    0.5  
  5    1    70    65    53    0.5  
  6    2    65    70    46    3.0  
  7    0    65    60    62    1.0  
  8    0    350    60    54    0.5  
  9    4    350    90    54    0.5  

  10    4    160    80    38    0.0  
  11    1    145    65    38    10.0  
  12    4    145    85    38    0.0  
  13    1    180    70    42    2.0  
  14    5    43    80    40    0.0  
  15    2    42    85    51    12.0  
  16    5    42    85    51    0.0  
  17    5    45    85    42    0.0  
  18    5    83    85    48    10.0  
  19    0    300    65    68    10.0  
  20    5    190    90    84    6.0  
  21    1    145    90    54    12.0  
  22    1    510    80    57    10.0  
  23    3    65    75    68    5.0  
  24    3    470    90    90    9.0  
  25    2    300    80    165    9.0  
  26    2    275    90    40    4.0  
  27    0    420    50    44    17.0  
  28    1    65    80    48    15.0  
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   Observation  
   Number of Fractures per 

Subregion,  y       x  1       x  2       x  3       x  4   

  29    5    40    75    51    15.0  
  30    2    900    90    48    35.0  
  31    3    95    88    36    20.0  
  32    3    40    85    57    10.0  
  33    3    140    90    38    7.0  
  34    0    150    50    44    5.0  
  35    0    80    60    96    5.0  
  36    2    80    85    96    5.0  
  37    0    145    65    72    9.0  
  38    0    100    65    72    9.0  
  39    3    150    80    48    3.0  
  40    2    150    80    48    0.0  
  41    3    210    75    42    2.0  
  42    5    11    75    42    0.0  
  43    0    100    65    60    25.0  
  44    3    50    88    60    20.0  

      a.     Fit a Poisson regression model to these data using the log link.  
  b.     Does the model deviance indicate that the model from part a is 

satisfactory?  
  c.     Perform a type 3 partial deviance analysis of the model parameters. Does 

this indicate that any regressors could be removed from the model?  
  d.     Compute Wald statistics for testing the contribution of each regressor to 

the model. Interpret the results of these test statistics.  
  e.     Find approximate 95% Wald confi dence intervals on the model 

parameters.      

    13.8    Reconsider the mine fracture data from Problem 13.7. Remove any regres-
sors from the original model that you think might be unimportant and 
rework parts b – e of Problem 13.7. Comment on your fi ndings.   

    13.9    Reconsider the mine fracture data from Problems 13.7 and 13.8. Construct 
plots of the deviance residuals from the best model you found and comment 
on the plots. Does the model appear satisfactory from a residual analysis 
viewpoint?   

    13.10    Reconsider the model for the automobile purchase data from Problem 13.5, 
part a. Construct plots of the deviance residuals from the model and comment 
on these plots. Does the model appear satisfactory from a residual analysis 
viewpoint?   

    13.11    Reconsider the model for the soft drink coupon data from Problem 13.4, 
part a. Construct plots of the deviance residuals from the model and comment 
on these plots. Does the model appear satisfactory from a residual analysis 
viewpoint?   

    13.12    Reconsider the model for the aircraft fastener data from Problem 13.3, part 
a. Construct plots of the deviance residuals from the model and comment 
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on these plots. Does the model appear satisfactory from a residual analysis 
viewpoint?   

    13.13    The gamma probability density function is

   f y r
r

e y y
r

y r, , ,λ λ λλ( ) =
( )

≥− −

Γ
1 0for  

  Show that the gamma is a member of the exponential family.   

    13.14    The exponential probability density function is

   f y e yy, ,λ λ λλ( ) = ≥− for 0  

  Show that the exponential distribution is a member of the exponential 
family.   

    13.15    The negative binomial probability mass function is
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  Show that the negative binomial is a member of the exponential family.   

    13.16    The data in the table below are from an experiment designed to study the 
advance rate  y  of a drill. The four design factors are  x  1     =    load,  x  2     =    fl ow, 
 x  3     =    drilling speed, and  x  4     =    type of drilling mud (the original experiment is 
described by Cuthbert Daniel in his 1976 book on industrial 
experimentation). 

   Observation      x  1       x  2       x  3       x  4      Advance Rate,  y   

  1     −      −      −      −     1.68  
  2     +      −      −      −     1.98  
  3     −      +      −      −     3.28  
  4     +      +      −      −     3.44  
  5     −      −      +      −     4.98  
  6     +      −      +      −     5.70  
  7     −      +      +      −     9.97  
  8     +      +      +      −     9.07  
  9     −      −      −      +     2.07  

  10     +      −      −      +     2.44  
  11     −      +      −      +     4.09  
  12     +      +      −      +     4.53  
  13     −      −      +      +     7.77  
  14     +      −      +      +     9.43  
  15     −      +      +      +     11.75  
  16     +      +      +      +     16.30  
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      a.     Fit a generalized linear model to the advance rate response. Use a gamma 
response distribution and a log link, and include all four regressors in the 
linear predictor.  

  b.     Find the model deviance for the GLM from part a. Does this indicate that 
the model is satisfactory?  

  c.     Perform a type 3 partial deviance analysis of the model parameters. Does 
this indicate that any regressors could be removed from the model?  

  d.     Compute Wald statistics for testing the contribution of each regressor to 
the model. Interpret the results of these test statistics.  

  e.     Find approximate 95% Wald confi dence intervals on the model 
parameters.      

    13.17    Reconsider the drill data from Problem 13.16. Remove any regressors from 
the original model that you think might be unimportant and rework parts 
b – e of Problem 13.16. Comment on your fi ndings.   

    13.18    Reconsider the drill data from Problem 13.16. Fit a GLM using the log link 
and the gamma distribution, but expand the linear predictor to include all 
six of the two - factor interactions involving the four original regressors. 
Compare the model deviance for this model to the model deviance for the 
 “ main effects only model ”  from Problem 13.16. Does adding the interaction 
terms seem useful?   

    13.19    Reconsider the model for the drill data from Problem 13.16. Construct plots 
of the deviance residuals from the model and comment on these plots. Does 
the model appear satisfactory from a residual analysis viewpoint?   

    13.20    The table below shows the predicted values and deviance residuals for the 
Poisson regression model using  x  2     =    bomb load as the regressor fi t to the 
aircraft damage data in Example  13.8 . Plot the residuals and comment on 
model adequacy. 

    y        ̂y       ′xib̂       e i        r  pi   

  0    0.4789     − 0.7364     − 0.4789     − 0.9786  
  1    0.4789     − 0.7364    0.5211    0.6561  
  0    0.4789     − 0.7364     − 0.4789     − 0.9786  
  0    0.6016     − 0.5083     − 0.6016     − 1.0969  
  0    0.6016     − 0.5082     − 0.6016     − 1.0969  
  0    0.6016     − 0.5082     − 0.6016     − 1.0969  
  1    0.7558     − 0.2800    0.2442    0.2675  
  0    0.7558     − 0.2800     − 0.7558     − 1.2295  
  0    0.7558     − 0.2800     − 0.7558     − 1.2295  
  2    0.9495     − 0.0518    1.0505    0.9374  
  0    0.9495     − 0.0518     − 0.9495     − 1.3781  
  1    0.9495     − 0.0518    0.0505    0.0513  
  1    1.1929    0.1764     − 0.1929     − 0.1818  

(Continued)
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    y        ̂y       ′xib̂       e i        r  pi   

  1    1.1929    0.1764     − 0.1929     − 0.1818  
  2    1.1929    0.1764    0.8071    0.6729  
  3    0.9495     − 0.0518    2.0505    1.6737  
  1    0.9495     − 0.0518    0.0505    0.0513  
  1    0.9495     − 0.0518    0.0505    0.0513  
  1    1.8829    0.6328     − 0.8829     − 0.7072  
  2    1.8829    0.6328    0.1171    0.0845  
  0    1.8829    0.6328     − 1.8829     − 1.9406  
  1    2.9719    1.0892     − 1.9719     − 1.3287  
  1    2.9719    1.0892     − 1.9719     − 1.3287  
  2    2.9719    1.0892     − 0.9719     − 0.5996  
  5    1.1929    0.1764    3.8071    2.5915  
  1    1.1929    0.1764     − 0.1929     − 0.1818  
  3    1.1929    0.1764    1.8071    1.3853  
  5    4.6907    1.5456    0.3093    0.1413  
  5    4.6907    1.5456    0.3093    0.1413  
  7    4.6907    1.5456    2.3093    0.9930  

    13.21    Consider a logistic regression model with a linear predictor that includes 
an interaction term, say  x  ′   β      =      β   0     +      β   1  x  1     +      β   2  x  2     +      β   12  x  1  x  2 . Derive an expression 
for the odds ratio for the regressor  x  1 . Does this have the same interpreta-
tion as in the case where the linear predictor does  not  have the interaction 
term?   

    13.22    The theory of maximum - likelihood states that the estimated large - sample 
covariance for maximum - likelihood estimates is the inverse of the  informa-
tion matrix , where the elements of the information matrix are the negatives 
of the expected values of the second partial derivatives of the log - likelihood 
function evaluated at the maximum - likelihood estimates. Consider the linear 
regression model with normal errors. Find the information matrix and the 
covariance matrix of the maximum - likelihood estimates.   

    13.23    Consider the automobile purchase late in Problem 13.5. Fit models using 
both the probit and complementary log - log functions. Compare three models 
to the one obtained using the logit.   

    13.24    Reconsider the pneumoconiosis data in Table  13.1 . Fit models using both 
the probit and complimentary log - log functions. Compare these models to 
the one obtained in Example  13.1  using the logit.   

    13.25    On 28 January 1986 the space shuttle Challenger was destroyed in an explo-
sion shortly after launch from Cape Kennedy. The cause of the explosion 
was eventually identifi ed as catastrophic failure of the O - rings on the solid 
rocket booster. The failure likely occurred because the O - ring material was 
subjected to a lower temperature at launch (31 ° F) than was appropriate. The 
material and the solid rocket joints had never been tested at temperatures 
this low. Some O - ring failures had occurred during other shuttle launches 
(or engine static tests). The failure data observed prior to the Challenger 
launch is shown in the following table. 
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   Temperature at 
Launch  

   At Least One 
O - ring Failure  

   Temperature 
at Launch  

   At Least One 
O - ring Failure  

  53    1    70    1  
  56    1    70    1  
  57    1    72    0  
  63    0    73    0  
  66    0    75    0  
  67    0    75    1  
  67    0    76    0  
  67    0    76    0  
  68    0    78    0  
  69    0    79    0  
  70    0    80    0  
  70    1    81    0  

      a.     Fit a logistic regression model to these data. Construct a graph of the data 
and display the fi tted model. Discuss how well the model fi ts the data.  

  b.     Calculate and interpret the odds ratio.  
  c.     What is the estimated failure probability at 50 ° F?  
  d.     What is the estimated failure probability at 75 ° F?  
  e.     What is the estimated failure probability at 31 ° F? Notice that there 

is extrapolation involved in obtaining this estimate. What infl uence 
would that have on your recommendation about launching the space 
shuttle?  

  f.     Calculate and analyze the deviance residuals for this model.  
  g.     Add a quadratic term in temperature to the logistic regression model in 

part a. Is there any evidence that this term improves the model?      

    13.26    A student conducted a project looking at the impact of popping tempera-
ture, amount of oil, and the popping time on the number of inedible kernels 
of popcorn. The data follow. Analyze these data using Poisson regression. 

   Temperature     Oil     Time      y   

  7    4    90    24  
  5    3    105    28  
  7    3    105    40  
  7    2    90    42  
  6    4    105    11  
  6    3    90    16  
  5    3    75    126  
  6    2    105    34  
  5    4    90    32  
  6    2    75    32  
  5    2    90    34  
  7    3    75    17  
  6    3    90    30  
  6    3    90    17  
  6    4    75    50  
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    13.27    Bailer and Piegorsch [ 2000 ] report on an experiment that examines the 
effect of a herbicide, nitrofen, on the umber of offspring produced by a 
particular freshwater invertebrate zooplankton. The data follow. Perform an 
appropriate analysis of these data. 

   Dose      Number of Offspring  

  Control    27    32    34    33    36    34    33    30    24    31  
  80    33    33    35    33    36    26    27    31    32    29  

  160    29    29    23    27    30    31    30    26    29    29  
  235    23    21    7    12    27    16    13    15    21    17  
  310    6    6    7    0    15    5    6    4    6    5  

    13.28    Chapman [1997 – 98] conducted an experiment using accelerated life testing 
to determine the estimated shelf life of a photographic developer. The data 
follow. Lifetimes often follow an exponential distribution. This company has 
found that the maximum density is a good indicator of overall developer/
fi lm performance; correspondingly using generalized linear models. Perform 
appropriate residual analysis of your fi nal model. 

    t  (h)      D  max  (72 ° C)      t  (h)      D  max  (82 ° C)      t  (h)      D  max  (92 ° C)  

  72    3.55    48    3.52    24    3.46  
  144    3.27    96    3.35    48    2.91  
  216    2.89    144    2.50    72    2.27  
  288    2.55    192    2.10    96    1.49  
  360    2.34    240    1.90    120    1.20  
  432    2.14    288    1.47    144    1.04  
  504    1.77    336    1.19    168    0.65  

    13.29    Gupta and Das [ 2000 ] performed an experiment to improve the resistivity 
of a urea formaldehyde resin. The factors were amount of sodium hydroxide, 
 A , refl ux time,  B , solvent distillate,  C , phthalic anhydride,  D , water collection 
time,  E , and solvent distillate collection time,  F.  The data follow, where  y  1  is 
the resistivity from the fi rst replicate of the experiment and  y  2  is the resistiv-
ity from the second replicate. Assume a gamma distribution. Use both the 
canonical and the log link to analyze these data. Perform appropriate resid-
ual analysis of your fi nal models. 

    A       B       C       D       E       F       y  1       y  2   

   − 1     − 1     − 1     − 1     − 1     − 1    60    135  
   − 1     − 1     − 1    1     − 1     − 1    220    160  

  0     − 1     − 1     − 1    1    1    85    180  
  0     − 1     − 1    1    1    1    330    110  
  0    1    1    1     − 1     − 1    95    130  
  0    1    1     − 1     − 1     − 1    190    175  

   − 1    1    1    1    1    1    145    200  
   − 1    1    1     − 1    1    1    300    210  

  1     − 1    1    1     − 1    1    110    100  
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    A       B       C       D       E       F       y  1       y  2   

  1     − 1    1     − 1     − 1    1    125    130  
  1     − 1    1    1    1     − 1    300    170  
  1     − 1    1     − 1    1     − 1    65    160  
  1    1     − 1     − 1     − 1    1    170    90  
  1    1     − 1    1     − 1    1    70    250  
  1    1     − 1     − 1    1     − 1    380    80  
  1    1     − 1    1    1     − 1    105    200  
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  CHAPTER 14 

REGRESSION ANALYSIS OF TIME 
SERIES DATA     

    14.1    INTRODUCTION TO REGRESSION MODELS FOR TIME 
SERIES DATA 

 Many applications of regression involve both predictor and response variables that 
are  time series , that is, the variables are time - oriented. Regression models using time 
series data occur relatively often in economics, business, and many fi elds of engi-
neering. The assumption of uncorrelated or independent errors that is typically 
made for regression data that is not time - dependent is usually not appropriate for 
time series data. Usually the errors in time series data exhibit some type of  autocor-
related  structure. By autocorrelation we mean that the errors are correlated with 
themselves at different time periods. We will give a formal defi nition shortly. 

 There are several  sources  of autocorrelation in time series regression data. In 
many cases, the cause of autocorrelation is the failure of the analyst to include one 
or more important predictor variables in the model. For example, suppose that we 
wish to regress the annual sales of a product in a particular region of the country 
against the annual advertising expenditures for that product. Now the growth in the 
population in that region over the period of time used in the study will also infl u-
ence the product sales. Failure to include the population size may cause the errors 
in the model to be positively autocorrelated, because if the per - capita demand for 
the product is either constant or increasing with time, population size is positively 
correlated with product sales. 

 The presence of autocorrelation in the errors has several effects on the ordinary 
least - squares regression procedure. These are summarized as follows:

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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   1.     The ordinary least squares (OLS) regression coeffi cients are still unbiased, but 
they are no longer minimum - variance estimates. We know this from our study 
of generalized least squares in Section 5.5.  

  2.     When the errors are positively autocorrelated, the residual mean square may 
seriously underestimate the error variance   σ   2 . Consequently, the standard 
errors of the regression coeffi cients may be too small. As a result confi dence 
and prediction intervals are shorter than they really should be, and tests of 
hypotheses on individual regression coeffi cients may be misleading in that 
they may indicate that one or more predictor variables contribute signifi cantly 
to the model when they really do not. Generally, underestimating the error 
variance   σ   2 gives the analyst a false impression of precision of estimation and 
potential forecast accuracy.  

  3.     The confi dence intervals, prediction intervals, and tests of hypotheses 
based on the  t  and  F  distributions are, strictly speaking, no longer exact 
procedures.    

 There are three approaches to dealing with the problem of autocorrelation. If auto-
correlation is present because of one or more omitted predictors and if those predic-
tor variable(s) can be identifi ed and included in the model, the observed 
autocorrelation should disappear. Alternatively, the weighted least squares or 
generalized least squares methods discussed in Section 5.5 could be used if there 
were suffi cient knowledge of the autocorrelation structure. Finally, if these 
approaches cannot be used, then the analyst must turn to a model that specifi cally 
incorporates the autocorrelation structure. These models usually require special 
parameter estimation techniques. We will provide an introduction to these proce-
dures in Section  14.3 .  

   14.2    DETECTING AUTOCORRELATION: THE DURBIN – WATSON TEST 

  Residual plots  can be useful for the detection of autocorrelation. The most useful 
display is the plot of residuals versus time. If there is positive autocorrelation, residu-
als of identical sign occur in clusters. That is, there are not enough changes of sign 
in the pattern of residuals. On the other hand, if there is negative autocorrelation, 
the residuals will alternate signs too rapidly. 

 Various  statistical tests  can be used to detect the presence of autocorrelation. The 
test developed by Durbin and Watson  (1950, 1951, 1971)  is a very widely used pro-
cedure. This test is based on the assumption that the errors in the regression model 
are generated by a  fi rst - order autoregressive process  observed at equally spaced 
time periods, that is,

    ε φεt t ta= +−1     (14.1)  

  where   ε    t   is the error term in the model at time period  t ,  a t   is an NID (0,   σa
2) random 

variable,   ϕ   is a parameter that defi nes the relationship between successive values of 
the model errors   ε    t   and   ε    t    − 1 , and the time index is  t     =    1, 2,    . . .    ,  T  ( T  is the number 
of observations available, and it usually stands for the current time period). We 
will require that |  ϕ  |    <    1, so that the model error term in time period  t  is equal to a 
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fraction of the error experienced the immediately preceding period plus a normally 
and independently distributed random shock or disturbance that is unique to the 
current period. In time series regression models   ϕ   is sometimes called the  autocor-
relation parameter . Thus, a simple linear regression model with  fi rst - order autore-
gressive errors  would be

    y x at t t t t t= + + = +−β β ε ε φε0 1 1,     (14.2)  

  where  y t   and  x t   are the observations on the response and predictor variables at time 
period  t . 

 When the regression model errors are generated by the fi rst - order autoregressive 
process in Eq.  (14.1) , there are several interesting properties of these errors. By 
successively substituting for   ε    t  ,   ε    t    − 1 ,    . . .    on the right - hand side of Eq.  (14.1)  we obtain

   ε φt
j

t j

j

a= −
=

∞

∑
0

  

 In other words, the error term in the regression model for period  t  is just a linear 
combination of all of the current and previous realizations of the NID (0,   σ    2 ) 
random variables  a t  . Furthermore, we can show that
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 That is, the errors have zero mean and constant variance but have a nonzero covari-
ance structure unless   ϕ      =    0. 

 The  autocorrelation  between two errors that are one period apart, or the  lag one 
autocorrelation , is
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 The autocorrelation between two errors that are  k  periods apart is

   ρ φk
k i= =, , , ...1 2   

 This is called the  autocorrelation function . Recall that we have required 
that |  ϕ  |    <    1. When   ϕ   is positive, all error terms are positively correlated, but the 
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magnitude of the correlation decreases as the errors grow further apart. Only if 
  ϕ      =    0 are the model errors uncorrelated. 

 Most time series regression problems involve data with positive autocorrelation. 
The Durbin – Watson test is a statistical test for the presence of positive autocorrela-
tion in regression model errors. Specifi cally, the hypotheses considered in the 
Durbin – Watson test are
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 The Durbin – Watson  test statistic  is
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  where the  e t  ,  t     =    1, 2,    . . .    ,  T  are the residuals from an OLS regression of  y t   on  x t  . and 
 r  1  is the  lag one sample autocorrelation coeffi cient  defi ned as
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 For uncorrelated errors  r  1     =    0 (at least approximately) so the value of the Durbin –
 Watson statistic should be approximately 2. Statistical testing is necessary to deter-
mine just how far away from 2 the statistic must fall in order for us to conclude that 
the assumption of uncorrelated errors is violated. Unfortunately, the distribution of 
the Durbin – Watson test statistic  d  depends on the  X  matrix, and this makes critical 
values for a statistical test diffi cult to obtain. However, Durbin and Watson  (1951)  
show that  d  lies between lower and upper bounds, say  d L   and  d U   , such that if  d  is 
outside these limits, a conclusion regarding the hypotheses in Eq.  (14.4)  can be 
reached. The decision procedure is as follows:

   If  reject d d HL< =0 0: ρ  

   If  do not reject d d HU> =0 0: ρ  

   If  the test is inconclusived d dL U≤ ≤   

 Table A.6 gives the bounds  d L   and  d U   for a range of sample sizes, various numbers 
of predictors, and three type I error rates (  α      =    0.05,   α      =    0.025, and   α      =    0.01). It is 
clear that small values of the test statistic  d  imply that  H  0  :   ϕ      =    0 should be rejected 
because positive autocorrelation indicates that successive error terms are of similar 
magnitude, and the differences in the residuals  e t      −     e t    − 1  will be small. Durbin and 
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Watson suggest several procedures for resolving inconclusive results. A reasonable 
approach in many of these inconclusive situations is to analyze the data as if there 
were positive autocorrelation present to see if any major changes in the results 
occur. 

 Situations where negative autocorrelation occurs are not often encountered. 
However, if a test for negative autocorrelation is desired, one can use the statistic 
4    −     d , where  d  is defi ned in Eq.  (14.4) . Then the decision rules for testing the hypoth-
eses  H  0  :   ϕ      =    0 versus  H  1  :   ϕ      <    0 are the same as those used in testing for positive 
autocorrelation. It is also possible to test a two - sided alternative hypothesis ( H  0  : 
  ϕ      =    0 versus  H  1  :   ϕ      ≠    0 ) by using both of the one - sided tests simultaneously. If this 
is done, the two - sided procedure has type I error 2  α  , where   α   is the type I error 
used for each individual one - sided test.  

 Example 14.1 

    A company wants to use a regression model to relate annual regional advertising 
expenses to annual regional concentrate sales for a soft drink company. Table  14.1  
presents 20 years of these data. We will initially assume that a straight - line relation-
ship is appropriate and fi t a simple linear regression model by ordinary least squares. 
The Minitab output for this model is shown in Table  14.2  and the residuals are shown 
in the last column of Table  14.1 . Because these are time series data, there is a pos-
sibility that autocorrelation may be present. The plot of residuals versus time, shown 
in Figure  14.1 , has a pattern indicative of potential autocorrelation; there is a defi nite 
upward trend in the plot, followed by a downward trend.     

  TABLE 14.1    Soft Drink Concentrate Sales Data 

   Year     Sales (Units)  
   Expenditures 

(1,000 of dollars)     Residuals  

  1    3083    75     − 32.3298  
  2    3149    78     − 26.6027  
  3    3218    80    2.2154  
  4    3239    82     − 16.9665  
  5    3295    84     − 1.1484  
  6    3374    88     − 2.5123  
  7    3475    93     − 1.9671  
  8    3569    97    11.6691  
  9    3597    99     − 0.5128  

  10    3725    104    27.0324  
  11    3794    109     − 4.4224  
  12    3959    115    40.0318  
  13    4043    120    23.5770  
  14    4194    127    33.9403  
  15    4318    135     − 2.7874  
  16    4493    144     − 8.6060  
  17    4683    153    0.5753  
  18    4850    161    6.8476  
  19    5005    170     − 18.9710  
  20    5236    182     − 29.0625  
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       Figure 14.1     Plot of residuals versus time for the soft drink concentrate sales model.  

  TABLE 14.2    Minitab Output for the Soft Drink Concentrate Sales Data 

    Regression Analysis: Sales versus Expenditures   

    The regression equation is   
    Sales  =  1609  +  20.1 Expenditures   
    Predictor       Coef       SE Coef       T       P   
   Constant      1608.51      17.02      94.49      0.000   
   Expenditures      20.0910      0.1428      140.71      0.00   
   S  =  20.5316      R - Sq  =  99.9%      R - Sq(adj)  =  99.9%   
    Analysis of Variance   

    Source       DF       SS       MS       F       P   
   Regression      1      8346283      8346283      19799.11      0.000   
   Residual   Error   18      7588      422       
   Total      19      8353871               

    Unusual Observations   
    Obs       Expenditures       Sales       Fit       SE Fit       Residual       St Resid   
   12      115      3959.00      3918.97      4.59      40.03      2.00R   
   R denotes an observation with a large standardized residual.   

   Durbin – Watson statistic  =  1.08005   

 We will use the Durbin – Watson test for

   H0 0: φ =  

   H1 0: φ >   

 The test statistic is calculated as follows:
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   14.3    ESTIMATING THE PARAMETERS IN TIME SERIES 
REGRESSION MODELS 

 A signifi cant value of the Durbin – Watson statistic or a suspicious residual plot 
indicates a potential problem with autocorelated model errors. This could be the 
result of an actual time dependence in the errors or an  ‘  ‘ artifi cial ’  ’  time dependence 
caused by the omission of one or more important predictor variables. If the apparent 
autocorrelation results from missing predictors and if these missing predictors can 
be identifi ed and incorporated into the model, the apparent autocorrelation problem 
may be eliminated. This is illustrated in the following example.   
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 Minitab will also calculate and display the Durbin – Watson statistic. Refer to the 
Minitab output in Table  14.2 . If we use a signifi cance level of 0.05, Table A.6 gives 
the critical values corresponding to one predictor variable and 20 observations as 
 d L      =    1.20 and  d U      =    1.41. Since the calculated value of the Durbin – Watson statistic 
 d     =    1.08 is less than  d L      =    1.20, we reject the null hypothesis and conclude that the 
errors in the regression model are positively autocorrelated.        ■   

 Example 14.2 

    Table  14.3  presents an expanded set of data for the soft drink concentrate sales 
problem introduced in Example  14.1 . Because it is reasonably likely that regional 
population affects soft drink sales, we have provided data on regional population 
for each of the study years. Table  14.4  is the Minitab output for a regression model 
that includes both predictor variables, advertising expenditures and population. 
Both of these predictor variables are highly signifi cant. The last column of Table 
 14.3  shows the residuals from this model. Minitab calculates the Durbin – Watson 
statistic for this model as  d     =    3.05932, and the 5% critical values are  d L      =    1.10 and 
 d U      =    1.54, and since  d  is greater than  d U  , we conclude that there is no evidence to 
reject the null hypothesis. That is, there is no indication of autocorrelation in the 
errors.     

 Figure  14.2  is a plot of the residuals from this regression model in time order. 
This plot shows considerable improvement when compared to the plot of residuals 
from the model using only advertising expenditures as the predictor. Therefore, we 
conclude that adding the new predictor population size to the original model has 
eliminated an apparent problem with autocorrelation in the errors.        ■     
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  TABLE 14.3    Expanded Soft Drink Concentrate Sales Data for Example  14.2  

   Year     Sales (Units)  
   Expenditures 

(1,000 of dollars)     Population     Residuals  

  1    3083    75    825000     − 4.8290  
  2    3149    78    830445     − 3.2721  
  3    3218    80    838750    14.9179  
  4    3239    82    842940     − 7.9842  
  5    3295    84    846315    5.4817  
  6    3374    88    852240    0.7986  
  7    3475    93    860760     − 4.6749  
  8    3569    97    865925    6.9178  
  9    3597    99    871640     − 11.5443  

  10    3725    104    877745    14.0362  
  11    3794    109    886520     − 23.8654  
  12    3959    115    894500    17.1334  
  13    4043    120    900400     − 0.9420  
  14    4194    127    904005    14.9669  
  15    4318    135    908525     − 16.0945  
  16    4493    144    912160     − 13.1044  
  17    4683    153    917630    1.8053  
  18    4850    161    922220    13.6264  
  19    5005    170    925910     − 3.4759  
  20    5236    182    929610    0.1025  

  TABLE 14.4    Minitab Output for the Soft Drink Concentrate Data in Example  14.2  

    Regression Analysis: Sales versus Expenditures, Population   

    The regression equation is   
    Sales  =  320  +  18.4 Expenditures  +  0.00168 Population   

    Predictor       Coef       SE Coef       T       P   
   Constant      320.3      217.3      1.47      0.159   
   Expenditures      18.4342      0.2915      63.23      0.000   
   Population      0.0016787      0.0002829      5.93      0.000   
   S  =  12.0557      R - Sq  =  100.0%     R - Sq(adj)  =  100.0%   

    Analysis of Variance   
    Source       DF       SS       MS       F       P   
   Regression      2      8351400      4175700      28730.40      0.000   
   Residual Error      17      2471      145           
   Total      19      8353871               

    Source       DF       Seq SS   
   Expenditures      1      8346283   
   Population      1      5117   
    Unusual Observations   
    Obs       Expenditures       Sales       Fit       SE Fit       Residual       St Resid   

   11      109      3794.00      3817.87      4.27       - 23.87       - 2.12R   
   R denotes an observation with a large standardized residual.   
   Durbin – Watson statistic  =  3.05932   
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       Figure 14.2     Plot of residuals versus time for the soft drink concentrate sales model in 
example 14.2.  
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     The Cochrane – Orcutt Method     When the observed autocorrelation in the model 
errors cannot be removed by adding one or more new predictor variables to the 
model, it is necessary to take explicit account of the autocorrelative structure in the 
model and use an appropriate parameter estimation method. A very good and 
widely used approach is the procedure devised by Cochrane and Orcutt  (1949) . 

 We now describe the Cochrane – Orcutt method for the simple linear regression 
model with fi rst - order autocorrelated errors given in Eq.  (14.2) . The procedure is 
based on transforming the response variable so that   ′ = − −y y yt t tφ 1. Substituting for 
 y t   and  y t    − 1 , the model becomes
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= − + −

−

− −

y y y

x x

x x

t t t

t t t t

t t

φ
β β ε φ β β ε
β φ β φ

1

0 1 0 1 1 1

0 11

(

( ) ( −− −+ −
= ′ + ′ +

1 1

0 1

) ε φε
β β ε

t t

t tx

    (14.7)  

  where   ′ = −β β φ0 0 1( ) and   ′ = − −x x xt t tφ 1. Notice that the error terms  a t   in the trans-
formed or reparameterized model are independent random variables. Unfortu-
nately, this new reparameterized model contains an unknown parameter   ϕ   and it is 
also no longer linear in the unknown parameters because it involves products of   ϕ  , 
  β   0 , and   β   1 . However, the fi rst - order autoregressive process   ε    t      =      ϕ    ε    t    − 1     +     a t   can be 
viewed as a simple linear regression through the origin and the parameter   ϕ   can be 
estimated by obtaining the residuals of an OLS regression of  y t   on  x t   and then 
regressing  e t   on  e t    − 1 . The OLS regression of  e t   on  e t    − 1  results in
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 Using   ̂φ as an estimate of   ϕ  , we can calculate the transformed response and predictor 
variables as

   ′ = − −y y yt t tφ̂ 1  

   ′ = − −x x xt t tφ̂ 1   

 Now apply ordinary least squares to the transformed data. This will result in 
estimates of the transformed slope   ′β̂0, the intercept   β̂1, and a new set of residuals. 
The Durbin – Watson test can be applied to these new residuals from the reparam-
etrized model. If this test indicates that the new residuals are uncorrelated, then no 
additional analysis is required. However, if positive autocorrelation is still indicated, 
then another iteration is necessary. In the second iteration   ϕ   is estimated with new 
residuals that are obtained by using the regression coeffi cients from the reparam-
etrized model with the original regressor and response variables. This iterative 
procedure may be continued as necessary until the residuals indicate that the error 
terms in the reparametrized model are uncorrelated. Usually only one or two itera-
tions are suffi cient to produce uncorrelated errors.  

 Example 14.3 

    Table  14.5  presents data on the market share of a particular brand of toothpaste for 
30 time periods and the corresponding selling price per pound. A simple linear 
regression model is fi t to these data, and the resulting Minitab output is in Table 
 14.6 . The residuals from this model are shown in Table  14.5 . The Durbin – Watson 

  TABLE 14.5    Toothpaste Market Share Data 

   Time     Market Share     Price     Residuals       ′yt        ′xt      Residuals  

  1    3.63    0.97    0.281193              
  2    4.20    0.95    0.365398    2.715    0.533     − 0.189435  
  3    3.33    0.99    0.466989    1.612    0.601    0.392201  
  4    4.54    0.91     − 0.266193    3.178    0.505     − 0.420108  
  5    2.89    0.98     − 0.215909    1.033    0.608     − 0.013381  
  6    4.87    0.90     − 0.179091    3.688    0.499     − 0.058753  
  7    4.90    0.89     − 0.391989    2.908    0.522     − 0.268949  
  8    5.29    0.86     − 0.730682    3.286    0.496     − 0.535075  
  9    6.18    0.85     − 0.083580    4.016    0.498    0.244473  

  10    7.20    0.82    0.207727    4.672    0.472    0.256348  
  11    7.25    0.79     − 0.470966    4.305    0.455     − 0.531811  
  12    6.09    0.83     − 0.659375    3.125    0.507     − 0.423560  
  13    6.80    0.81     − 0.435170    4.309    0.471     − 0.131426  
  14    8.65    0.77    0.443239    5.869    0.439    0.635804  
  15    8.43    0.76     − 0.019659    4.892    0.445     − 0.192552  
  16    8.29    0.80    0.811932    4.842    0.489    0.847507  
  17    7.18    0.83    0.430625    3.789    0.503    0.141344  
  18    7.90    0.79    0.179034    4.963    0.451    0.027093  
  19    8.45    0.76    0.000341    5.219    0.437     − 0.063744  
  20    8.23    0.78    0.266136    4.774    0.469    0.284026  
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statistic for the residuals from this model is  d     =    1.13582 (see the Minitab output), 
and the 5% critical values are  d L      =    1.20 and  d U      =    1.41, so there is evidence to support 
the conclusion that the residuals are positively autocorrelated.   

 We use the Cochrane – Orcutt method to estimate the model parameters. The 
autocorrelation coeffi cient can be estimated using the residuals in Table  14.7  and 
Eq.  (14.8)  as follows:

  TABLE 14.6    Minitab Regression Results for the Toothpaste Market Share Data 

   Regression Analysis: Market Share versus Price   

   The regression equation is   
   Market Share  =  26.9  -  24.3 Price   
   Predictor      Coef      SE Coef      T      P       
   Constant      26.910      1.110      24.25      0.000       
   Price       - 24.290      1.298       - 18.72      0.000       
   S  =  0.428710      R - Sq  =  95.1%      R - Sq(adj)  =  94.8%   

   Analysis of Variance   
   Source      DF      SS      MS      F      P   
   Regression      1      64.380      64.380      350.29      0.000   
   Residual Error      18      3.308      0.184           
   Total      19      67.688               
   Durbin – Watson statistic  =  1.13582   

  TABLE 14.7    Minitab Regression Results for Fitting the Transformed Model to the 
Toothpaste Sales Data 

   Regression Analysis: y - prime versus x - prime   

   The regression equation is   
   y - prime  =  16.1  -  24.8 x - prime   

   Predictor      Coef      SE Coef      T      P   
   Constant      16.1090      0.9610      16.76      0.000   
   x - prime       - 24.774      1.934       - 12.81      0.000   

   S  =  0.390963      R - Sq  =  90.6%      R - Sq(adj)  =  90.1%   

   Analysis of Variance   
   Source      DF      SS      MS      F      P   
   Regression      1      25.080      25.080      164.08      0.000   
   Residual Error      17      2.598      0.153           
   Total      18      27.679               

   Unusual Observations   
   Obs      x - prime      y - prime      Fit      SE Fit      Residual      St Resid   

   2      0.601      1.6120      1.2198      0.2242      0.3922      1.22 X   
   4      0.608      1.0330      1.0464      0.2367       - 0.0134       - 0.04 X   

   15      0.489      4.8420      3.9945      0.0904      0.8475      2.23R   
   R denotes an observation with a large standardized residual.   
   X denotes an observation whose X value gives it large infl uence.   
   Durbin – Watson statistic  =  2.15671   
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 The transformed variables are computed according to

   ′ = − −y y yt t t0 409 1.  
   ′ = − −x x xt t t0 409 1.   

 for  t     =    2, 3,    . . .    , 20. These transformed variables are also shown in Table  14.5 . The 
Minitab results for fi tting a regression model to the transformed data are summa-
rized in Table  14.7 . The residuals from the transformed model are shown in the last 
column of Table  14.5 . The Durbin – Watson statistic for the transformed model is 
 d     =    2.15671, and the 5% critical values from Table A.6 are  d L      =    1.18 and  d U      =    1.40, 
so we conclude that there is no problem with autocorrelated errors in the trans-
formed model. The Cochrane – Orcutt method has been effective in removing the 
autocorrelation. 

 The slope in the transformed model   ′β1 is equal to the slope in the original model, 
  β   1 . A comparison of the slopes in the two models in Tables  14.6  and  14.7  shows that 
the two estimates are very similar. However, if the standard errors are compared, 
the Cochrane – Orcutt method produces an estimate of the slope that has a larger 
standard error than the standard error of the ordinary least squares estimate. This 
refl ects the fact that if the errors are autocorrelated and OLS is used, the standard 
errors of the model coeffi cients are likely to be underestimated.        ■   

  The Maximum Likelihood Approach     There are other alternatives to the 
Cochrane – Orcutt method. A popular approach is to use the method of  maximum 
likelihood  to estimate the parameters in a time - series regression model. We will 
concentrate on the simple linear regression model with fi rst - order autoregressive 
errors

    y x at t t t t t= + + = +−β β ε ε φε0 1 1,     (14.9)   

 One reason that the method of maximum likelihood is so attractive is that, unlike 
the Cochrane – Orcutt method, it can be used in situations where the autocorrelative 
structure of the errors is more complicated than fi rst - order autoregressive. 

 Recall that the  a  ’ s in Eq.  (14.9)  are normally and independently distributed with 
mean zero and variance   σa

2  and   ϕ   is the autocorrelation parameter. Write this equa-
tion for  y t    − 1  and subtract   ϕ  y t    − 1  from  y t  . This results in

   y y x x at t t t t− = − + − +− −φ φ β β φ1 0 1 11( ) ( )  
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  or

    

y y x x a

a
t t t t t

t t

= + − + − +
= +

− −φ φ β β φ
μ

1 0 1 11( ) ( )

( , )z q     (14.10)  

  where   ′ = −zt t ty x[ , ]1  and   ′ =q [ , , ]φ β β0 1 . We can think of  z   t   as a vector or predictor 
variables and   θ   as the vector of regression model parameters. Since  y t    − 1  appears on 
the right - hand side of the model in Eq.  (14.10) , the index of time must run from 2, 
3,    . . .    ,  T . At time period  t     =    2, we treat  y  1  as an observed predictor. 

 Because the  a  ’ s are normally and independently distributed, the joint probability 
density of the  a  ’ s is
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  and the likelihood function is obtained from this joint distribution by substituting 
for the  a  ’ s:
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 The log - likelihood is
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 This log - likelihood is maximized with respect to the parameters   ϕ  ,   β   0 , and   β   1  by 
minimizing the quantity

    SS y y x xE t t t t

t

T

= − + − + −− −
=
∑ { [ ( ) ( )]}φ φ β β φ1 0 1 1

2

2

1     (14.11)  

  which is the error sum of squares for the model. Therefore, the maximum likelihood 
estimators of   ϕ  ,   β   0 , and   β   1  are also least squares estimators. 

 There are two important points about the maximum likelihood (or least squares) 
estimators. First, the sum of squares in Eq.  (14.11)  is conditional on the initial value 
of the time series,  y  1 . Therefore, the maximum likelihood (or least squares) estima-
tors found by minimizing this conditional sum of squares are conditional maximum 
likelihood (or conditional least squares) estimators. Second, because the model 
involves products of the parameters   ϕ   and   β   0 , the model is no longer linear in the 
unknown parameters. That is, it is not a linear regression model and consequently 
we cannot give an explicit closed - form solution for the parameter estimators. 
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Iterative methods for fi tting nonlinear regression models must be used. From 
Chapter  12 , we know that these procedures work by linearizing the model about a 
set of initial guesses for the parameters, solving the linearized model to obtain 
improved parameters estimates, then using the improved estimates to defi ne a new 
linearized model which leads to new parameter estimates, and so on. 

 Suppose that we have obtained a set of parameter estimates, say   ̂ [ ˆ, ˆ , ˆ ]′ =q φ β β0 1 . 
The maximum likelihood estimate of   σa

2 is computed as

    ˆ ( ˆ )σ a
ESS

n
2

1
=

−
q     (14.12)  

  where   SSE q̂( ) is the error sum of squares in Eq.  (14.11)  evaluated at the conditional 
maximum likelihood (or conditional least squares) parameters estimates
   ̂ [ ˆ, ˆ , ˆ ]′ =q φ β β0 1 . Some authors (and computer programs) use an adjusted number 
of degrees of freedom in the denominator to account for the number of parameters 
that have been estimated. If there are  k  predictors, then the number of estimated 
parameters will be  p     =     k     +    3, and the formula for estimating   σa

2 is

    ˆ ( ˆ ) ( ˆ )σ a
E ESS

n p
SS
n k

2

1 4
=

− −
=

− −
q q

    (14.13)   

 In order to test hypotheses about the model parameters and to fi nd confi dence 
intervals, standard errors of the model parameters are needed. The standard errors 
are usually found by expanding the nonlinear model in a fi rst - order Taylor series 
around the fi nal estimates of the parameters   ̂ [ ˆ, ˆ , ˆ ]′ =q φ β β0 1 . This results in

   y at t
t
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 The column vector of derivatives,   
∂

∂
μ( , )zt q

q
, is found by differentiating the model 

with respect to each parameter in the vector   θ  ′      =    [  ϕ  ,   β   0 ,   β   1 ]. This vector of deriva-
tives is
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 This vector is evaluated for each observation at the set of conditional maximum 
likelihood parameter estimates   ̂ [ ˆ, ˆ , ˆ ]′ =q φ β β0 1  and assembled into an  X  matrix. Then 
the covariance matrix of the parameter estimates is found from

   Cov a
ˆ ( )q( ) = ′ −σ 2 1X X   

 When   σa
2 is replaced by the estimate   σ̂a

2 from Eq.  (14.13)  an estimate of the covari-
ance matrix results, and the standard errors of the model parameters are the main 
diagonals of the covariance matrix.  
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 Example 14.4 

    We will fi t the regression model with time series errors in Eq.  (14.9)  to the tooth-
paste market share data originally analyzed in Example  14.3 . Minitab will not fi t 
these types of regression models, so we will use another widely available software 
package, SAS (the Statistical Analysis System). The SAS procedure for fi tting 
regression models with time series errors is SAS PROC AUTOREG. Table  14.8  
contains the output from this software program for the toothpaste market share 
data. Notice that the autocorrelation parameter (or the lag one autocorrelation) is 
estimated to be 0.4094, which is very similar to the value obtained by the Cochrane –
 Orcutt method. The overall  R  2  for this model is 0.9601, and we can show that the 
residuals exhibit no autocorrelative structure, so this is likely a reasonable model 
for the data.     

 There is, of course, some possibility that a more complex autocorrelation 
structure that fi rst - order may exist. SAS PROC AUTOREG can fi t more com-
plex patterns. Since there is obviously fi rst - order autocorrelation present, an 
obvious possibility is that the autocorrelation might be second - order autoregressive, 
as in

   ε ϕ ε ϕ εt t t ta= + +− −1 1 2 2  

  where the parameters   ϕ   1  and   ϕ   2  are autocorrelations at lags one and two, respec-
tively. The output from SAS AUTOREG for this model is in Table  14.9 . The  t  statistic 
for the lag two autocorrelation is not signifi cant so there is no reason to believe that 
this more complex autocorrelative structure is necessary to adequately model the 
data. The model with fi rst - order autoregessive errors is satisfactory.        ■     

  Prediction of New Observations and Prediction Intervals     We now consider 
how to obtain predictions of new observations. These are actually forecasts of 
future values at some  lead time . It is very tempting to ignore the autocorrelation 
in the data when making predictions of future values (forecasting), and simply 
substitute the conditional maximum likelihood estimates into the regression 
equation:

   ˆ ˆ ˆy xt t= +β β0 1   

 Now. suppose that we are at the end of the current time period,  T , and we wish to 
obtain a prediction or forecast for period  T     +    1. Using the above equation, this 
results in

   ˆ ( ) ˆ ˆy T xT T+ += +1 0 1 1β β  

  assuming that the value of the predictor variable in the next time period  x T +    1  is 
known. Unfortunately, this naive approach isn ’ t correct. From Eq.  (14.10) , we know 
that the observation at time period  t  is

    y y x x at t t t t= + − + − +− −φ φ β β φ1 0 1 11( ) ( )     (14.14)   



  TABLE 14.8    SAS PROC AUTOREG Output for the Toothpaste Market Share Data, 
Assuming First - Order Autoregressive Errors 

   The SAS System   
   The AUTOREG Procedure   
   Dependent Variable y   

   Ordinary Least Squares Estimates   

   SSE      3.30825739      DFE      18   
   MSE      0.18379      Root MSE      0.42871   
   SBC      26.762792      AIC      24.7713275   
   Regress R - Square      0.9511      Total R - Square      0.9511   
   Durbin – Watson      1.1358      Pr    <    DW      0.0098   
   Pr    >    DW      0.9902           
   NOTE: Pr < DW is the p-value for testing positive autocorrelation, 
and Pr > DW is the p - value for testing negative autocorrelation.   

    Standard  
  Variable       DF   

    Approx  
  Estimate   

    Variable  
  Error       t Value      Pr    >    |t|   

    Variable  
  Label   

   Intercept      1      26.9099      1.1099      24.25       < .0001       
   x      1       - 24.2898      1.2978       - 18.72       < .0001      x   

    Estimates of Autocorrelations   

    Lag       Covariance       Correlation        - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 
6 7 8 9 1   

   0      0.1654      1.000000      |                                             | *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * |   
   1      0.0677      0.409437      |                                             | *  *  *  *  *  *  *  *                                     |   

    Preliminary MSE      0.1377   
    Estimates of Autoregressive Parameters   

   Standard               
    Lag     Coeffi cient       Error       t Value   
   1      - 0.409437      0.221275       - 1.85   
   Algorithm converged.               

   The SAS System   
   The AUTOREG Procedure   

   Maximum Likelihood Estimates   

   SSE      2.69864377      DFE      17   
   MSE      0.15874      Root MSE      0.39843   
   SBC      25.8919447      AIC      22.9047479   
   Regress R - Square      0.9170      Total R - Square      0.9601   
   Durbin – Watson      1.8924      Pr    <    DW      0.3472   
   Pr    >    DW      0.6528           
   NOTE: Pr < DW is the p-value for testing positive autocorrelation, 
and Pr > DW is the p - value for testing negative autocorrelation.   

    Standard  
  Variable       DF       Estimate       Error       t Value   

    Approx  
  Pr    >    |t|   

    Variable  
  Label   

   Intercept      1      26.3322      1.4777      17.82       < .0001       
   x      1       - 23.5903      1.7222       - 13.70       < .0001      x   
   AR1      1       - 0.4323      0.2203       - 1.96      0.0663       

    Autoregressive parameters assumed given.   

    Standard  
  Variable       DF   

    Approx  
  Estimate   

    Variable  
  Error       t Value       Pr    >    |t|       Label   

   Intercept      1      26.3322      1.4776      17.82       < .0001       
   x      1       - 23.5903      1.7218       - 13.70       < .0001      x   



  TABLE 14.9    SAS PROC AUTOREG Output for the Toothpaste Market Share Data, 
Assuming Second - Order Autoregressive Errors 

   The SAS System   
   The AUTOREG Procedure   
   Dependent Variable   y   

   Ordinary Least Squares Estimates   

   SSE      3.30825739      DFE      18   
   MSE      0.18379      Root MSE      0.42871   
   SBC      26.762792      AIC      24.7713275   
   Regress R - Square      0.9511      Total R - Square      0.9511   
   Durbin - Watson      1.1358      Pr    <    DW      0.0098   
   Pr    >    DW      0.9902           
   NOTE: Pr < DW is the p - value for testing positive autocorrelation, 
and Pr > DW is the p - value for testing negative autocorrelation.   

    Standard  
  Variable       DF   

    Approx  
  Estimate   

    Variable  
  Error       t Value       Pr    >    |t|       Label   

   Intercept      1      26.9099      1.1099      24.25       < .0001       
   x      1       - 24.2898      1.2978       - 18.72       < .0001      x   

    Estimates of Autocorrelations   
    Lag       Covariance       Correlation        - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 

7 8 9 1   
   0      0.1654      1.000000      | | *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * |   
   1      0.0677      0.409437      | | *  *  *  *  *  *  *  *  |   
   2      0.0223      0.134686      | | *  *  *  |   

    Preliminary MSE      0.1375   

    Estimates of Autoregressive Parameters   

   Standard               
    Lag       Coeffi cient       Error       t Value   

   1       - 0.425646      0.249804       - 1.70   
   2      0.039590      0.249804      0.16   
   Algorithm converged.               

   The SAS System   
   The AUTOREG Procedure   

   Maximum Likelihood Estimates   

   SSE      2.69583958      DFE      16   
   MSE      0.16849      Root MSE      0.41048   
   SBC      28.8691217      AIC      24.8861926   
   Regress R - Square      0.9191      Total R - Square      0.9602   
   Durbin - Watson      1.9168      Pr    <    DW      0.3732   
   Pr    >    DW      0.6268           
   NOTE: Pr < DW is the p - value for testing positive autocorrelation, 
and Pr > DW is the p - value for testing negative autocorrelation.   

    Standard  
  Variable       DF   

    Approx  
  Estimate   

    Variable  
  Error       t Value       Pr    >    |t|       Label   

   Intercept      1      26.3406      1.5493      17.00       < .0001       
   x      1       - 23.6025      1.8047       - 13.08       < .0001      x   
   AR1      1       - 0.4456      0.2562       - 1.74      0.1012       
   AR2      1      0.0297      0.2617      0.11      0.9110       

    Autoregressive parameters assumed given.   

    Standard  
  Variable       DF   

    Approx  
  Estimate   

    Variable  
  Error       t Value       Pr    >    |t|       Label   

   Intercept      1      26.3406      1.5016      17.54       < .0001       
   x      1       - 23.6025      1.7502       - 13.49       < .0001      x   
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 So at the end of the current time period  T  the next observation is

   y y x x aT T T T T+ + += + − + − +1 0 1 1 11φ φ β β φ( ) ( )   

 Assume that the future value of the regressor variable  x T +    1  is known. Obviously, at 
the end of the current time period, both  y T   and  x T   are known. The random error at 
time  T     +    1  a T +    1  hasn ’ t been observed yet, and because we have assumed that the 
expected value of the errors is zero, the best estimate we can make of  a T +    1  is  a T +    1     =    0. 
This suggests that a reasonable forecast of the observation in time period  T     +    1 that 
we can make the end of the current time period  T  is

    ˆ ( ) ˆ ( ˆ) ˆ ˆ ( ˆ )y T y x xT T T T+ += + − + −1 0 1 11φ φ β β φ     (14.15)   

 Notice that this forecast is likely to be very different than the na ï ve forecast obtained 
by ignoring the autocorrelation. 

 To fi nd a  prediction interval  on the forecast, we need to fi nd the variance of the 
prediction error. The one - step - ahead forecast error is

   y y T aT T T+ + +− =1 1 1ˆ ( )  

  assuming that all of the parameters in the forecasting model are known. The vari-
ance of the one - step ahead forecast error is

   V aT a( )+ =1
2σ   

 Using the variance of the one - step - ahead forecast error, we can construct a 100(1 -
  α )% prediction interval for the lead - one forecast from Eq.  (14.15) . The PI is

   ˆ ( ) /y T zT a+ ±1 2α σ  

  where  z   /   2  is the upper   α / 2 percentage point of the standard normal distribution. To 
actually compute an interval, we must replace   σ  a   by an estimate, resulting in

    ˆ ( ) ˆ/y T zT a+ ±1 2α σ     (14.16)  

  as the PI. Because   σ  a   and the model parameters in the forecasting equation been 
replaced by estimates, the probability level on the PI in Eq.  (14.16)  is only 
approximate. 

 Now suppose that we want to forecast two periods ahead assuming that we are 
at the end of the current time period,  T . Using Eq.  (14.14) , we can write the obser-
vation at time period  T     +    2 as

   
y y x x a

y x
T T T T T

T T

+ + + + += + − + − +
= + − +

2 1 0 1 2 1 2

0 1

1

1

φ φ β β φ
φ φ φ β β

( ) ( )

[ ( ) ( ++ + + + +− + + − + − +1 1 0 1 2 1 21φ φ β β φx a x x aT T T T T) ] ( ) ( )
  

 Assume that the future value of the regressor variables  x T +    1  and  x T +    2  are known. At 
the end of the current time period, both  y T   and  x T   are known. The random errors 
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at time  T     +    1 and  T     +    2 haven ’ t been observed yet, and because we have assumed 
that the expected value of the errors is zero, the best estimate we can make of both 
 a T +    1  and  a T +    2  is zero. This suggests that the forecast of the observation in time period 
 T     +    2 made at the end of the current time period  T  is

    

ˆ ( ) ˆ[ ˆ ( ˆ) ˆ ˆ ( ˆ )] ( ˆ) ˆ (y T y x x xT T T T+ += + − + − + − +2 0 1 1 0 11 1φ φ φ β β φ φ βφ β TT T

T T T

x

y T x x

+ +

+ + +

−

= + − + −
2 1

1 0 1 2 11

ˆ )

ˆ ˆ ( ) ( ˆ) ˆ ˆ ( ˆ )
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 The two - step - ahead forecast error is

   y y T a aT T T T+ + + +− = +2 2 2 1ˆ ( ) φ  

  assuming that all estimated parameters are actually known. The variance of the 
two - step ahead forecast error is
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+ ++ = +

= +
2 1

2 2 2

2 21
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 Using the variance of the two - step - ahead forecast error, we can construct a 100(1 -
  α )% PI for the lead - one forecast from Eq. (14.15):

   ˆ ( ) [( )]/
/y T zT a+ ± +2 2

2 1 21α φ σ   

 To actually compute the PI, both   σ  a   and   φ   must be replaced by estimates, resulting 
in

   ˆ ( ) [( ˆ )] ˆ/
/y T zT a+ ± +2 2

2 1 21α φ σ     (14.18)  

  as the PI. Because   σ  a   and   φ   have been replaced by estimates, the probability level 
on the PI in Eq.  (14.18)  is only approximate. 

 In general, if we want to forecast   τ   periods ahead, the forecasting equation is

    ˆ ( ) ˆ ˆ ( ) ( ˆ) ˆ ˆ ( ˆ )y T y T x xT T T T+ + − + + −= + − + −τ τ τ τφ φ β β φ1 0 1 11     (14.19)   

 The   τ   - step - ahead forecast error is (assuming that the estimated model parameters 
are known)

   y y T a a aT T T T T+ + + + −
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1
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  and the variance of the   τ   - step - ahead forecast error is
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 A 100(1 -  α )% PI for the lead -   τ   forecast from Eq.  (14.19)  is
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−
+

⎛
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 Replacing   σ  a   and   φ   by estimates, the approximate 100(1 -  α )% PI is actually com-
puted from
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    (14.20)    

  The Case Where the Predictor Variable Must Also Be Forecast     In the preced-
ing discussion, we assumed that in order to make forecasts, any necessary values of 
the predictor variable in future time periods  T     +      τ   are known. This is often (prob-
ably usually) an unrealistic assumption. For example, if you are trying to forecast 
how many new vehicles will be registered in the state of Arizona in some future 
year  T     +      τ   as a function of the state population in year  T     +      τ  , it ’ s pretty unlikely that 
you will actually know the state population in that future year. 

 A straightforward solution to this problem is to replace the required future 
values of the predictor variable in future time periods  T     +      τ   by forecasts of these 
values. For example, suppose that we are forecasting one period ahead. From Eq. 
 (14.15)  we know that the forecast for  y T +    1  is

   ˆ ( ) ˆ ( ˆ) ˆ ˆ ( ˆ )y T y x xT T T T+ += + − + −1 0 1 11φ φ β β φ   

 But the future value of  x T +    1  isn ’ t known. Let   ̂ ( )x TT +1  be an unbiased forecast of  x T +    1 , 
made at the end of the current time period  T . Now the forecast for  y T +    1  is

    ˆ ( ) ˆ ( ˆ) ˆ ˆ [ ˆ ( ) ˆ ]y T y x T xT T T T+ += + − + −1 0 1 11φ φ β β φ     (14.21)   

 If we assume that the model parameters are known, the one - step - ahead forecast 
error is

   y y T a x x TT T T T T+ + + + +− = + −1 1 1 1 1 1ˆ ( ) [ ˆ ( )]β  

  and the variance of this forecast error is

    V aT a x( ) ( )+ = +1
2

1
2 2 1σ β σ     (14.22)  

  where   σ x
2 1( ) is the variance of the one - step - ahead forecast error for the predictor 

variable  x  and we have assumed that the random error  a T +    1  in period  T     +    1 is inde-
pendent of the error in forecasting the predictor variable. Using the variance of the 
one - step - ahead forecast error we can construct a 100(1 -  α )% prediction interval for 
the lead - one forecast from Eq.  (14.21) . The PI is

   ˆ ( ) [ ( )]/
/y T zT a x+ ± +1 2

2
1
2 2 1 21α σ β σ  

  where  z   /   2  is the upper   α / 2 percentage point of the standard normal distribution. To 
actually compute an interval, we must replace the parameters   β   1 ,   σa

2 and   σ x
2 1( ) by 

estimates, resulting in
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    ˆ ( ) [ ˆ ˆ ˆ ( )]/
/y T zT a x+ ± +1 2

2
1
2 2 1 21α σ β σ     (14.23)  

  as the PI. Because the parameters have been replaced by estimates, the probability 
level on the PI in Eq.  (14.23)  is only approximate. 

 In general, if we want to forecast   τ   periods ahead, the forecasting equation is

    ˆ ( ) ˆ ˆ ( ) ( ˆ) ˆ ˆ [ ˆ ( ) ˆ ˆ ( )]y T y T x T x TT T T T+ + − + + −= + − + −τ τ τ τφ φ β β φ1 0 1 11     (14.24)   

 The   τ   - step - ahead forecast error is, assuming that the model parameters are 
known,
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  and the variance of the   τ   - step - ahead forecast error is
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  where   σ τx
2 ( ) is the variance of the   τ   - step - ahead forecast error for the predictor vari-

able  x.  A 100(1 -  α )% PI for the lead -   τ   forecast from Eq.  (14.24)  is
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 Replacing all of the unknown parameters by estimates, the approximate 100(1 -  α )% 
PI is actually computed from
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    (14.25)    

  Alternate Forms of the Model     The regression model with autocorrelated errors

   y y x x at t t t t= + − + − +− −φ φ β β φ1 0 1 11( ) ( )  

  is a very useful model for forecasting time - series regression data. However, when 
using this model there are two alternatives that should be considered. The fi rst of 
these is

    y y x x at t t t t= + + + +− −φ β β β1 0 1 2 1     (14.26)   

 This model removes the requirement that the regression coeffi cient for the lagged 
predictor variable  x t    − 1  be equal to  −   β   1   ϕ  . An advantage of this model is that it can be 
fi t by ordinary least squares. Another alternative model to consider is to simply drop 
the lagged value of the predictor variable from Eq.  (14.26) , resulting in

    y y x at t t t= + + +−φ β β1 0 1     (14.27)   
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  TABLE 14.10    Minitab Results for Fitting Model (14.26) to the Toothpaste Market 
Share Data 

   Regression Analysis: y versus y(t - 1), x, x(t - 1)   

   The regression equation is   
   y  =  16.1  +  0.425 y(t - 1)  -  22.2 x  +  7.56 x(t - 1)   

   Predictor      Coef      SE Coef      T      P       
   Constant      16.100      6.095      2.64      0.019       
   y(t - 1)      0.4253      0.2239      1.90      0.077       
   x       - 22.250      2.488       - 8.94      0.000       
   x(t - 1)      7.562      5.872      1.29      0.217       
   S  =  0.402205      R - Sq  =  96.0%      R - Sq(adj)  =  95.2%       

   Analysis of Variance   
   Source      DF      SS      MS      F      P   
   Regression      3      58.225      19.408      119.97      0.000   
   Residual Error      15      2.427      0.162           
   Total      18      60.651               

   Source      DF      Seq     SS            
   y(t - 1)      1      44.768           
   x      1      13.188           
   x(t - 1)      1      0.268           
   Durbin – Watson statistic  =  2.04203   

 Often just including the lagged value of the response variable is suffi cient and Eq. 
 (14.27)  will be satisfactory. 

 The choice between models should always be a data - driven decision. The different 
models can be fi t to the available data, and model selection can be based in the criteria 
that we have discussed previously, such as model adequacy checking and residual 
analysis, and (if enough data are available to do so split the data into an estimation 
set to fi t the model and then evaluate how the different models perform on the 
remaining test or evaluation data set) forecasting performance over a test or trial 
period of data. See Montgomery, Jennings, and Kulahci  (2008)  for more discussion.       

 Example 14.5 

    Reconsider the toothpaste market share data originally presented in Example  14.3  
and modeling with a time series regression model with fi rst - order autoregressive 
errors in Example  14.4 . First we will try fi tting the model in Eq.  (14.26) . This model 
simply relaxes the restriction that the regression coeffi cient for the lagged predictor 
variable  x t    − 1  (price in this example) be equal to  −   β   1   ϕ  . Since this is just a linear regres-
sion model, we can fi t it using Minitab. Table  14.10  contains the Minitab results.     

 This model is a good fi t to the data. The Durbin – Watson Statistic is  d     =    2.04203, 
which indicates no problems with autocorrelations in the residuals. However, note 
that the  t  - statistic for the lagged predictor variable (price) is not signifi cant 
( P     =    0.217) indicating that this variable could be removed from the model. If  x t    −    1   is 
removed then the model becomes the one in Eq.  (14.27) . The Minitab output for 
this model is in Table  14.11 .   
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  TABLE 14.11    Minitab Results for Fitting Model (14.27) to the Toothpaste Market 
Share Data 

   Regression Analysis: y versus y(t - 1), x   

   The regression equation is   
   y  =  23.3  +  0.162 y(t - 1)  -  21.2 x   
   Predictor      Coef      SE Coef      T      P       
   Constant      23.279      2.515      9.26      0.000       
   y(t - 1)      0.16172      0.09238      1.75      0.099       
   x       - 21.181      2.394       - 8.85      0.000       
   S  =  0.410394      R - Sq  =  95.6%      R - Sq(adj)  =  95.0%       

   Analysis of Variance   
   Source      DF      SS      MS      F      P   
   Regression      2      57.956      28.978      172.06      0.000   
   Residual Error      16      2.695      0.168           
   Total      18      60.651               

   Source      DF      Seq     SS            
   y(t - 1)      1      44.768               
   x      1      13.188               
   Durbin – Watson statistic  =  1.61416   

 PROBLEMS 

       14.1    Table B.17 contains data on the global mean surface air temperature anomaly 
and the global CO 2  concentration. Fit a regression model to these data, using 
the global CO 2  concentration as the predictor. Analyze the residuals from 
this model. Is there evidence of autocorrelation in these data? If so, use one 
iteration of the Cochrane – Orcutt method to estimate the parameters.   

    14.2    Table B.18 contains hourly yield measurements from a chemical process and 
the process operating temperature. Fit a regression model to these data with 
the Cochrane – Orcutt method, using the temperature as the predictor. 
Analyze the residuals from this model. Is there evidence of autocorrelation 
in these data?   

    14.3    The data in the table below give the percentage share of market of a particu-
lar brand of canned peaches ( y t  ) for the past 15 months and the relative 
selling price ( x t  ).

 This model is also a good fi t to the data. Both predictors, the lagged variable  y t    − 1  
and  x t  , are signifi cant. The Durbin – Watson statistic does not indicate any signifi cant 
problems with autocorrelation. It seems that either of these models would be rea-
sonable ones for the toothpaste market share data. The advantage of these models 
relative to the time series regression model with autocorrelated errors is that they 
can be fi t by ordinary least squares. In this example, including a lagged response 
variable and a lagged predictor variable has essentially eliminated any problems 
with autocorrelated errors.        ■   
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   a.     Fit a simple linear regression model to these data. Plot the residuals 
versus time. Is there any indication of autocorrelation?  

  b.     Use the Durbin – Watson test to determine if there is positive autocorrela-
tion in the errors. What are your conclusions?  

  c.     Use one iteration of the Cochrane – Orcutt procedure to estimate the 
regression coeffi cients. Find the standard errors of these regression 
coeffi cients.  

  d.     Is there positive autocorrelation remaining after the fi rst iteration? Would 
you conclude that the iterative parameter estimation technique has been 
successful?    

     Market Share and Price of Canned Peaches  

    t       x t        y t        t       x t        y t    

  1    100    15.93    9    85    16.60  
  2    98    16.26    10    83    17.16  
  3    100    15.94    11    81    17.77  
  4    89    16.81    12    79    18.05  
  5    95    15.67    13    90    16.78  
  6    87    16.47    14    77    18.17  
  7    93    15.66    15    78    17.25  
  8    82    16.94              

    14.4    The data in the following table gives the monthly sales for a cosmetics 
manufacturer ( y t  ) and the corresponding monthly sales for the entire indus-
try ( x t  ). The units of both variables are millions of dollars.
   a.     Build a simple linear regression model relating company sales to industry 

sales. Plot the residuals against time. Is there any indication of 
autocorrelation?  

  b.     Use the Durbin – Watson test to determine if there is positive autocorrela-
tion in the errors. What are your conclusions?  

  c.     Use one iteration of the Cochrane – Orcutt procedure to estimate the 
model parameters. Compare the standard error of these regression coef-
fi cients with the standard error of the least - squares estimates.  

  d.     Test for positive autocorrelation following the fi rst iteration. Has the 
procedure been successful?    

     Cosmetic Sales Data for Exercise 14.4  

    t       x t        y t        t       x t        y t    

  1    5.00    0.318    10    6.16    0.650  
  2    5.06    0.330    11    6.22    0.685  
  3    5.12    0.356    12    6.31    0.713  
  4    5.10    0.334    13    6.38    0.724  
  5    5.35    0.386    14    6.54    0.775  
  6    5.57    0.455    15    6.68    0.78  
  7    5.61    0.460    16    6.73    0.796  
  8    5.80    0.527    17    6.89    0.859  
  9    6.04    0.598    18    6.97    0.88  
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    14.5    Reconsider the data in Exercise 14.4. Defi ne a new set of transformed vari-
ables as the fi rst difference of the original variables,   ′ = − −y y yt t t 1 and 
  ′ = − −x x xt t t 1. Regress   ′yt  on   ′xt  through the origin. Compare the estimate of 
the slope from this fi rst - difference approach with the estimate obtained from 
the iterative method in Exercise 14.4.   

    14.6    Consider the simple linear regression model  y t      =      β   0     +      β   1  x     +     ε   t  , where the 
error are generated by the second - order autoregressive process

   ε ρ ε ρ εt t t ta= + +− −1 1 2 2   

 Discuss how the Cochrane – Orcutt iterative procedure could be used in this 
situation. What transformations would be used on the variable  y t   and  x t  ? 
How would you estimate the parameters   ρ   1  and   ρ   2 ?   

    14.7    Consider the weighted least squares normal equations for the case of simple 
linear regression where time is the predictor variable. Suppose that the vari-
ances of the errors are proportional to the index of time such that  w t      =    1/ t . 
Simplify the normal equations for this situation. Solve for the estimates of 
the model parameters.   

    14.8    Consider a simple linear regression model where time is the predictor vari-
able. Assume that the errors are uncorrelated and have constant variance 
  σ   2 . Show that the variances of the model parameter estimates are

   V
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    14.9    Consider the data in Exercise 14.3. Fit a time series regression model with 
autocorrected errors to these data. Compare this model with the results you 
obtained in Exercise 14.3 using the Cochrane – Orcutt procedure.   

    14.10    Consider the data in Exercise 14.3. Fit the lagged variables regression models 
shown in Eq.  (14.26)  and  (14.27)  to these data. Compare these models with 
the results you obtained in Exercise 14.3 using the Cochrane – Orcutt proce-
dure, and with the time series regression model from Exercise 14.9.   

    14.11    Consider the cosmetic sakes data in Exercise 14.4. Fit a time series regres-
sion model with autocorrected errors to these data. Compare this model with 
the results you obtained in Exercise 14.4 using the Cochrane – Orcutt 
procedure.   

    14.12    Consider the cosmetic sales data in Exercise 14.4. Fit the lagged variables 
regression models shown in Eq.  (14.26)  and  (14.27)  to these data. Compare 
these models with the results you obtained in Exercise 14.4 using the 
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Cochrane – Orcutt procedure, and with the time series regression model from 
Exercise 14.11.   

    14.13    Consider the global surface air temperature anomaly data and the CO 2  
concentration data in Table B.17. Fit a time series regression model to these 
data, using global surface air temperature anomaly as the response variable. 
Is there any indication of autocorrelation in the residuals? What corrective 
action and modeling strategies would you recommend?       
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  CHAPTER 15 

OTHER TOPICS IN THE USE OF 
REGRESSION ANALYSIS     

     This chapter surveys a variety of topics that arise in the use of regression analysis. 
In several cases only a brief glimpse of the subject is given along with references to 
more complete presentations.  

   15.1    ROBUST REGRESSION 

   15.1.1    Need for Robust Regression 

 When the observations  y  in the linear regression model  y     =     X   β      +      ε   are normally 
distributed, the method of least squares is a good parameter estimation procedure 
in the sense that it produces an estimator of the parameter vector   β   that has good 
statistical properties. However, there are many situations where we have evidence 
that the distribution of the response variable is (considerably) nonnormal and/or 
there are outliers that affect the regression model. A case of considerable practical 
interest is one in which the observations follow a distribution that has longer or 
heavier tails than the normal. These heavy - tailed distributions tend to generate 
outliers, and these outliers may have a strong infl uence on the method of least 
squares in the sense that they  “ pull ”  the regression equation too much in their 
direction. 

 For example, consider the 10 observations shown in Figure  15.1  The point labeled 
 A  in this fi gure is just at the right end of the  x  space, but it has a response value that 
is near the average of the other 9 responses. If all the observations are considered, 
the resulting regression model is   ̂ . .y x= +2 12 0 971 , and  R  2     =    0.526. However, if we 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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fi t the linear regression model to all observations  other  than observation A, we 
obtain   ̂ . .y x= +0 715 1 45 , for which  R  2     =    0.894. Both lines are shown in Figure  15.1 . 
Clearly, point  A  has had a dramatic effect on the regression model and the resulting 
value of  R  2 .   

 One way to deal with this situation is to discard observation A. This will produce 
a line that passes nicely through the rest of the data and one that is more pleasing 
from a statistical standpoint. However, we are now discarding observations simply 
because it is expedient from a statistical modeling viewpoint, and generally, this is 
not a good practice. Data can sometimes be discarded (or modifi ed) on the basis of 
 subject - matter  knowledge, but when we do this purely on a statistical basis, we are 
usually asking for trouble. We also note that in more complicated situations, involv-
ing more regressors and a larger sample, even detecting that the regression model 
has been distorted by observations such as A can be diffi cult. 

 A  robust regression procedure  is one that dampens the effect of observations 
that would be highly infl uential if least squares were used. That is, a robust procedure 
tends to leave the residuals associated with outliers large, thereby making the iden-
tifi cation of infl uential points much easier. In addition to insensitivity to outliers, a 
robust estimation procedure should produce essentially the same results as least 
squares when the underlying distribution is normal and there are no outliers. 
Another desirable goal for robust regression is that the estimation procedures and 
reference procedures should be relatively easy to perform. 

 The motivation for much of the work in robust regression was the Princeton 
robustness study (see Andrews et al. [ 1972 ]). Subsequently, there have been several 
types of robust estimators proposed. Some important basic references include 
Andrews [ 1974 ], Carroll and Ruppert [ 1988 ], Hogg [ 1974, 1979a,b ], Huber [ 1972, 
1973, 1981 ], Krasker and Welsch [ 1982 ], Rousseeuw [ 1984, 1998 ], and Rousseeuw 
and Leroy [ 1987 ]. 

 To motivate some of the following discussion and to further demonstrate why it 
may be desirable to use an alternative to least squares when the observations are 
nonnormal, consider the simple linear regression model

    y x i ni i i= + + =β β ε0 1 1 2, , , ,…     (15.1)  

     Figure 15.1     A scatter diagram of a sample containing an infl uential observation.  
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  where the errors are independent random variables that follow the  double expo-
nential distribution  

     f ei i
iε

σ
εε σ( ) = −∞ < < ∞−1

2
,     (15.2)   

 The double - exponential distribution is shown in Figure  15.2 . The distribution is 
more  “ peaked ”  in the middle than the normal and tails off to zero as  |  ε   i   |  goes to 
infi nity. However, since the density function goes to zero as   e i− ε  goes to zero and 
the normal density function goes to zero as   e i−ε2

 goes to zero, we see that the double -
 exponential distribution has  heavier tails  than the normal.   

 We will use the method of  maximum likelihood  to estimate   β   0  and   β   1 . The likeli-
hood function is
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    (15.3)   

 Therefore, maximizing the likelihood function would involve minimizing   ∑ =i
n

i1 ε , the 
sum of the absolute errors. Recall that the method of maximum likelihood applied 
to the regression model with normal errors leads to the least - squares criterion. Thus, 
the assumption of an error distribution with heavier tails than the normal implies 
that the method of least squares is no longer an optimal estimation technique. Note 
that the absolute error criterion would weight outliers far less severely than would 
least squares. Minimizing the sum of the absolute errors is often called the  L  1  - norm 
regression problem (least squares is the  L  2  - norm regression problem). This criterion 
was fi rst suggested by F. Y. Edgeworth in 1887, who argued that least squares was 
overly infl uenced by large outliers. One way to solve the problem is through a linear 
programming approach. For more details on  L  1  - norm regression, see Sielken and 
Hartley [ 1973 ], Book et al. [ 1980 ], Gentle, Kennedy, and Sposito [ 1977 ], Bloomfi eld 
and Steiger [ 1983 ], and Dodge [ 1987 ]. 

     Figure 15.2     The double - exponential distribution.  
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 The  L  1  - norm regression problem is a special case of  L p   - norm regression, in which 
the model parameters are chosen to minimize   ∑ =i

n
i

p
1 ε  where 1    ≤     p     ≤    2. When 

1    <     p     <    2, the problem can be formulated and solved using nonlinear programming 
techniques. Forsythe [ 1972 ] has studied this procedure extensively for the simple 
linear regression model.  

   15.1.2     M  - Estimators 

 The  L  1  - norm regression problem arises naturally from the maximum - likelihood 
approach with double - exponential errors. In general, we may defi ne  a class of robust 
estimators  that minimize a function   ρ   of the residuals, for example,

    Minimize Minimize
b b

bρ ρe yi

i

n

i i

i

n

( ) = − ′( )
= =
∑ ∑

1 1

x     (15.4)  

  where   ′xi denotes the  i th row of  X . An estimator of this type is called an  M   - estimator , 
where  M  stands for  maximum - likelihood . That is, the function   ρ   is related to the 
likelihood function for an appropriate choice of the error distribution. For example, 
if the method of least squares is used (implying that the error distribution is normal), 
then   ρ z z( ) = 1

2
2,  −  ∞     <     z     <     ∞ . 

 The  M  - estimator is not necessarily scale invariant [i.e., if the errors   yi i− ′x b 
were multiplied by a constant, the new solution to Eq.  (15.4)  might not be same 
as the old one]. To obtain a scale - invariant version 0 this estimator, we usually 
solve

    Minimize Minimize
b b
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  where  s  is a robust estimate of scale. A popular choice for  s  is the median absolute 
deviation 

     s e ei i= − ( )median median 0 6745.     (15.6)   

 The tuning constant 0.6745 makes  s  an approximately unbiased estimator of   σ   if  n  
is large and the error distribution is normal 

 To minimize Eq.  (15.5) , equate the fi rst partial derivatives of   ρ   with respect to   β  j   
( j     =    0,1,    . . .    ,  k ) to zero, yielding a necessary condition for a minimum. This gives the 
system of  p     =     k     +    1 equations

    x
y

s
j kij

i i

i

n

ψ − ′⎛
⎝⎜

⎞
⎠⎟ = =

=
∑ x b

1

0 0 1, , , ,…     (15.7)  

  where   ψ      =      ρ   ′  and  x ij   is the  i th observation on the  j th regressor and  x i   0     −    1. In general, 
the   ψ   function is nonlinear and Eq.  (15.7)  must be solved by iterative methods. While 
several nonlinear optimization techniques could be employed,  iteratively reweighted 
least squares  (IRLS) is most widely used. This approach is usually attributed to 
Beaton and Tukey [ 1974 ]. 
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 To use iteratively reweighted least squares, suppose that an initial estimate   b̂0 is 
available and that  s  is an estimate of scale. Then write the  p     =     k     +    1 equations in 
Eq.  (15.7) ,
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s
x y s y s y

ij
i i

i
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  as
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    (15.10)   

 In matrix notation, Eq.  (15.9)  becomes

    ′ = ′X W X X W y0 0b     (15.11)  

  where  W  0  is an  n     ×     n  diagonal matrix of  “ weights ”  with diagonal elements  w  10 ,  w  20 , 
  . . .   ,  w   n 0  given by Eq.  (15.10) . We recognize Eq.  (15.11)  as the usual weighted least -
 squares normal equations. Consequently, the  one - step estimator  is

    b̂1 0
1

0= ′( ) ′−X W X X W y     (15.12)   

 At the next step we recompute the weights from Eq.  (15.10)  but using   b̂1 instead of 
  b̂0. Usually only a few iterations are required to achieve convergence. The iteratively 
reweighted least - squares procedure could be implemented using a standard weighted 
least - squares computer program. 

 A number of popular robust criterion functions are shown in Table  15.1  
behavior of these   ρ   functions and their corresponding   ψ   functions are illustrated 
in Figures  15.3  and  15.4 , respectively. Robust regression procedures can be 
classifi ed by the behavior of their   ψ   function. The   ψ   function controls the weight 
given to each residual and (apart from a constant of proportionality) is some-
times called the  infl uence function . For example, the   ψ   function for least squares 
is unbounded, and thus least squares tends to be nonrobust when used with 
data arising from a heavy - tailed distribution. The Huber  t  function (Huber [ 1964 ]) 
has a  monotone    ψ   function and does not weight large residuals as heavily as 
least squares. The last three infl uence functions actually  redescend  as the residual 
becomes larger. Ramsay ’ s  E a   function (see Ramsay [ 1977 ]) is a  soft redes-
cender , that is, the   ψ   function is asymptotic to zero for large  |  z  | . Andrew ’ s wave 
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     Figure 15.3     Robust criterion functions.  
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  TABLE 15.1    Robust Criterion Functions 

   Criterion      p ( z )       ψ  ( z )      w ( z )     Range  

  Least squares  
    1
2

2z   
   z     1.0     Ӏ  z  і     <     ∞   

  Huber ’ s  t  function      1
2

2z      z     1.0     |  z  |     ≤     t   

   t     =    2      z t t− 1
2

2
     t  sign ( z )      t

z
     |  z  |     >     t   

  Ramsay ’ s  E a   
function  

   a   − 2 [1    −    exp( −  a  |  z  | )  ·  
(1    +     a  |  z  | )]  

   z  exp ( −  a  |  z  | )    exp ( −  a  |  z  | )     |  z  |     <     ∞   

   a     =    0.3                  
  Andrews ’ ; wave 

function  
   a [1    −    cos ( z / a )]    sin ( z / a )      sin z a

z a
( )      |  z  |     ≤     a π    

   a     =    1.339    2 a     0    0     |  z  |     >     a π    
  Hampel ’ s 17A 

function  
    1
2

2z      z     1.0     |  z  |     ≤     a   

   a     =    1.7                  
   b     =    3.4      a z a− 1

2
2      a  sin ( z )     a / |  z  |      a     <     |  z  |     ≤     b   

   c     =    8.5                  
    

    
a c z z

c b
a

−( )
−

− ( )
1
2

2
27 6       a z c z

c b
sign ( ) −( )

−
      

a c z
z c b

−( )
−( )   

   b     <     |  z  |     ≤     c   

       a  ( b     +     c     −     a )    0    0     |  z  |     >     c   

function and Hampel ’ s 17A function (see Andrews et al. [ 1972 ] and Andrews [ 1974 ]) 
are  hard redescenders , that is, the   ψ   function equals zero for suffi ciently large  |  z  | . 
We should note that the   ρ   functions associated with the redescending   ψ   functions 
are nonconvex, and this in theory can cause convergence problems in the iterative 
estimation procedure. However, this is not a common occurrence. Furthermore, each 
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     Figure 15.4     Robust infl uence functions: ( a ) least squares; ( b ) Huber ’ s  t  functions; ( c ) Ram-
say ’ s  E a   function; ( d ) Andrews ’ ; wave function; ( e ) Hampel ’ s 17A function.  
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of the robust criterion functions requires the analyst to specify certain  “ tuning con-
stants ”  for the   ψ   functions. We have shown typical values of these tuning constants 
in Table  15.1 .     

 The starting value   b̂0 used in robust estimation can be an important consider-
ation. Using the least - squares solution can disguise the high leverage points. The 
 L  1  - norm estimates would be a possible choice of starting values. Andrews [ 1974 ] 
and Dutter [ 1977 ] also suggest procedures for choosing the starting values. 

 It is important to know something about the error structure of the fi nal robust 
regression estimates   b̂ . Determining the covariance matrix of   b̂  is important if we 
are to construct confi dence intervals or make other model inferences. Huber [ 1973 ] 
has shown that asymptotically   b̂  has an approximate normal distribution with cova-
riance matrix

   σ
ψ ε σ
ψ ε σ

2
2

2
1E

E

( )[ ]
′ ( ){ }{ }

′( )−X X   

 Therefore, a reasonable approximation for the covariance matrix of   b̂  is
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 The weighted least - squares computer program also produces an estimate of the 
covariance matrix
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 Other suggestions are in Welsch [ 1975 ] and Hill [ 1979 ]. There is no general
agreement about which approximation to the covariance matrix of   b̂  is best. Both 
Welsch and Hill note that these covariance matrix estimates perform poorly for  X  
matrices that have outliers. Ill - conditioning (multicollinearity) also distorts robust 
regression estimates. However, There are indications that in many cases we can 
make approximate inferences about   b̂  using procedures similar to the usual normal 
theory. 

 Example 15.1   The Stack Loss Data 

    Andrews [ 1974 ] uses the stack loss data analyzed by Daniel and Wood [ 1980 ] to 
illustrate robust regression. The data, which are taken from a plant oxidizing 
ammonia to nitric acid, are shown in Table  15.2 . An ordinary least - squares (OLS) 
fi t to these data gives

   ˆ . . . .y x x x= − + + −39 9 0 72 1 30 0 151 2 3     

  TABLE 15.2    Stack Loss Data from Daniel and Wood [ 1980 ] 

   Observation 
Number     Stack Loss,  y      Air Flow,  x  1   

   Cooling Water Inlet 
Temperature,  x  2   

   Acid 
Concentration,  x  3   

     1    42    80    27    89  
     2    37    80    27    88  
     3    37    75    25    90  
     4    28    62    24    87  
     5    18    62    22    87  
     6    18    62    23    87  
     7    19    62    24    93  
     8    20    62    24    93  
     9    15    58    23    87  
  10    14    58    18    80  
  11    14    58    18    89  
  12    13    58    17    88  
  13    11    58    18    82  
  14    12    58    19    93  
  15    8    50    18    89  
  16    7    50    18    86  
  17    8    50    19    72  
  18    8    50    19    79  
  19    9    50    20    80  
  20    15    56    20    82  
  21    15    70    20    91  
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 The residuals from this model are shown in column 1 of Table  15.3  and a normal 
probability plot is shown in Figure  15.5  a  Daniel and Wood note that the residual 
for point 21 is unusually large and has considerable infl uence on the regression 
coeffi cients. After an insightful analysis, they delete points 1, 3, 4, and 21 from the 
data, The OLS fi t  †   to the remaining data yields

   ˆ . . . .y x x x= − + + −37 6 0 80 0 58 0 071 2 3       

 The residuals from this model are shown in column 2 of Table  15.3 , and the corre-
sponding normal probability plot is in Figure  15.5  b . This plot does not indicate any 
unusual behavior in the residuals. 

 Andrews [ 1974 ] observes that most users of regression lack the skills of Daniel 
and Wood and employs robust regression methods to produce equivalent results, A 
robust fi t to the stack loss data using the wave function with  a     =    1.5 yields

   †       Daniel and Wood fi t a model involving  x  1 ,  x  2 , and   x1
2. Andrews elected to work with all three original 

regressors. He notes that if  x  3  is deleted and   x1
2 added, smaller residuals result but the general fi ndings 

are the same. 

  TABLE 15.3    Residuals for Various Fits to the Stack Loss Data    a     

   Observation  

   Residuals  

   Least Squares     Andrews ’ ; Robust Fit  

  (1)    (2)    (3)    (4)  

   All 21 Points     1, 3, 4, 21 Out     All 21 Points     1,3,4,21 Out  

     1    3.24     6.08    b       6.11     6.11   
     2     − 1.92    1.15    1.04    1.04  
     3    4.56     6.44     6.31     6.31   
     4    5.70     8.18     8.24     8.24   
     5     − 1.71     − 0.67     − 1.24     − 1.24  
     6     − 3.01     − 1.25     − 0.71     − 0.71  
     7     − 2.39     − 0.42     − 0.33     − 0.33  
     8     − 1.39    0.58    0.67    0.67  
     9     − 3.14     − 1.06     − 0.97     − 0.97  
  10    1.27    0.35    0.14    0.14  
  11    2.64    0.96    0.79    0.79  
  12    2.78    0.47    0.24    0.24  
  13     − 1.43     − 2.51     − 2.71     − 2.71  
  14     − 0.05     − 1.34     − 1.44     − 1.44  
  15    2.36    1.34    1.33    1.33  
  16    0.91    0.14    0.11    0.11  
  17     − 1.52     − 0.37     − 0.42     − 0.42  
  18     − 0.46    0.10    0.08    0.08  
  19     − 0.60    0.59    0.63    0.63  
  20    1.41    1.93    1.87    1.87  
  21     − 7.24     −  8.63      − 8.91     −  8.91   

     a       Adapted from Table 5 in Andrews [ 1974 ], with permission of the publisher.  
    b       Underlined residuals correspond to points not included in the fi t.   
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     Figure 15.5     Normal probability plots from least - squares fi ts: ( a ) least squares with all 21 
points; ( b ) least squares with 1, 3, 4, and 21 deleted.  (From Andrews [ 1974 ], with permission 
of the publisher.)   
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   ˆ . . . .y x x x= − + + −37 2 0 82 0 52 0 071 2 3   

 This is virtually the same equation found by Daniel and Wood using OLS after much 
careful analysis, The residuals from this model are shown in column 3 of Table  15.3 , 
and the normal probability plot is in Figure  15.6  a . The four suspicious points are 
clearly identifi ed in this plot Finally, Andrews obtains a robust fi t to the data with 
points 1, 3, 4, and 21 removed. The resulting equation is identical to the one found 
using all 21 data points, The residuals from this fi t and the corresponding normal 
probability plot are shown in column 4 of Table  15.3  and Figure  15.6  b , respectively. 
This normal probability plot is virtually identical to the one obtained from the OLS 
analysis with points 1, 3, 4, and 21 deleted (Figure  15.5  b )   

 Once again we fi nd that the routine application of robust regression has led to 
the automatic identifi cation of the suspicious points. It has also produced a fi t that 
does not depend on these points in any important way. Thus, robust regression 
methods can be viewed as procedures for isolating unusually infl uential points, so 
that these points may be given further study.        ■   

  Computing  M  - Estimates     Not many statistical software packages compute  M  -
 estimates. S - PLUS and STATA do have this capability. SAS recently added it. The 
SAS code to analyze the stack loss data is: 

  proc         robustreg; 
                model y  =  xl x2 x3 / diagnostics leverage; 
 run;  

 SAS ’ s default procedure uses the bisquare weight function (see Problem 15.3) and 
the median method for estimating the scale parameter. 

 Robust regression methods have much to offer the data analyst. They can be 
extremely helpful in locating outliers and highly infl uential observations. Whenever 
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a least - squares analysis is performed, it would be useful to perform a robust fi t also. 
If the results of the two procedures are in substantial agreement, then use the least -
 squares results, because inferences based on least squares are at present better 
understood. However, if the results of the two analyses differ, then reasons for these 
differences should be identifi ed. Observations that are downweighted in the robust 
fi t should be carefully examined.   

   15.1.3    Properties of Robust Estimators 

 In this section we introduce two important properties of robust estimators: 
 breakdown  and  effi ciency . We will observe that the breakdown point of an estimator 
is a practical concern that should be taken into account when selecting a robust 
estimation procedure. Generally,  M  - estimates perform poorly with respect to 
breakdown point. This has spurred development of many other alternative 
procedures. 

  Breakdown Point     The fi nite - sample  breakdown point  is the smallest fraction of 
anomalous data that can cause the estimator to be useless. The smallest possible 
breakdown point is 1/ n,  that is, a single observation can distort the estimator so 
badly that it is of no practical use to the regression model - builder. The breakdown 
point of OLS is 1/ n.  

  M  - estimates can be affected by  x  - space outliers in an identical manner to OLS. 
Consequently, the breakdown point of the class of  M  - estimators is 1/ n.  This has a 
potentially serious impact on their practical use, since it can be diffi cult to determine 
the extent to which the sample is contaminated with anomalous data. Most experi-
enced data analysts believe that the fraction of data that are contaminated by 
erroneous data typically varies between 1 and 10%. Therefore, we would generally 
want the breakdown point of an estimator to exceed 10%. This has led to the devel-
opment of  high - breakdown - point estimators .  

     Figure 15.6     Normal probability plots from robust fi ts: ( a ) robust fi t with all 21 points; 
( b ) robust fi t with 1, 3, 4, and 21 deleted.  (From Andrews [ 1974 ], with permission of the 
publisher.)   
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  Effi ciency     Suppose that a data set has no gross errors, there are no infl uential 
observations, and the observations come from a normal distribution. If we use a 
robust estimator on such a data set, we would want the results to be virtually identi-
cal to OLS, since OLS is the appropriate technique for such data. The effi ciency of 
a robust estimator can be thought of as the residual mean square obtained from 
OLS divided by the residual mean square from the robust procedure. Obviously, we 
want this effi ciency measure to be close to unity. 

 There is a lot of emphasis in the robust regression literature on  asymptotic effi -
ciency , that is, the effi ciency of an estimator as the sample size  n  becomes infi nite. 
This is a useful concept in comparing robust estimators, but many practical regres-
sion problems involve small to moderate sample sizes ( n     <    50, for instance), and 
small - sample effi ciencies are known to differ dramatically from their asymptotic 
values. Consequently, a model - builder should be interested in the asymptotic behav-
ior of any estimator that might be used in a given situation but should not be unduly 
excited about it. What is more important from a practical viewpoint is the  fi nite -
 sample effi ciency , or how well a particular estimator works with reference to OLS 
on  “ clean ”  data for sample sizes consistent with those of interest in the problem at 
hand. The fi nite - sample effi ciency of a robust estimator is defi ned as the ratio of the 
OLS residual mean square to the robust estimator residual mean square, where OLS 
is applied only to the clean data. Monte Carlo simulation methods are often used 
to evaluate fi nite - sample effi ciency.    

   15.2    EFFECT OF MEASUREMENT ERRORS IN THE REGRESSORS 

 In almost all regression models we assume that the response variable  y  is subject 
to the error term  ε  and that the regressor variables  x  1 ,  x  2 ,    . . .    ,  x k   are  deterministic  
or  mathematical variables , not affected by error. There are two variations of this 
situation. The fi rst is the case where the response and the regressors are  jointly 
distributed random variables  This assumption gives rise to the  correlation model  
discussed in Chapter  2  (refer to Section  2.12 ). The second is the situation where 
there are  measurement errors  in the response and the regressors. Now if measure-
ment errors are present only in the response variable  y,  there are no new problems 
so long as these errors are uncorrelated and have no bias (zero expectation). 
However, a different situation occurs when there are measurement errors in the  x  ’ s. 
We consider this problem in this section. 

   15.2.1    Simple Linear Regression 

 Suppose that we wish to fi t the simple linear regression model, but the regressor is 
measured with error, so that the observed regressor is

   X x a i ni i i= + =, , , ,1 2 …  

  where  x i   is the true value of the regressor,  X i   is the observed value, and  a i   is the 
measurement error with  E ( a i  )    =    0 and   Var ai a( ) = σ 2. The response variable  y i   is 
subject to the usual error  ε   i  ,  i     =    1, 2,    . . .    ,  n,  so that the regression model is

    y xi i i i= + +β β ε0     (15.13)   
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 We assume that the errors  ε   i   and  a i   are uncorrelated, that is,  E ( ε   i a i  )    =    0. This is 
sometimes called the  errors - in - both - variables model . Since  X i   is the observed value 
of the regressor, we may write

    y X a X ai i i i i i i= + −( ) + = + + −( )β β ε β β ε β0 1 0 1 1     (15.14)   

 Initially Eq.  (15.14)  may look like an ordinary linear regression model with error 
term   γ  i      =     ε   i      −      β   1  a i  . However, the regressor variable  X i   is a random variable and is 
correlated with the error term   γ  i      =     ε   i      −      β   1  a i  . The correlation between  X i   and   γ  i   is 
easily seen, since

   

Cov X E X E X E

E X x E X x
i i i i i i

i i i i i i

, γ γ γ
γ ε

( ) = − ( )[ ] − ( )[ ]{ }
= −( )[ ] = −( ) −−( )[ ]
= −( ) = −

β
ε β β σ

1

1
2

1
2

a

E a a
i

i i i a

  

 Thus, if   β   1     ≠    0, the observed regressor  X i   and the error term   γ  i   are correlated. 
 The usual assumption when the regressor is a random variable is that the regres-

sor variable and the error component are independent. Violation of this assumption 
introduces several complexities into the problem. For example, if we apply standard 
least - squares methods to the data (i.e., ignoring the measurement error), the estima-
tors of the model parameters are no longer unbiased. In fact, we can show that if 
Cov( X i ,  γ  i  )    =    0, then

   E β̂ β
θ1

1

1
( ) =

+
 

  where

   θ
σ
σ

σ= = −( )
=
∑a

x
x

i

i

n x x
n

2

2
2

2

1

and   

 That is,   β̂1 is always a biased estimator of   β   1  unless   σa
2 0= , which occurs only when 

there are no measurement errors in the  x i .  
 Since measurement error is present to some extent in almost all practical regres-

sion situations, some advice for dealing with this problem would be helpful. Note 
that if   σa

2 is small relative to   σ x
2 the bias in   β̂1 will be small. This implies that if the 

variability in the measurement errors is small relative to the variability of the  x  ’ s, 
then the measurement errors can be ignored and standard least - squares methods 
applied. 

 Several  alternative estimation methods  have been proposed to deal with the 
problem of measurement errors in the variables. Sometimes these techniques are 
discussed under the topics  structural or functional relationships  in regression. Econ-
omists have used a technique called  two - stage least squares  in these cases. Often 
these methods require more extensive assumptions or information about the param-
eters of the distribution of measurement errors. Presentations of these methods are 
in Graybill [ 1961 ], Johnston [ 1972 ], Sprent [ 1969 ], and Wonnacott and Wonnacott 
[ 1970 ]. Other useful references include Davies and Hutton [ 1975 ], Dolby [ 1976 ], 
Halperin [ 1961 ], Hodges and Moore [ 1972 ], Lindley [ 1974 ], Mandansky [ 1959 ], and 



INVERSE ESTIMATION—THE CALIBRATION PROBLEM  513

Sprent and Dolby [ 1980 ]. Excellent discussions of the subject are also in Draper and 
Smith [ 1998 ] and Seber [ 1977 ].  

   15.2.2    The Berkson Model 

 Berkson [ 1950 ] has investigated a case involving measurement errors in  x i   where 
the method of least squares can be directly applied. His approach consists of setting 
the observed value of the regressor  X i   to a  target value . This forces  X i   to be treated 
as fi xed, while the true value of the regressor  x i      =     X i      −     a i   becomes a random variable. 
As an example of a situation where this approach could be used, suppose that the 
current fl owing in an electrical circuit is used as a regressor variable. Current fl ow 
is measured with an ammeter, which is not completely accurate, so measurement 
error is experienced. However, by setting the observed current fl ow to target levels 
of 100, 125, 150, and 175 A (for example), the  observed current fl ow  can be consid-
ered as  fi xed , and  actual current  fl ow becomes a  random variable . This type of 
problem is frequently encountered in engineering and physical science. The regres-
sor is a variable such as temperature, pressure, or fl ow rate and there is error present 
in the measuring instrument used to observe the variable. This approach is also 
sometimes called the  controlled - independent - variable model . 

 If  X i   is regarded as fi xed at a preassigned target value, then Eq.  (15.14) , found by 
using the relationship  X i      =     x i      +     a i  , is still appropriate. However, the error term in 
this model,   γ  i      =     ε   i      −      β   1  a i  , is now independent of  X i   because  X i   is considered to be a 
fi xed or nonstochastic variable. Thus, the errors are uncorrelated with the regressor, 
and the usual least - squares assumptions are satisfi ed. Consequently, a standard 
least - squares analysis is appropriate in this case.   

   15.3    INVERSE ESTIMATION — THE CALIBRATION PROBLEM 

 Most regression problems involving prediction or estimation require determining 
the value of  y  corresponding to a given  x,  such as  x  0  In this section we consider the 
 inverse problem ; that is, given that we have observed a value of  y,  such as  y  0 , deter-
mine the  x  value corresponding to it. For example, suppose we wish to calibrate a 
thermocouple, and we know that the temperature reading given by the thermo-
couple is a linear function of the actual temperature, say

   Observed temperature actual temperature= + ( ) +β β ε0 1  

  or

    y x= + +β β ε0 1     (15.15)   

 Now suppose we measure an unknown temperature with the thermocouple and 
obtain a reading  y  0 . We would like to estimate the actual temperature, that is, the 
temperature  x  0  corresponding to the observed temperature reading  y  0 . This situation 
arises often in engineering and physical science and is sometimes called the  calibra-
tion problem . It also occurs in bioassay where a standard curve is constructed 
against which all future assays or  discriminations  are to be run. 
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 Suppose that the thermocouple has been subjected to a set of controlled and 
known temperatures  x  1 ,  x  2 ,    . . .    ,  x n   and a set of corresponding temperature readings 
 y  1 ,  y  2 ,    . . .    ,  y n   obtained. One method for estimating  x  given  y  would be to fi t the 
model  (15.15) , giving

    ˆ ˆ ˆy x= +β β0 1     (15.16)   

 Now let  y  0  be the observed value of  y.  A natural point estimate of the corresponding 
value of  x  is

    ˆ
ˆ

ˆx
y

0
0 0

1

= − β
β

    (15.17)  

  assuming that   β̂1 0≠ . This approach is often called the  classical estimator . 
 Graybill [ 1976 ] and Seber [ 1977 ] outline a method for creating a 100 (1    −      α  ) 

percent confi dence region for  x  0 . Previous editions of this book did recommend this 
approach. Parker, et al. [ 2010 ] show that this method really does not work well. The 
actual confi dence level is much less than the advertised (1    −      α  ) percent. They estab-
lish that the interval based on the delta method works quite well. Let  n  be the 
number of data points in the calibration data collection. This interval is

   ˆ ˆ
ˆ

,x t MS
n

x x
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n
xx
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  where  MS  Res ,   x, and  S xx   are all calculated from the data collected from the 
calibration. 

 Example 15.2   Thermocouple Calibration 

    A mechanical engineer is calibrating a thermocouple. He has chosen 16 levels of 
temperature evenly spaced over the interval 100 – 400 ° C. The actual temperature  x  
(measured by a thermometer of known accuracy) and the observed reading on the 
thermocouple  y  are shown in Table  15.4  and a scatter diagram is plotted in Figure 
 15.7 . Inspection of the scatter diagram indicates that the observed temperature 
on the thermocouple is linearly related to the actual temperature. The straight - line 
model is

   ˆ . .y x= − +6 67 0 953      

with   σ   2     =     MS  Res     =    5.86. The  F  statistic for this model exceeds 20,000, so we reject  H  0 : 
 β  1     =    0 and conclude that the slope of the calibration line is not zero. Residual analy-
sis does not reveal any unusual behavior so this model can be used to obtain point 
and interval estimates of actual temperature from temperature readings on the 
thermocouple. 

 Suppose that a new observation on temperature of  y  0     =    200 ° C is obtained using 
the thermocouple. A point estimate of the actual temperature, from the calibration 
line, is
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    ˆ
ˆ
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β

C     (15.18)  

  the 95% prediction interval based on ( 15.18 ) is 211.21    ≤     x  0     ≤    222.5        ■   

  TABLE 15.4    Actual and Observed Temperature 

   Observation,  i      Actual Temperature,  x i   ( ° C)     Observed Temperature,  y i   ( ° C)  

     1    100    88.8  
     2    120    108.7  
     3    140    129.8  
     4    160    146.2  
     5    180    161.6  
     6    200    179.9  
     7    220    202.4  
     8    240    224.5  
     9    260    245.1  
  10    280    257.7  
  11    300    277.0  
  12    320    298.1  
  13    340    318.8  
  14    360    334.6  
  15    380    355.2  
  16    400    377.0  

     Figure 15.7     Scatterplot of observed and actual temperatures, Example  15.2 .    
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     Other Approaches     Many people do not fi nd the classical procedure outlined in 
Example  15.2  entirely satisfactory. Williams [ 1969 ] claims that the classical estimator 
has infi nite variance based on the assumption that this estimator follows a Cauchy -
 like distribution. A Cauchy random variable is the inverse of a standard normal 
random variable. This standard normal random variable has a mean of 0, which does 
create problems for the Cauchy distribution. The analyst always can rescale the 
calibration data such that the slope is one. Typically, the variances for calibration 
experiments are very small, on the order of   σ      =    0.01. In such a case, the slope for 
the calibration data is approximately 100 standard deviations away from 0. Williams 
and similar arguments about infi nite variance have no practical import. 

 The biggest practical complaint about the classical estimator is the diffi culty in 
implementing the procedure. Many analysts, particularly outside the classical 
laboratory - calibration context, prefer  inverse regression , where the analyst treats 
the  x s in the calibration experiment as the response and the  y s as the regressor. Of 
course, this reversal of roles is problematic in itself. Ordinary least squares regres-
sion assumes that the regressors are measured without error and that the response 
is random. Clearly, inverse regression violates this basic assumption. 

 Krutchkoff [ 1967, 1969 ] performed a series of simulations comparing the classical 
approach to inverse regression. He concluded that inverse regression was a 
better approach in terms of mean squared error of prediction. However, Berkson 
[ 1969 ], Halperin [ 1970 ], and Williams [ 1969 ] criticized Krutchkoff ’ s results and 
conclusions. 

 Parker et al. [ 2010 ] perform a thorough comparison of the classical approach and 
inverse regression. They show that both approaches yield biased estimates. The bias 
for the classical estimator is

   
x x

Sxx

0
2

1
2

−( )σ
β

  

 The bias for inverse regression is approximately

   −
+

x0

2
1

1
σ

  

 Interestingly, inverse regression suffers from more bias than the classical approach. 
 Parker et al. conclude that for quite accurate instruments (  σ      ≈    0.01), the classical 

approach and inverse regression yield virtually the same intervals. For borderline 
instruments (  σ      ≈    0.1), inverse regression gives slightly smaller widths. Both proce-
dures yield coverage probabilities as advertised. 

 A number of other estimators have been proposed. Graybill [ 1961, 1976 ] consid-
ers the case where we have repeated observations on  y  at the unknown value of  x.  
He develops point and interval estimates for  x  using the classical approach. The 
probability of obtaining a fi nite confi dence interval for the unknown  x  is greater 
when those are repeat observations on  y . Hoadley [ 1970 ] gives a Bayesian treatment 
of the problem and derives an estimator that is a compromise between the classical 
and inverse approaches. He notes that the inverse estimator is the Bayes estimator 
for a particular choice of prior distribution. Other estimators have been proposed 
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by Kalotay [ 1971 ], Nasz ó di [ 1978 ], Perng and Tong [ 1974 ], and Tucker [ 1980 ]. The 
paper by Scheff é  [ 1973 ] is also of interest. In genenal, Parker et al. [ 2010 ] show that 
these approaches are not satisfactory since the resulting intervals are very conserva-
tive with the actual coverage probability much greater than 100 (1    −      α  ). 

 In many, if not most, calibration studies the analyst can  design the data collection 
experiment . That is, he or she can specify what  x  values are to be observed. Ott and 
Myers [ 1968 ] have considered the choice of an appropriate design for the inverse 
estimation problem assuming that the unknown  x  is estimated by the classical 
approach. They develop designs that are optimal in the sense of minimizing the 
integrated mean square error. Figures are provided to assist the analyst in design 
selection.    

   15.4    BOOTSTRAPPING IN REGRESSION 

 For the standard linear regression model, when the assumptions are satisfi ed, there 
are procedures available for examining the precision of the estimated regression 
coeffi cients, as well as the precision of the estimate of the mean or the prediction 
of a future observation at any point of interest. These procedures are the familiar 
standard errors, confi dence intervals, and prediction intervals that we have discussed 
in previous chapters. However, there are many regression model - fi tting situations 
either where there is no standard procedure available or where the results available 
are only approximate techniques because they are based on large - sample or asymp-
totic theory. For example, for ridge regression and for many types of robust fi tting 
procedures there is no theory available for construction of confi dence intervals or 
statistical tests, while in both nonlinear regression and generalized linear models the 
only tests and intervals available are large - sample results. 

  Bootstrapping  is a computer - intensive procedure that was developed to allow us 
to determine reliable estimates of the standard errors of regression estimates in 
situations such as we have just described. The bootstrap approach was originally 
developed by Efron [ 1979, 1982 ]. Other important and useful references are Davison 
and Hinkley [ 1997 ], Efron [ 1987 ], Efron and Tibshirani [ 1986, 1993 ], and Wu [ 1986 ]. 
We will explain and illustrate the bootstrap in the context of fi nding the standard 
error of an estimated regression coeffi cient. The same procedure would be applied 
to obtain standard errors for the estimate of the mean response or a future observa-
tion on the response at a particular point. Subsequently we will show how to obtain 
approximate confi dence intervals through bootstrapping. 

 Suppose that we have fi t a regression model, and our interest focuses on a par-
ticular regression coeffi cient, say   β̂. We wish to estimate the precision of this esti-
mate by the bootstrap method. Now this regression model was fi t using a sample of 
 n  observations. The bootstrap method requires us to select a random sample of size 
 n  with replacement from this original sample. This is called the bootstrap sample. 
Since it is selected with replacement, the bootstrap sample will contain observations 
from the original sample, with some of them duplicated and some of them omitted. 
Then we fi t the model to this bootstrap sample, using the same regression procedure 
as for the original sample. This produces the fi rst bootstrap estimate, say   ˆ *β1. This 
process is repeated a large number of times. On each repetition, a bootstrap sample 
is selected, the model is fi t, and an estimate   ˆ *βi  is obtained for  i     =    1, 2,    . . .    ,  m  
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bootstrap samples. Because repeated samples are taken from the original sample, 
bootstrapping is also called a  resampling procedure . Denote the estimated standard 
deviation of the  m  bootstrap estimates   ˆ *βi  by   s ˆ*β( ). This  bootstrap standard devia-
tion    s ˆ*β( ) is an estimate of the standard deviation of the sampling distribution of   β̂ 
and, consequently, it is a measure of the precision of estimation for the regression 
coeffi cient   β  . 

   15.4.1    Bootstrap Sampling in Regression 

 We will describe how bootstrap sampling can be applied to a regression model. For 
convenience, we present the procedures in terms of a linear regression model, but 
they could be applied to a nonlinear regression model or a generalized linear model 
in essentially the same way. 

 There are two basic approaches for bootstrapping regression estimates. In the 
fi rst approach, we fi t the linear regression model  y     =     X    β      +      ε   and obtain the  n  residu-
als  e  ′     =    [ e  1 ,  e  2 ,    . . .    ,  e n  ]. Choose a random sample of size  n  with replacement from 
these residuals and arrange them in a  bootstrap residual vector e *  . Attach the boot-
strapped residuals to the predicted values   ̂ ˆy X= b  to form a bootstrap vector of 
responses  y *  . That is, calculate

    y X e* *= +b̂     (15.19)   

 These bootstrapped responses are now regressed on the original regressors by the 
regression procedure used to fi t the original model. This produces the fi rst 
bootstrap estimate of the vector of regression coeffi cients. We could now also 
obtain bootstrap estimates of any quantity of interest that is a  function  of the 
parameter estimates. This procedure is usually referred to as  bootstrapping 
residuals . 

 Another bootstrap sampling procedure, usually called  bootstrapping cases  (or 
bootstrapping  pairs ), is often used in situations where there is some doubt about 
the adequacy of the regression function being considered or when the error variance 
is not constant and/or when the regressors are not fi xed - type variables. In this varia-
tion of bootstrap sampling, it is the  n  sample  pairs  ( x   i  ,  y i  ) that are considered to be 
the data that are to be resampled. That is, the  n  original sample pairs ( x   i  ,  y i  ) are 
sampled with replacement  n  times, yielding a bootstrap sample, say (  xi

*,   yi
*) for  i     =    1, 

2,    . . .    ,  n.  Then we fi t a regression model to this bootstrap sample, say

    y X* = +b̂ e     (15.20)  

  resulting in the fi rst bootstrap estimate of the vector of regression coeffi cients. 
 These bootstrap sampling procedures would be repeated  m  times. Generally, 

the choice of  m  depends on the application. Sometimes, reliable results can be 
obtained from the bootstrap with a fairly small number of bootstrap samples. 
Typically, however, 200 – 1000 bootstrap samples are employed. One way to select 
 m  is to observe the variability of the bootstrap standard deviation   s ˆ*β( ) as  m  
increases. When   s ˆ*β( ) stabilizes, a bootstrap sample of adequate size has been 
reached.  
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   15.4.2    Bootstrap Confi dence Intervals 

 We can use bootstrapping to obtain  approximate confi dence intervals  for regression 
coeffi cients and other quantities of interest, such as the mean response at a particu-
lar point in  x  space, or an approximate prediction interval for a future observation 
on the response. As in the previous section, we will focus on regression coeffi cients, 
as the extension to other regression quantities is straightforward. 

 A simple procedure for obtaining an approximate 100(1    −      α  ) percent confi dence 
interval through bootstrapping is the  refl ection method  (also known as the  percen-
tile method ). This method usually works well when we are working with an unbiased 
estimator. The refl ection confi dence interval method uses the lower 100(  α / 2) and 
upper 100(1    −      α / 2) percentiles of the bootstrap distribution of   ˆ *βi . Let these percen
tiles be denoted by   ˆ*β α 2( ) and   ˆ*β α1 2−( ), respectively. Operationally, we would 
obtain these percentiles from the sequence of bootstrap estimates that we have 
computed,   ˆ *βi ,  i     =    1, 2,    . . .    ,  m.  Defi ne the distances of these percentiles from   β̂, the 
estimate of the regression coeffi cient obtained for the original sample, as follows:

    

D

D

1

2

2

1 2

= − ( )
= −( ) −

ˆ ˆ*
ˆ* ˆ
β β α

β α β     (15.21)   

 Then the approximate 100(1    −      α / 2) percent  bootstrap confi dence interval  for the 
regression coeffi cient   β   is given by

    ˆ ˆβ β β− ≤ ≤ +D D2 1     (15.22)   

 Before presenting examples of this procedure, we note two important points:

   1.     When using the refl ection method to construct bootstrap confi dence intervals, 
it is generally a good idea to use a larger number of bootstrap samples than 
would ordinarily be used to obtain a bootstrap standard error. The reason is 
that small tail percentiles of the bootstrap distribution are required, and a 
larger sample will provide more reliable results. Using at least  m     =    500 boot-
strap samples is recommended.  

  2.     The confi dence interval expression in Eq.  (15.22)  associates  D  2  with the lower 
confi dence limit and  D  1  with the upper confi dence limit, and at fi rst glance this 
looks rather odd since  D  1  involves the lower percentile of the bootstrap dis-
tribution and  D  2  involves the upper percentile. To see why this is so, consider 
the usual sampling distribution of   β̂  for which the lower 100(  α  /2) and upper 
100(1    −      α / 2) percentiles are denoted by   β̂ α 2( ) and   β̂ α1 2−( ), respectively. 
Now we can state with probability 100(1    −      α / 2) that   β̂  will fall in the 
interval 

     ˆ ˆ ˆβ α β β α2 1 2( ) ≤ ≤ −( )     (15.23)   

 Expressing these percentiles in terms of the distances from the mean of the 
sampling distribution of   β̂ , that is,   E β̂ β( ) = , we obtain



520  OTHER TOPICS IN THE USE OF REGRESSION ANALYSIS

   d d1 22 1 2= − ( ) = −( ) −β β α β α βˆ ˆand  

  Therefore,

    
ˆ

ˆ
β α β

β α β

2

1 2

1

2

( ) = −

−( ) = +

d

d
    (15.24)   

 Substituting Eq.  (15.24)  into Eq.  (15.23)  produces 

    β β β− ≤ ≤ +d d1 2
ˆ  

  which can be written as
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  this last equation is of the same form as the bootstrap confi dence interval, Eq. 
 (15.22) , with  D  1  and  D  2  replacing  d  1 , and  d  2  and using   β̂  as an estimate of the 
mean of the sampling distribution.    

 We now present two examples. In the fi rst example, standard methods are avail-
able for constructing the confi dence interval, and our objective is to show that 
similar results are obtained by bootstrapping. The second example involves nonlin-
ear regression, and the only confi dence interval results available are based on 
asymptotic theory. We show how the bootstrap can be used to check the adequacy 
of the asymptotic results. 

 Example 15.3   The Delivery Time Data 

    The multiple regression version of these data, fi rst introduced in Example  3.1  has 
been used several times throughout the book to illustrate various regression tech-
niques. We will show how to obtain a bootstrap confi dence interval for the regres-
sion coeffi cient for the predictor cases,   β   1 . From Example  3.1 , the least - squares 
estimate of   β   1  is   ˆ .β1 1 61591= . In Example  3.8  we found that the standard error of   β̂1 
is 0.17073, and the 95% confi dence interval for   β   1  is 1.26181    ≤      β   1     ≤    1.97001. 

 Since the model seems to fi t the data well, and there is not a problem with 
inequality of variance, we will bootstrap residuals to obtain an approximate 95% 
bootstrap confi dence interval for   β   1 . Table  3.3  shows the fi tted values and residuals 
for all 25 observations based on the original least - squares fi t. To construct the fi rst 
bootstrap sample, consider the fi rst observation. The fi tted value for this observation 
is   ̂ .y1 21 7081= , from Table  3.3 . Now select a residual at random from the last column 
of this table, say  e  5     =     − 0.4444. This becomes the fi rst bootstrap residual   e1 0 4444* .= − . 
Then the fi rst bootstrap observation becomes   y y e1 1 1 21 7081 0 4444 21 2637* * . . .= + = − = . 
Now we would repeat this process for each subsequent observation using the fi tted 
values   ̂yi and the bootstrapped residuals   ei

* for  i     =    2, 3,    . . .    , 25 to construct the 
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remaining observations in the bootstrap sample. Remember that the residuals are 
sampled from the last column of Table  3.3   with replacement . After the bootstrap 
sample is complete, fi t a linear regression model to the observations ( x i   1 ,  x i   2 ,   yi

*),  i     =    2, 
3,    . . .    , 25. The result from this yields the fi rst bootstrap estimate of the regression 
coeffi cient,   ˆ .,

*β1 1 1 64231= . We repeated this process  m     =    1000 times, producing 1000 
bootstrap estimates   ˆ ,

*β1 u,  u     =    1, 2,    . . .    , 1000. Figure  15.8  shows the histogram of these 
bootstrap estimates. Note that the shape of this histogram closely resembles the 
normal distribution. This is not unexpected, since the sampling distribution of   β̂1 
 should  be a normal distribution. Furthermore, the standard deviation of the 1000 
bootstrap estimates is   s ˆ .*β1 0 18994( ) = , which is reasonably close to the usual normal -
 theory - based standard error of   β̂1,   se ˆ .β1 0 17073( ) = .   

 To construct the approximate 95% bootstrap confi dence interval for   β̂1, we need 
the 2.5th and 97.5th percentiles of the bootstrap sampling distribution. These quanti-
ties are   ˆ . .*β1 0 025 1 24652( ) =  and   ˆ . .*β1 0 975 1 98970( ) = , respectively (refer to Figure 
 15.8 ). The distances  D  1  and  D  2  are computed from Eq.  (15.21)  as follows:

   D1 1 1 0 025 1 61591 1 24652 0 36939= − ( ) = − =ˆ ˆ . . . .*β β  

   D2 1 10 975 1 98970 1 61591 0 37379= ( ) − = − =ˆ . ˆ . . .*β β   

 Finally, the approximate 95% bootstrap confi dence interval is obtained from Eq. 
 (15.22) .

   ˆ ˆβ β β1 2 1 1 1− ≤ ≤ +D D  

   1 61591 0 37379 1 61591 0 369391. . . .− ≤ ≤ +β  

   1 24212 1 985301. .≤ ≤β   

 This is very similar to the exact normal - theory confi dence interval found in Example 
 3.8 , 1.26181    ≤      β   1     ≤    1.97001. We would expect the two confi dence intervals to 
closely agree, since there is no serious problem here with the usual regression 
assumptions.        ■   

     Figure 15.8     Histogram of bootstrap   ˆ *β1, Example  15.3 .    
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 The most important applications of the bootstrap in regression are in situations 
either where there is no theory available on which to base statistical inference or 
where the procedures utilize large - sample or asymptotic results. For example, in 
nonlinear regression, all the statistical tests and confi dence intervals are large -
 sample procedures and can only be viewed as approximate procedures. In a specifi c 
problem the bootstrap could be used to examine the validity of using these asymp-
totic procedures.   

 Example 15.4   The Puromycin date 

    Examples  12.2  and  12.3  introduced the puromycin data, and we fi t the Michaelis –
 Menten model

   y
x

x
=

+
+θ

θ
ε1

2

 

  to the data in Table  12.1  which resulted in estimates of   ̂ .θ1 212 7=  and   ̂ .θ2 0 0641= , 
respectively. We also found the large - sample standard errors for these parameter 
estimates to be   se ˆ .θ1 6 95( ) =  and   se ˆ .θ2

38 28 10( ) = × − , and the approximate 95% con-
fi dence intervals were computed in Example  12.6  as

   197 2 228 21. .≤ ≤θ  

  and

   0 0457 0 08252. .≤ ≤θ   

 Since the inference procedures used here are based on large - sample theory, and 
the sample size used to fi t the model is relatively small ( n     =    12), it would be useful 
to check the validity of applying the asymptotic results by computing bootstrap 
standard deviations and bootstrap confi dence intervals for   θ   1  and   θ   2 . Since the 
Michaelis - Menten model seems to fi t the data well, and there are no signifi cant 
problems with inequality of variance, we used the approach of bootstrapping residu-
als to obtain 1000 bootstrap samples each of size  n     =    12. Histograms of the resulting 
bootstrap estimates of   θ   1  and   θ   2  are shown in Figures  15.9  and  15.10 , respectively. 
The sample average, standard deviation, and 2.5th and 97.5th percentiles are also 
shown for each bootstrap distribution. Notice that the bootstrap averages and stan-
dard deviations are reasonably close to the values obtained from the original non-
linear least - squares fi t. Furthermore, both histograms are reasonably normal in 
appearance, although the distribution for   ̂ *θ1 may be slightly skewed.   

 We can calculate the approximate 95% confi dence intervals for   θ   1  and   θ   2 . Con-
sider fi rst   θ   1 . From Eq.  (15.21)  and the information in Figure  15.9  we fi nd

   D1 1 1 0 025 212 7 200 386 12 314= − ( ) = − =ˆ ˆ . . . .*θ θ  

   D2 1 10 975 226 614 212 7 13 914= ( ) − = − =ˆ . ˆ . . .*θ θ   

 Therefore, the approximate 95% confi dence interval is found from Eq.  (15.22)  as 
follows:
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   ˆ ˆθ θ θ1 2 1 1 1− ≤ ≤ +D D  

   212 7 13 914 212 7 12 3141. . . .− ≤ ≤ +θ  

   198 786 225 0141. .≤ ≤θ   

 This is very close to the asymptotic normal - theory interval calculated in the original 
problem. Following a similar procedure we obtain the approximate 95% bootstrap 
confi dence interval for   θ   2  as

     Figure 15.9     Histogram of bootstrap estimates   ̂ *θ1, Example  15.4 .    
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     Figure 15.10     Histogram of bootstrap estimates   ˆ*θ2, Example  15.4 .  
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   15.5    CLASSIFICATION AND REGRESSION TREES ( CART ) 

 The general classifi cation problem can be stated as follows: given a response of 
interest and certain taxonomic data (measurement data or categorical descriptors) 
on a collection of units, use these data to predict the  “ class ”  into which each unit 
falls. The algorithm for accomplishing this task can then be used to make predictions 
about future units where the taxonomic data are known but the response is not. 
This is, of course, a very general problem, and many different statistical tools might 
be applied to it, including standard multiple regression, logistic regression or gen-
eralized linear models, cluster analysis, discriminant analysis, and so forth. In recent 
years, statisticians and computer scientists have developed  tree - based algorithms  for 
the classifi cation problem. We give a brief introduction to these techniques in this 
section. For more details, see Breiman, Friedman, Olshen, and Stone [ 1984 ] and 
Gunter [ 1997a,b, 1998 ]. 

 When the response variable is discrete, the procedure is usually called  classifi ca-
tion , and when it is continuous, the procedure leads to a  regression tree . The usual 
acronym for the algorithms that perform these procedures is  CART , which stands 
for  classifi cation and regression trees . A classifi cation or regression tree is a hierar-
chical display of a series of questions about each unit in the sample. These questions 
relate to the values of the taxonomic data on each unit. When these questions are 
answered, we will know the  “ class ”  to which each unit most likely belongs. The usual 
display of this information is called a tree because it is logical to represent the ques-
tions as an upside - down tree with a root at the top, a series of branches connecting 
nodes, and leaves at the bottom. At each node, a question about one of the taxo-
nomic variables is posed and the branch taken at the node depends on the answer. 
Determining the order in which the questions are asked is important, because it 
determines the structure of the tree. While there are many ways of doing this, the 
general principle is to ask the question that maximizes the gain in  node purity  at 
each node - splitting opportunity, where node purity is improved by minimizing the 
variability in the response data at the node. Thus, if the response is a discrete clas-
sifi cation, higher purity would imply fewer classes or categories. A node containing 
a single class or category of the response would be completely pure. If the response 
is continuous, then a measure of variability such as a standard deviation, a mean 
square error, or a mean absolute deviation of the responses at a node should be 
made as small as possible to maximize node purity. 

 There are numerous specifi c algorithms for implementing these very general 
ideas, and many different computer software codes are available. CART techniques 
are often applied to very large or massive data sets, so they tend to be very computer 
intensive. There are many applications of CART techniques in situations ranging 
from interpretation of data from designed experiments to large - scale data explora-
tion (often called data mining, or knowledge discovery in data bases).  

   0 04777 0 080632. .≤ ≤θ   

 Once again, this result is similar to the asymptotic normal - theory interval calculated 
in the original problem. This gives us some assurance that the asymptotic results 
apply, even though the sample size in this problem is only  n     =    12.        ■   
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 Example 15.5   The Gasoline Mileage Data 

    Table  B.3  presents gasoline mileage performance data on 32 automobiles, along with 
11 taxonomic variables. There are missing values in two of the observations, so we 
will confi ne our analysis to only the 30 vehicles for which complete samples are 
available. Figure  15.11  presents a regression tree produced by S - PLUS applied to 
this data set. The bottom portion of the fi gure shows the descriptive information 
(also in hierarchical format) produced by S - PLUS for each node in the tree. The 
measure of node purity or  deviance  at each node is just the corrected sum of squares 
of the observations at that node,  yval  is the average of these observations, and  n  
refers to the number of observations at the node.   

 At the root node, we have all 30 cars, and the deviance there is just the corrected 
sum of squares of all 30 cars. The average mileage in the sample is 20.04   mpg. The 
fi rst branch is on the variable CID, or cubic inches of engine displacement. There 
are four cars in node 2 that have a CID below 115.25, their deviance is 22.55, and 
the average mileage performance is 33.38   mpg. The deviance in node 3 from the 
right - hand branch of the root node is 295.6 and the sum of the deviances from nodes 
2 and 3 is 318.15. There are no other splits possible at any level on any variable to 
classify the observations that will result in a lower sum of deviances than 318.15. 

     Figure 15.11     CART analysis from S - PLUS for the gasoline mileage data from Table  B.3 .  
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   15.6    NEURAL NETWORKS 

  Neural networks , or more accurately  artifi cial neural networks , have been motivated 
by the recognition that the human brain processes information in a way that is 
fundamentally different from the typical digital computer. The neuron is the basic 
structural element and information - processing module of the brain. A typical human 
brain has an enormous number of them (approximately 10 billion neurons in the 
cortex and 60 trillion synapses or connections between them) arranged in a highly 
complex, nonlinear, and parallel structure. Consequently, the human brain is a very 
effi cient structure for information processing, learning, and reasoning. 

 An artifi cial neural network is a structure that is designed to solve certain types 
of problems by attempting to emulate the way the human brain would solve the 
problem. The general form of a neural network is a  “ black - box ”  type of model that 
is often used to model high - dimensional, nonlinear data. Typically, most neural 
networks are used to solve prediction problems for some system, as opposed to 
formal model building or development of underlying knowledge of how the system 
works. For example, a computer company might want to develop a procedure for 
automatically reading handwriting and converting it to typescript. If the procedure 
can do this quickly and accurately, the company may have little interest in the spe-
cifi c model used to do it. 

 Multilayer feedforward artifi cial neural networks are multivariate statistical 
models used to relate  p  predictor variables  x  1 ,  x  2 ,    . . .    ,  x p   to  q  response variables  y  1 , 

Node 2 is a  terminal node  because the node deviance is a smaller percentage of the 
root node deviance than the user specifi ed allowance. Terminal nodes can also occur 
if there are not enough observations (again, user specifi ed) to split the node. So, at 
this point, if one wishes to identify cars in the highest - mileage performance group, 
all we need to look at is engine displacement. 

 Node 3 contains 26 cars, and it is subsequently split at the next node by horse-
power. Eleven cars with horsepower below 141.5 form one branch from this node, 
while 15 cars with horsepower above 141.5 form the other branch. The left - hand 
branch results in the terminal node 6. The right - hand branch enters another node 
(7) which is branched again on horsepower. This illustrates an important feature of 
regression trees; the same question can be asked more than once at different nodes 
of the tree, refl ecting the complexity of the interrelationships among the variables 
in the problem. Nodes 14 and 15 are terminal nodes, and the cars in both terminal 
nodes have similar mileage performance. 

 The tree indicates that we may be able to classify cars into higher - mileage, 
medium - mileage, and lower - mileage classifi cations by examining CID and horse -
 power — only 2 of the 11 taxonomic variables given in the original data set. For 
purposes of comparison, forward variable selection using mpg as the response would 
choose CID as the only important variable, and either stepwise regression or back-
ward elimination would select rear axle ratio, length, and weight. However, remem-
ber that the objectives of CART and multiple regression are somewhat different: 
one is trying to fi nd an optimal (or near - optimal) classifi cation structure, while the 
other seeks to develop a prediction equation.        ■   
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 y  2 ,    . . .    ,  y q  . The model has several  layers , each consisting of either the original or 
some constructed variables. The most common structure involves three layers: the 
 inputs , which are the original predictors; the  hidden layer , comprised of a set of 
constructed variables; and the output layer, made up of the responses. Each variable 
in a layer is called a  node . Figure  15.12  shows a typical three - layer artifi cial neural 
network.   

 A node takes as its input a transformed linear combination of the outputs from 
the nodes in the layer below it. Then it sends as an output a transformation of itself 
that becomes one of the inputs, to one or more nodes on the next layer. The trans-
formation functions are usually either sigmoidal (S shaped) or linear and are usually 
called  activation functions  or  transfer functions . Let each of the  k  hidden layer 
nodes  a u   be a linear combination of the input variables:

   a w xu ju j u

j

p

= +
=

∑ 1

1

θ  

  where the  w   1    ju   are unknown parameters that must be estimated (called weights) and 
  θ  u   is a parameter that plays the role of an intercept in linear regression (this param-
eter is sometimes called the bias node). 

 Each node is transformed by the activation function  g ( ). Much of the neural 
networks literature refers to these activation functions notationally as   σ  ( ) because 
of their S shape (this is an unfortunate choice of notation so far as statisticians are 
concerned). Let the output of node  a u   be denoted by  Z u      =     g ( a u  ). Now we form a 
linear combination of these outputs, say   b w zu

k
u uυ υ= ∑ =0 2 , where  z  0     =    1. Finally, the 

  ν  th response  y      is a transformation of the  b     , say   y g bυ υ= ( )� , where   �g ( ) is the activa-
tion function for the response. This can all be combined to give

     Figure 15.12     Artifi cial neural network with one hidden layer.  
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 The response  y  ν    is a transformed linear combination of transformed linear combina-
tions of the original predictors. For the hidden layer, the activation function is often 
chosen to be either the logistic function  g ( x )    =    1/(1    +     e  − x  ) or the hyperbolic tangent 
function  g ( x )    =    tanh( x )    =    ( e x      −     e   −    x  )/( e x      +     e   −    x  ). The choice of activation function for 
the output layer depends on the nature of the response. If the response is bounded 
or dichotomous, the output activation function is usually taken to be sigmoidal, 
while if it is continuous, an identify function is often used. 

 The model in Eq.  (15.25)  is a very fl exible form containing many parameters, and 
it is this feature that gives a neural network a nearly universal approximation prop-
erty. That is, it will fi t many naturally occurring functions. However, the parameters 
in Eq.  (15.25)  must be estimated, and there are a lot of them. The usual approach 
is to estimate the parameters by minimizing the overall residual sum of squares 
taken over all responses and all observations. This is a nonlinear least - squares 
problem, and a variety of algorithms can be used to solve it. Often a procedure 
called  backpropagation  (which is a variation of steepest descent) is used, although 
derivative - based gradient methods have also been employed. As in any nonlinear 
estimation procedure, starting values for the parameters must be specifi ed in order 
to use these algorithms. It is customary to standardize all the input variables, so 
small essentially random values are chosen for the starting values. 

 With so many parameters involved in a complex nonlinear function, there is 
considerable danger of  overfi tting . That is, a neural network will provide a nearly 
perfect fi t to a set of historical or  “ training ”  data, but it will often predict new data 
very poorly. Overfi lling is a familiar problem to statisticians trained in empirical 
model building. The neural network community has developed various methods for 
dealing with this problem, such as reducing the number of unknown parameters 
(this is called  “ optimal brain surgery ” ), stopping the parameter estimation process 
before complete convergence and using cross - validation to determine the number 
of iterations to use, and adding a penalty function to the residual sum of squares 
that increases as a function of the sum of the squares of the parameter estimates. 
There are also many different strategies for choosing the number of layers and 
number of neurons and the form of the activation functions. This is usually referred 
to as choosing the  network architecture . Cross - validation can be used to select the 
number of nodes in the hidden layer. Good references on artifi cial neural networks 
are Bishop [ 1995 ], Haykin [ 1994 ], and Ripley [ 1994 ]. 

 Artifi cial neural networks are an active area of research and application, particu-
larly for the analysis of large, complex, highly nonlinear problems. The overfi lling 
issue is frequently overlooked by many users and advocates of neural networks, and 
because many members of the neural network community do not have sound train-
ing in empirical model building, they often do not appreciate the diffi culties overfi t-
ting may cause. Furthermore, many computer programs for implementing neural 
networks do not handle the overfi tting problem particularly well. Our view is that 
neural networks are a complement to the familiar statistical tools of regression 
analysis and designed experiments and not a replacement for them, because a neural 
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network can only give a prediction model and not fundamental insight into the 
underlying process mechanism that produced the data.  

   15.7    DESIGNED EXPERIMENTS FOR REGRESSION 

 Many properties of the fi tted regression model depend on the levels of the predictor 
variables. For example, the  X ′ X  matrix determines the variances and covariances 
of the model regression coeffi cients. Consequently, in situations where the levels of 
the  x  ’ s can be chosen it is natural to consider the problem of  experimental design . 
That is, if we can choose the levels of each of the predictor variables (and even the 
number of observations to use), how should we go about this? We have already seen 
an example of this in Chapter  5  on fi tting polynomials where a central composite 
design was used to fi t a second - order polynomial in two variables. Because many 
problems in engineering, business, and the sciences use low - order polynomial models 
(typically fi rst - order and second - order polynomials) in their solution there is an 
extensive literature on experimental designs for fi tting these models. For example, 
see the book on experimental design by Montgomery (2009) and the book on 
response surface methodology by Myers, Montgomery, and Anderson - Cook ( 2009 ). 
This section gives an overview of designed experiments for regression models and 
some useful references. 

 Suppose that we want to fi t a fi rst - order polynomial in three variables, say,

   y x x x= + + + +β β β β ε0 1 1 2 2 3 3  

  and we can specify the levels of the three regressor variables. Assume that the 
regressor variables are continuous and can be varied over the range from  − 1 to  + 1; 
that is,  − 1    ≤     x i      ≤     + 1,  i     =    1,2,3.  Factorial designs  are very useful for fi tting regression 
models. By a factorial design we mean that every possible level of a factor is run in 
combination with every possible level of all other factors. For example, suppose that 
we want to run each of the regressor variables at two levels,  − 1 and  + 1. Then the 
factorial design is called a 2 3  factorial design and it has  n     =    8 runs. The design matrix 
 D  is just an 8    ×    3 matrix containing the levels of the regressors:
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 The  X  matrix (or model matrix) is
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  and the  X ′ X  matrix is

   

′ =
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X X
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0 0 0 8   

 Notice that the  X ′ X  matrix is diagonal, indicating that the 2 3  factorial design is 
 orthogonal . The variance of any regression coeffi cient is

   
Var β̂ σ( ) =

2

8   

 Furthermore, there is no other eight - run design on the design space bounded by  ± 1 
that would make the variance of the model regression coeffi cients smaller. 

 For the 2 3  design, the determinant of the  X ′ X  matrix is | X ′ X |    =    4096. This is the 
maximum possible value of the determinant for an eight - run design on the design 
space bounded by  ± 1. It turns out that the volume of the joint confi dence region 
that contains all the model regression coeffi cients is inversely proportional to the 
square root of the determinant of  X ′ X . Therefore, to make this joint confi dence 
region as small as possible, we would want to choose a design that makes the deter-
minant of  X ′ X  as large as possible. This is accomplished by choosing the 2 3  design. 

 These results generalize to the case of a fi rst - order model in  k  variables, or a 
fi rst - order model with interaction. A 2  k   factorial design (i.e., a factorial design with 
all  k  factors at two levels ( ± 1)) will minimize the variance of the regression coeffi -
cients and minimize the volume of the joint confi dence region on all of the model 
parameters. A design with this property is called a  D   - optimal design . Optimal 
designs resulted from the work of Kiefer  (1959, 1961)  and Kiefer and Wolfowitz 
 (1959) . Their work is couched in a measure theoretic framework in which an experi-
mental design is viewed in terms of design measure. Design optimality moved into 
the practical arena in the 1970s and 1980s as designs were put forth as being  effi cient  
in terms of criteria inspired by Kiefer and his coworkers. Computer algorithms were 
developed that allowed  “ optimal ”  designs to be generated by a computer package 
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based on the practitioner ’ s choice of sample size, model, ranges on variables, and 
other constraints. 

 Now consider the variance of the predicted response for the fi rst - order model in 
the 2 3 design

   

Var y x x x Var x x x

x x

ˆ , , ˆ ˆ ˆ ˆ
1 2 3 0 1 1 2 2 3 3
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 The variance of the predicted response is a function of the point in the design 
space where the prediction is made ( x  1 ,  x  2 , and  x  3 ) and the variance of the model 
regression coeffi cients. The estimates of the regression coeffi cients are independent 
because the 2 3  design is orthogonal and the model parameters all have variance   σ   2 /8. 
Therefore, the maximum prediction variance occurs when  x  1     =     x  2     =     x  3     =     ± 1 and is 
equal to   σ   2 /2. 

 To determine how good this is, we need to know the best possible value of pre-
diction variance that can be attained. It turns out that the smallest possible value 
of the maximum prediction variance over the design space is  p σ   2 / n , where  p  is the 
number of model parameters and  n  is the number of runs in the design. The 2 3  design 
has  n     =    8 runs and the model has  p     =    4 parameters, so the model that we fi t to the 
data from this experiment minimizes the maximum prediction variance over the 
design region. A design that has this property is called a  G   - optimal design . In 
general, 2  k   designs are  G  - optimal designs for fi tting the fi rst - order model or the 
fi rst - order model with interaction. 

 We can evaluate the prediction variance at any point of interest in the design 
space. For example, when we are at the center of the design where  x  1     =     x  2     =     x  3     =    0, 
the prediction variance is

   
Var y x x x Varˆ , , ˆ

1 2 3 0

2

0 0 0
8

= = =( )[ ] = ( ) =β σ
 

  and when  x  1     =    1,  x  2     =     x  3     =    0, the prediction variance is
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 The average prediction variance at these two points is
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 A design that minimizes the average prediction variance over a selected set of points 
is called a  V   - optimal design . 

 An alternative to averaging the prediction variance over a specifi c set of points 
in the design space is to consider the  average prediction variance  over the entire 
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design space. One way to calculate this average prediction variance or the  integrated 
variance  is

   
I

A
Var y d

R
= ( )[ ]∫1 ˆ x x

 

  where  A  is the area or volume of the design space and  R  is the design region. To 
compute the average, we are integrating the variance function over the design space 
and dividing by the area or volume of the region. Now for a 2 3 design, the volume 
of the design region is 8, and the integrated variance is
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 It turns out that this is the smallest possible value of the average prediction vari-
ance that can be obtained from an eight - run design used to fi t a fi rst - order model 
on this design space. A design with this property is called an  I   - optimal design . In 
general,  2 k   designs are  I  - optimal designs for fi tting the fi rst - order model or the fi rst -
 order model with interaction. 

 Now consider designs for fi tting second - order polynomials. As we noted in 
Chapter  7 , second - order polynomial models are widely used in industry in the 
application of  response surface methodology  (RSM), a collection of experimental 
design, model fi tting, and optimization techniques that are widely used in process 
improvement and optimization. The second - order polynomial in  k  factors is
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 This model has 1    +    2 k     +     k ( k     −    1)/2 parameters, so the design must contain at least 
this many runs. In Section  7.4  we illustrated designing an experiment to fi t a second -
 order model in  k     =    2 factors and the associated model fi tting and analysis typical of 
most RSM studies. 

 There are a number of standard designs for fi tting second - order models. The two 
most widely used designs are the  central composite design  and the  Box - Behnken  
design. The central composite design was used in Section  7.4 . A central composite 
design consists of a 2  k   factorial design (or a fractional factorial that will allow esti-
mation of all of the second - order model terms), 2 k  axial runs, defi ned as follows:

   x  1      x  2      . . .      x k    

   −  α     0     . . .     0  
   α     0     . . .     0  
  0     −  α      . . .     0  
  0     α      . . .     0  
   ⋮      ⋮          ⋮   
  0    0     . . .      −  α   
  0    0     . . .      α   
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 and  n C   center runs at  x  1     =     x  2     =     ·  ·  ·     =     x k      =    0. There is considerable fl exibility in the use 
of the central composite design because the experimenter can choose both the axial 
distance  α  and the number of center runs. The choice of these two parameters can 
be very important. Figures  15.13  and  15.14  show the CCD for  k     =    2 and  k     =    3. The 
value of the axial distance generally varies from 1.0 to   k, the former placing all of 
the axial points on the face of the cube or hypercube producing a design on a  cuboi-
dal  region, the latter resulting in all points being equidistant from the design center 
producing a design on a  spherical  region. When  α     =    1 the central composite design 
is usually called a  face - centered cube  design. As we observed in Section  7.4 , when 
the axial distance   α = F4 , where  F  is the number of factorial design points, the 
central composite design is  rotatable ; that is, the variance of the predicted response 
 Var [  ŷ  ( x )] is constant for all points that are the same distance from the design center. 
Rotatability is a desirable property when the model fi t to the data from the design 
is going to be used for optimization. It ensures that the variance of the predicted 

     Figure 15.13     The central composite design for  k     =    2 and   α = =k 2 .  

     Figure 15.14     The central composite design for  k     =    3 and   α = =k 3.  
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response depends only on the distance of the point of interest from the design center 
and not on the direction. Both the central composite design and the Box – Behnken 
design also perform reasonably well relative to the  D  - optimality and  I -  optimality 
criteria.   

 The Box – Behnken design is also a spherical design that is either rotatable or 
approximately rotatable. The Box – Behnken design for  k     =    3 factors is shown 
in Figure  15.15 . All of the points in this design are on the surface of a sphere of 
radius   2. Refer to Montgomery (2009) or Myers, Montgomery, and Anderson -
 Cook ( 2009 ) for additional details of central composite and Box – Behnken designs 
as well as information on other standard designs for fi tting the second - order poly-
nomial model.   

 The JMP software will construct  D  - optimal and  I -  optimal designs. The approach 
used is based on a coordinate exchange algorithm developed by Meyer and Nacht-
sheim  (1995) . The experimenter specifi es the number of factors, the model that is 
to be fi t, the number of runs in the design, any constraints or restrictions on the 
design region, and the optimality criterion to be used ( D  or  I ). The coordinate 
exchange technique begins with a randomly chosen design and then systematically 
searches over each coordinate of each run to fi nd a setting for that coordinate that 
produces the best value of the criterion. When the search is completed on the last 
run, it begins again with the fi rst coordinate of the fi rst run. This is continued until 
no further improvement in the criterion can be made. Now it is possible that the 
design found by this method is not optimal because ii may depend on the random 
starting design, so another random design is created and the coordinate exchange 
process repeated. After several random starts the best design found is declared 
optimal. This algorithm is extremely effi cient and usually produces optimal or very 
near optimal designs. 

 To illustrate the construction of optimal designs suppose that we want to run an 
experiment to fi t a second - order model in  k     =    4 factors. The region of interest is 
cuboidal and all four factors are defi ned to be in the interval from  − 1 to  + 1. This 
model has  p     =    15 parameters, so the design must have at least 15 runs. The central 
composite design in  k     =    4 factors has between 25 and 30 runs, depending on the 
number of center points. This is a relatively large design in comparison to the 
number of parameters that must be estimated. A fairly typical use of optimal designs 

     Figure 15.15     The Box – Behnken design for  k     =    3 factors with one center point.  
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is to create a custom design in situations where resources do not permit using the 
number of runs associated with a standard design. We will construct optimal designs 
with 18 runs. The 18 - run  D  - optimal design constructed using JMP is shown in Table 
 15.5 , and the  I  - optimal design is shown in Table  15.6 . Both of these designs look 
somewhat similar. JMP reports the  D -  effi ciency of the design in Table  15.5  as 
44.98232% and the  D -  effi ciency of the design in Table  15.6  as 39.91903%. Note that 
the  D -  optimal design algorithm did not produce a design with 100%  D  - effi ciency, 
because the  D  - effi ciency is computed relative to a  “ theoretical ”  orthogonal design 
that may not exist. The  G  - effi ciency for the design in Table  15.5  is 75.38478% and 
for the design in Table  15.6  it is 73.57805%. The  G  - effi ciency of a design is easy to 
calculate, because as we observed earlier the theoretical minimum value of the 
maximum value of the scaled prediction variance over the design space design space 
is  p σ   2 / n , where  p  is the number of model parameters and  n  is the number of runs 
in the design, so all we have to do is fi nd the actual maximum value of the predic-
tion variance, and the  G  - effi ciency can be calculated from

   

G
p

Max
nVar y

Efficiency =
( )[ ]{ }ˆ x

σ 2
    

 Typically, effi ciencies are reported on a percentage basis. Both designs have very 
similar  G  - effi ciencies. JMP also reports the average (integrated) prediction variance 
over the design space as 0.652794   σ   2  for the  D -  optimal design and 0.48553   σ   2  for 
the  I -  optimal design. It is not surprising that the integrated variance is smaller for 
the  I  - optimal design as it was constructed to minimize this quantity. 

  TABLE 15.5    An 18 Run  D  - Optimal Design for a Second -
 Order Model in  k     =    4 Factors 

   Run     X1     X2     X3     X4  

  1    0    0    1    0  
  2    1    1    1     − 1  
  3     − 1     − 1    1    1  
  4    1    1     − 1    1  
  5     − 1    1    1    1  
  6     − 1     − 1    1     − 1  
  7    1     − 1    1     − 1  
  8    1     − 1    1    1  
  9    0    1     − 1     − 1  

  10    1    0     − 1     − 1  
  11     − 1    0     − 1    1  
  12     − 1    1    1     − 1  
  13     − 1     − 1     − 1     − 1  
  14    0    1    0    1  
  15     − 1    0    0     − 1  
  16    1     − 1    0    0  
  17     − 1    1     − 1    0  
  18    0     − 1     − 1    1  
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  TABLE 15.6    An 18 Run  I  - Optimal Design for a Second -
 Order Model in  k     =    4 Factors 

   Run     X1     X2     X3     X4  

  1    1    0    1    1  
  2     − 1     − 1    1    1  
  3     − 1     − 1    0     − 1  
  4    1    1    1     − 1  
  5    0     − 1    1     − 1  
  6     − 1    1    1    0  
  7    1     − 1     − 1    1  
  8    1     − 1     − 1     − 1  
  9    0    1    0    1  

  10     − 1    1     − 1     − 1  
  11    0    0    0    0  
  12    0    0    0    0  
  13     − 1    0     − 1    1  
  14    1     − 1    0    0  
  15     − 1    0    1     − 1  
  16    0     − 1     − 1    0  
  17    1    1     − 1    0  
  18    0    0    0     − 1  

     Figure 15.16     Fraction of design space plot for the  D  - optimal and  I  - optimal designs in Tables 
 15.5  and  15.6 .  
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 To further compare these two designs, consider the graph in Figure  15.16 . This is 
a fraction of design space (FDS) plot. For any value of prediction variance on the 
vertical scale the curve shows the fraction or proportion of the total design space 
in which the prediction variance is less than or equal to the vertical scale value. 
An  “ ideal ”  design would have a low, fl at curve on the FDS plot. The lower curve 
in Figure  15.16  is the  I  - optimal design and the upper curve is for the  D  - optimal 
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design. Obviously, the  I  - optimal design outperforms the  D -  optimal design in 
terms of prediction variance over almost all of the design space. It does have a 
lower  G  - effi ciency, indicating that there is a very small portion of the design space 
where the maximum prediction variance for the  D -  optimal design is less than the 
prediction variance for the  I  - optimal design. That point is at the extreme end of 
the region.        

   PROBLEMS 

       15.1    Explain why an estimator with a breakdown point of 50% may not give 
satisfactory results in fi tting a regression model.   

    15.2    Consider the continuous probability distribution  f ( x ). Suppose that   θ   is an 
unknown location parameter and that the density may be written as  f ( x     −      θ  ) 
for  −  ∞     <      θ      <     ∞ . Let  x  1 ,  x  2 ,    . . .    ,  x n   be a random sample of size  n  from the 
density.
   a.     Show that the maximum - likelihood estimator of   θ   is the solution to

   ψ θxi

i

n

−( ) =
=
∑

1

0  

  that maximizes the logarithm of the likelihood function In 
  L f xi

n
iμ θ( ) = ∑ −( )=1 ln , where   ψ   ( x )    =      ρ   ′ ( x ) and   ρ  ( x )    =     − ln  f ( x ).  

  b.     If  f ( x ) is a nonmal distribution, fi nd   ρ  ( x ),   ψ   ( x ) and the corresponding 
maximum - likelihood estimator of   θ  .  

  c.     If  f ( x )    =    (2  σ  )  − 1  e   −  |    x    | /    σ    (the double - exponential distribution), fi nd   ρ  ( x ) and 
  ψ   ( x ). Show that the maximum - likelihood estimator of   θ   is the sample 
median. Compare Ibis estimator with the estimator found in part b. Does 
the sample median seem to be a reasonable estimator in this case?  

  d.     If  f ( x )    =    [  π   (1    +     x  2 )]  − 1  (the Cauchy distribution), fi nd   ρ  ( x ) and   ψ   ( x ). How 
would you solve   ∑ −( )=i

n
ix1ψ θ  in this case?      

    15.3     Tukey ’ s Biwelght.  A popular   ψ   function for robust regression is Tukey ’ s 
biweight, where

   ψ z
z z a z a

z a
( ) = − ( )⎡⎣ ⎤⎦ ≤

>

⎧
⎨
⎪

⎩⎪

1

0

2 2
,

,
 

  with  a     =    5, 6 Sketch the   ψ   function for  a     =    5 and discuss its behavior. Do you 
think that Tukey ’ s biweight would give results similar to Andrews ’  wave 
function?   

    15.4    The U.S. Air Force uses regression models for cost estimating, an application 
that almost always involves outliers. Simpson and Montgomery [ 1998a ] 
present 19 observations on fi rst - unit satellite cost data ( y ) and the weight of 
the electronics suite ( x ). The data are shown in the following table. 
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   Observation     Cost ($K)     Weight (Ib)  

     1    2449    90.6  
     2    2248    87.8  
     3    3545    38.6  
     4    794    28.6  
     5    1619    28.9  
     6    2079    23.3  
     7    918    21.1  
     8    1231    17.5  
     9    3641    27.6  
  10    4314    39.2  
  11    2628    34.9  
  12    3989    46.6  
  13    2308    80.9  
  14    376    14.6  
  15    5428    48.1  
  16    2786    38.1  
  17    2497    73.2  
  18    5551    40.8  
  19    5208    44.6  

    a.     Draw a scatter diagram of the data. Discuss what types of outliers may 
be present.  

  b.     Fit a straight line to these data with OLS. Does this fi t seem 
satisfactory?  

  c.     Fit a straight line to these data with an  M  - estimator of your choice. Is the 
fi t satisfactory? Discuss why the  M  - estimator is a poor choice for this 
problem.  

  d.     Discuss the types of estimators that you think might be appropriate for 
this data set.      

    15.5    Table  B.14  presents data on the transient points of an electronic inverter. Fit 
a model to those data using an  M  - estimator. Is there an indication that 
observations might have been incorrectly recorded?   

    15.6    Consider the regression model in Problem 2.10 relating systolic blood pres-
sure to weight. Suppose that we wish to predict an individual ’ s weight given 
an observed value of systolic blood pressure. Can this be done using the 
procedure for predicting  x  given a value of  y  described in Section  15.3 ? In 
this particular application, how would you respond to the suggestion of 
building a regression model relating weight to systolic blood pressure?   

    15.7    Consider the regression model in Problem 2.4 relating gasoline mileage to 
engine displacement.
   a.     If a particular car has an observed gasoline mileage of 17 miles per gallon, 

fi nd a point estimate of the corresponding engine displacement.  
  b.     Find a 95% confi dence interval on engine displacement.      
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    15.8    Consider a regression model relating total heat fl ux to radial defl ection for 
the solar energy data in Table  B.2 .
   a.     Suppose that the observed total heat fl ux is 250   kW. Find a point estimate 

of the corresponding radial defl ection.  
  b.     Construct a 90% confi dence interval on radial defl ection.      

    15.9    Consider the soft drink delivery time data in Example  3.1 . Find an approxi-
mate 95% bootstrap confi dence interval on the regression coeffi cient for 
distance using  m     =    1000 bootstrap samples. Compare this to the usual 
normal - theory confi dence interval.   

    15.10    Consider the soft drink delivery time data in Example  3.1 . Find the bootstrap 
estimate of the standard deviation of   β̂1 using the following numbers of boot-
strap samples:  m     =    100,  m     =    200,  m     =    300,  m     =    400, and  m     =    500. Can you 
draw any conclusions about how many bootstrap samples are necessary 
to obtain a reliable estimate of the precision of estimation for   β̂1?   

    15.11    Describe how you would fi nd a bootstrap estimate of the standard deviation 
of the estimate of the mean response at a particular point, say  x  0 .   

    15.12    Describe how you would fi nd an approximate bootstrap confi dence interval 
on the mean response at a particular point, say  x  0 .   

    15.13    Consider the nonlinear regression model fi t to the data in Problem 12.11. 
Find the bootstrap standard errors for the regression coeffi cients   ̂θ1,   ̂θ2, and 
  ̂θ3 using  m     =    1000 bootstrap samples. Based on the results you obtain, 
comment on how the asymptotic theory seems to apply to this problem.   

    15.14    Consider the nonlinear regression model fi t to the data in Problem 12.11. 
Find approximate 95% bootstrap confi dence intervals for the regression 
coeffi cients   ̂θ1,   ̂θ2, and   ̂θ3 using  m     =    1000 bootstrap samples. Compare these 
intervals to the ones based on the large - sample results. Based on the com-
parison of these intervals, comment on how the asymptotic theory seems to 
apply to this problem.   

    15.15    Consider the NFL team performance data in Table  B.1 . Construct a regres-
sion tree for this data set.   

    15.16     A Designed Experiment for Linear Regression.  You wish to fi t a simple 
linear regression model over the region  − 1    ≤     x     ≤    1 using  n     =    10 observations. 
Four experimental designs are under consideration: (i) 5 observations at 
 x     =     − 1 and 5 observations at  x     =     + 1, (ii) 4 observations at  x     =     − 1, 2 observa-
tions at  x     =    0, and 4 observations at  x     =     + 1, (iii) 2 observations at  x     =     − 1,   − 1

2 , 
0,   + 1

2 , and  + 1, and (iv) 1 observation at  x     =     − 1,  − 0.8, − 0.6,  − 0.4,  − 0.2,  + 0.2,  + 0.4, 
 + 0.6,  + 0.8, and  + 1. For each of these designs, fi nd the number of degrees of 
freedom available for evaluating pure error and testing lack of fi t, the stan-
dard error of the slope (up to a constant   σ  ), and the value of the determinant 
of  X ′ X . Based on these analyses, which design would you select?   

    15.17    An analyst is fi tting a simple linear regression model with the objective of 
obtaining a minimum - variance estimate of the intercept   β   0 . How should the 
data collection experiment be designed?   
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    15.18    Suppose that you are fi tting a simple linear regression model that will be 
used to predict the mean response at a particular point such as  x  0 . How 
should the data collection experiment be designed so that a minimum -
 variance estimate of the mean of  y  at  x  0  is obtained?   

    15.19    Consider the linear regression model  y     =      β   0     +      β   1  x  1     +      β   2  x  2     +     ε , where the 
regressors have been coded so that

   x x x x ni
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n
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   a.     Show that an orthogonal design ( X ′ X  diagonal) minimizes the variance 
of   β̂1 and   β̂2.  

  b.     Show that any design for fi tting this fi rst - order model that is orthogonal 
is also rotatable.          
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    TABLE A.1    Cumulative Standard Normal Distribution 

     
Φ z e duu

z

( ) = −

−∞∫ 1

2

2 2

π   

    z      .00     .01     .02     .03     .04      z   

  .0    .50000    .50399    .50798    .51197    .51595    .0  
  .1    53983    .54379    .54776    .55172    .55567    .1  
  .2    .57926    .58317    .58706    .59095    .59483    .2  
  .3    .61791    .62172    .62551    .62930    .63307    .3  
  .4    .65542    .65910    .66276    .66640    .67003    .4  
  .5    .69146    .69497    .69847    .70194    .70540    .5  
  .6    .72575    .72907    .73237    .73565    .73891    .6  
  .7    .75803    .76115    .76424    .76730    .77035    .7  
  .8    .78814    .79103    .79389    .79673    .79954    .8  
  .9    .81594    .81859    .82121    .82381    .82639    .9  
  1.0    .84134    .84375    .84613    .84849    .85083    1.0  
  1.1    .86433    .86650    .86864    .87076    .87285    1.1  
  1.2    .88493    .88686    .88877    .89065    .89251    1.2  
  1.3    .90320    .90490    .90658    .90824    .90988    1.3  
  1.4    .91924    .92073    .92219    .92364    .92506    1.4  
  1.5    .93319    .93448    .93574    .93699    .93822    1.5  
  1.6    .94520    .94630    .94738    .94845    .94950    1.6  
  1.7    .95543    .95637    .95728    .95818    .95907    1.7  
  1.8    .96407    .96485    .96562    .96637    .96711    1.8  
  1.9    .97128    .97193    .97257    .97320    .97381    1.9  
  2.0    .97725    .97778    .97831    .97882    .97932    2.0  
  2.1    .98214    .98257    .98300    .98341    .98382    2.1  
  2.2    .98610    .98645    .98679    .98713    .98745    2.2  
  2.3    .98928    .98956    .98983    .99010    .99036    2.3  
  2.4    .99180    .99202    .99224    .99245    .99266    2.4  
  2.5    .99379    .99396    .99413    .99430    .99446    2.5  
  2.6    .99534    .99547    .99560    .99573    .99585    2.6  
  2.7    .99653    .99664    .99674    .99683    .99693    2.7  
  2.8    .99744    .99752    .99760    .99767    .99774    2.8  
  2.9    .99813    .99819    .99825    .99831    .99836    2.9  
  3.0    .99865    .99869    .99874    .99878    .99882    3.0  
  3.1    .99903    .99906    .99910    .99913    .99916    3.1  
  3.2    .99931    .99934    .99936    .99938    .99940    3.2  
  3.3    .99952    .99953    .99955    .99957    .99958    3.3  
  3.4    .99966    .99968    .99969    .99970    .99971    3.4  
  3.5    .99977    .99978    .99978    .99979    .99980    3.5  
  3.6    .99984    .99985    .99985    .99986    .99986    3.6  
  3.7    .99989    .99990    .99990    .99990    .99991    3.7  
  3.8    .99993    .99993    .99993    .99994    .99994    3.8  
  3.9    .99995    .99995    .99996    .99996    .99996    3.9  



STATISTICAL TABLES  543

    
Φ z e duu

z

( ) = −

−∞∫ 1

2

2 2

π                           

   z     .05     .06     .07     .08     .09     z  

  .0    .51994    .52392    .52790    .53188    .53586    .0  
  .1    .55962    .56356    56749    .57142    57534    .1  
  .2    .59871    .60257    .60642    .61026    .61409    .2  
  .3    .63683    .64058    .64431    .64803    .65173    .3  
  .4    .67364    .67724    .68082    .68438    .68793    .4  
  .5    .70884    .71226    .71566    .71904    .72240    .5  
  .6    .74215    .74537    .74857    .75175    .75490    .6  
  .7    .77337    .77637    .77935    .78230    .78523    .7  
  .8    .80234    .80510    .80785    .81057    .81327    .8  
  .9    .82894    .83147    .83397    .83646    .83891    .9  

  1.0    .85314    .85543    .85769    .85993    .86214    1.0  
  1.1    .87493    .87697    .87900    .88100    .88297    1.1  
  1.2    .89435    .89616    .89796    .89973    .90147    1.2  
  1.3    .91149    .91308    .91465    .91621    .91773    1.3  
  1.4    .92647    .92785    .92922    .93056    .93189    1.4  
  1.5    .93943    .94062    .94179    .94295    .94408    1.5  
  1.6    .95053    .95154    .95254    .95352    .95448    1.6  
  1.7    .95994    .96080    .96164    .96246    .96327    1.7  
  1.8    .96784    .96856    .96926    .96995    .97062    1.8  
  1.9    .97441    .97500    .97558    .97615    .97660    1.9  
  2.0    .97982    .98030    .98077    .98124    .98169    2.0  
  2.1    .98422    .98461    .98500    .98537    .98574    2.1  
  2.2    .98778    .98809    .98840    .98870    .98899    2.2  
  2.3    .99061    .99086    .99111    .99134    .99158    2.3  
  2.4    .99286    .99305    .99324    .99343    .99361    2.4  
  2.5    .99461    .99477    .99492    .99506    .99520    2.5  
  2.6    .99598    .99609    .99621    .99632    .99643    2.6  
  2.7    .99702    .99711    .99720    .99728    .99736    2.7  
  2.8    .99781    .99788    .99795    .99801    .99807    2.8  
  2.9    .99841    .99846    .99851    .99856    .99861    2.9  
  3.0    .99886    .99889    .99893    .99897    .99900    3.0  
  3.1    .99918    .99921    .99924    .99926    .99929    3.1  
  3.2    .99942    .99944    .99946    .99948    .99950    3.2  
  3.3    .99960    .99961    .99962    .99964    .99965    3.3  
  3.4    .99972    .99973    .99974    .99975    .99976    3.4  
  3.5    .99981    .99981    .99982    .99983    .99983    3.5  
  3.6    .99987    .99987    .99988    .99988    .99989    3.6  
  3.7    .99991    .99992    .99992    .99992    .99992    3.7  
  3.8    .99994    .99994    .99995    .99995    .99995    3.8  
  3.9    .99996    .99996    .99996    .99997    .99997    3.9  

  Source :   Reproduced with permission from  Probability and Statistics in Engineering and Management 
Science , 3rd ed., 1990, by W. W. Hines and D. C. Montgomery, Wiley, New York.  

 

TABLE A.1 (Continued)
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  TABLE A.2    Percentage Points of the   χ   2  Distribntion 

    v   

     α    

   .995     .990     .975     .950     .900     .500     .100     .050     .025     .010     .005  

  1    .00 +     .00 +     .00 +     .00 +     .02    .45    2.71    3.84    5.02    6.63    7.88  
  2    .01    .02    .05    .10    .21    1.39    4.61    5.99    7.38    9.21    10.60  
  3    .07    .11    .22    .35    .58    2.37    6.25    7.81    9.35    11.34    12.84  
  4    .21    .30    .48    .71    1.06    3.36    7.48    9.49    11.14    13.28    14.86  
  5    .41    .55    .83    1.15    1.61    4.35    9.24    11.07    12.83    15.09    16.75  
  6    .68    .87    1.24    1.64    2.20    5.35    10.65    12.59    14.45    16.81    18.55  
  7    .99    1.24    1.69    2.17    2.83    6.35    12.02    14.07    16.01    18.48    20.28  
  8    1.34    1.65    2.18    2.73    3.49    7.34    13.36    15.51    17.53    20.09    21.96  
  9    1.73    2.09    2.70    3.33    4.17    8.34    14.68    16.92    19.02    21.67    23.59  

  10    2.16    2.56    3.25    2.94    4.87    9.34    15.99    18.31    20.48    23.21    25.19  
  11    2.60    3.05    3.82    4.57    5.58    10.34    17.28    19.68    21.92    24.72    26.76  
  12    3.07    3.57    4.40    5.23    6.30    11.34    18.55    21.03    23.34    26.22    28.30  
  13    3.57    4.11    5.01    5.89    7.04    12.34    19.81    22.36    24.74    27.69    29.82  
  14    4.07    4.66    5.63    6.57    7.79    13.34    21.06    23.68    26.12    29.14    31.32  
  15    4.60    5.23    6.27    7.26    8.55    14.34    22.31    25.00    27.49    30.58    32.80  
  16    5.14    5.81    6.91    7.96    9.31    15.34    23.54    26.30    28.85    32.00    34.27  
  17    5.70    6.41    7.56    8.67    10.09    16.34    24.77    27.59    30.19    33.41    35.72  
  18    6.26    7.01    8.23    9.39    10.87    17.34    25.99    28.87    31.53    34.81    37.16  
  19    6.84    7.63    8.91    10.12    11.65    18.34    27.20    30.14    32.85    36.19    38.58  
  20    7.43    8.26    9.59    10.85    12.44    19.34    28.41    31.41    34.17    37.57    40.00  
  21    8.03    8.90    10.28    11.59    13.24    20.34    29.62    32.67    35.48    38.93    41.40  
  22    8.64    9.54    10.98    12.34    14.04    21.34    30.81    33.92    36.78    40.29    42.80  
  23    9.26    10.20    11.69    13.09    14.85    22.34    32.01    35.17    38.08    41.64    44.18  
  24    9.89    10.86    12.40    13.85    15.66    23.34    33.20    36.42    39.36    42.98    45.45  
  25    10.52    11.52    13.12    14.61    16.47    24.34    34.28    37.65    40.65    44.31    46.93  
  26    11.16    12.20    13.84    15.38    17.29    25.34    35.56    38.89    41.92    45.64    48.29  
  27    11.81    12.88    14.57    16.15    18.11    26.34    36.74    40.11    43.19    46.96    49.65  
  28    12.46    13.57    15.31    16.93    18.94    27.34    37.92    41.34    44.46    48.28    50.99  
  29    13.12    14.26    16.05    17.71    19.77    28.34    39.09    42.56    45.72    49.59    52.34  
  30    13.79    14.95    16.79    18.49    20.60    29.34    40.26    43.77    46.98    50.89    53.67  
  40    20.71    22.16    24.43    26.51    29.05    39.34    51.81    55.76    59.34    63.69    66.77  
  50    27.99    29.71    32.36    34.76    37.69    49.33    63.17    67.50    71.42    76.15    79.49  
  60    35.53    37.48    40.48    43.19    46.46    59.33    74.40    79.08    83.30    88.38    91.95  
  70    43.28    45.44    48.76    51.74    55.33    69.33    85.53    90.53    95.02    100.42    104.22  
  80    51.17    53.54    57.15    60.39    64.28    79.33    96.58    101.88    106.63    112.33    116.32  
  90    59.20    61.75    65.65    69.13    73.29    89.33    107.57    113.14    118.14    124.12    128 · 30  

  100    67.33    70.06    74.22    77.93    82.36    99.33    118.50    124.34    139.56    135.81    140.17  

    v     =    degrees of freedom.   

  Source :   Reproduced with permission from  Probability and in Engineering and Management Science , 3rd ed., 1990, by W. W. Hines 
and D. C. Montgomery, Wiley, New York. 
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   TABLE A.3    Percentage Points of the  t  Distribution 

    v   

     α    

   .40     .25     .10     .05     .025     .01     .005     .0025     .001     .0005  

  1    .325    1.000    3.078    6.314    12.706    31.821    63.657    127.32    318.31    636.62  
  2    .289    .816    1.886    2.920    4.303    6.965    9.925    14.089    23.326    31.598  
  3    .277    .765    1.638    2.353    3.182    4.541    5.841    7.453    10.213    12.924  
  4    .271    .741    1.533    2.132    2.776    3.747    4.604    5.598    7.173    8.610  
  5    .267    .727    1.476    2.015    2.571    3.365    4.032    4.773    5.893    6.869  
  6    .265    .718    1.440    1.943    2.447    3.143    3.707    4.317    5.208    5.959  
  7    .263    .711    1.415    1.895    2.365    2.998    3.499    4.029    4.785    5.408  
  8    .262    .706    1.397    1.860    2.306    2.896    3.355    2.833    4.504    5.041  
  9    .261    .703    1.383    1.833    2.262    2.821    3.250    3.690    4.297    4.781  

  10    .260    .700    1.372    1.812    2.228    2.764    3.169    3.581    4.144    4.587  
  11    .260    .697    1.363    1.796    2.201    2.718    3.106    3.497    4.025    4.437  
  12    .259    .695    1.356    1.782    2.179    2.681    3.055    3.428    3.930    4.318  
  13    .259    .694    1.350    1.771    2.160    2.650    3.012    3.372    3.852    4.221  
  14    .258    .692    1.345    1.761    2.145    2.624    2.977    3.326    3.787    4.140  
  15    .258    .691    1.341    1.753    2.131    2.602    2.947    3.286    3.733    4.073  
  16    .258    .690    1.337    1.746    2.120    2.583    2.921    3.252    3.686    4.015  
  17    .257    .689    1.333    1.740    2.110    2.567    2.898    3.222    3.646    3.965  
  18    .257    .688    1.330    1.734    2.101    2.552    2.878    3.197    3.610    3.922  
  19    .257    .688    1.328    1.729    2.093    2.539    2.861    3.174    3.579    3.883  
  20    .257    .687    1.325    1.725    2.086    2.528    2.845    3.153    3.552    3.850  
  21    .257    .686    1.323    1.721    2.080    2.518    2.831    3.135    3.527    3.819  
  22    .256    .686    1.321    1.717    2.074    2.508    2.819    3.119    3.505    3.792  
  23    .256    .685    1.319    1.714    2.069    2.500    2.807    3.104    3.485    2.767  
  24    .256    .685    1.318    1.711    2.064    2.492    2.797    3.091    3.467    3.745  
  25    .256    .684    1.316    1.708    2.060    2.485    2.787    8.078    3.450    3.725  
  26    .256    .684    1.315    1.706    2.056    2.479    2.779    3.067    3.435    3.707  
  27    .256    .684    1.314    1.703    2.052    2.473    2.771    3.057    3.421    3.690  
  28    .256    .683    1.313    1.701    2.048    2.467    2.763    3.047    3.408    2.674  
  29    .256    .683    1.311    1.699    2.045    2.462    2.756    3.308    3.396    3.659  
  30    .256    .683    1.310    1.697    2.042    2.457    2.750    3.030    3.385    3.646  
  40    .255    .681    1.303    1.648    2.021    2.423    2.704    2.971    3.307    3.551  
  60    .254    .679    1.296    1.671    2.000    2.390    2.660    2.915    3.232    3.460  

  120    .254    .677    1.289    1.658    1.980    2.358    2.617    2.860    3.160    3.373  
   ∞     .253    .674    1.282    1.645    1.960    2.326    2.576    2.807    3.090    3.291  

  Source :   Adapted with pennission from  Biometrika Tables for Statisticians , Vol. 1, 3rd ed., 1966, by E. S. Pearson and H. O. 
Hartley, Cambridge University Press, Cambridge.  
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  TABLE A.6    Critical Values of the Durbin — Watson Statistic 

   Sample 
Size  

   Probability in 
Lower Tail 

(Signifi cance 
Level    =      α  )  

    k     =    Number of Regressors (Excluding the Intercept)  

   1     2     3     4     5  

    d L        d U        d L        d U        d L        d U        d L        d U        d L        d U    

  15    .01    .81    1.07    .70    1.25    .59    1.46    .49    1.70    .39    1.96  
  .025    .95    1.23    .83    1.40    .71    1.61    .59    1.84    .48    2.09  
  .05    1.08    1.36    .95    1.54    .82    1.75    .69    1.97    .56    2.21  
  .01    .95    1.15    .86    1.27    .77    1.41    .63    1.57    .60    1.74  

  20    .025    1.08    1.28    .99    1.41    .89    1.55    .79    1.70    .70    1.87  
  .05    1.20    1.41    1.10    1.54    1.00    1.68    .90    1.83    .79    1.99  
  .01    1.05    1.21    .98    1.30    .90    1.41    .83    1.52    .75    1.65  

  25    .025    1.13    1.34    1.10    1.43    1.02    1.54    .94    1.65    .86    1.77  
  .05    1.20    1.45    1.21    1.55    1.12    1.66    1.04    1.77    .95    1.89  
  .01    1.13    1.26    1.07    1.34    1.01    1.42    .94    1.51    .88    1.61  

  30    .025    1.25    1.38    1.18    1.46    1.12    1.54    1.05    1.63    .98    1.73  
  .05    1.35    1.49    1.28    1.57    1.21    1.65    1.14    1.74    1.07    1.83  
  .01    1.25    1.34    1.20    1.40    1.15    1.46    1.10    1.52    1.05    1.58  

  40    .025    1.35    1.45    1.30    1.51    1.25    1.57    1.20    1.63    1.15    1.69  
  .05    1.44    1.54    1.39    1.60    1.34    1.66    1.29    1.72    1.23    1.79  
  .01    1.32    1.40    1.28    1.45    1.24    1.49    1.20    1.54    1.16    1.59  

  50    .025    1.42    1.50    1.38    1.54    1.34    1.59    1.30    1.64    1.26    1.69  
  .05    1.50    1.59    1.46    1.63    1.42    1.67    1.38    1.72    1.34    1.77  
  .01    1.38    1.45    1.35    1.48    1.32    1.52    1.28    1.56    1.25    1.60  

  60    .025    1.47    1.54    1.44    1.57    1.40    1.61    1.37    1.65    1.33    1.69  
  .05    1.55    1.62    1.51    1.65    1.48    1.69    1.44    1.73    1.41    1.77  
  .01    1.47    1.52    1.44    1.54    1.42    1.57    1.39    1.60    1.36    1.62  

  80    .025    1.54    1.59    1.52    1.62    1.49    1.65    1.47    1.67    1.44    1.70  
  .05    1.61    1.66    1.59    1.69    1.56    1.72    1.53    1.74    1.51    1.77  
  .01    1.52    1.56    1.50    1.58    1.48    1.60    1.45    1.63    1.44    1.65  

  100    .025    1.59    1.63    1.57    1.65    1.55    1.67    1.53    1.70    1.51    1.72  
  .05    1.65    1.69    1.63    1.72    1.61    1.74    1.59    1.76    1.57    1.78  

  Source :   Adapted from  “ Testing for Serial Correlation in Least Squares Regression II, ”  by J. Durbin and 
G. S. Watson,  Biometrika,  Vol. 38, 1951, with permission of the publisher. 
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  APPENDIX B 

DATA SETS FOR EXERCISES     

      Table    B.1     National Football League 1976 Team Performance   
  Table    B.2     Solar Thermal Energy Test Data   
  Table    B.3     Gasoline Mileage Performance for 32 Automobiles   
  Table    B.4     Property Valuation Data   
  Table    B.5     Belle Ayr Liquefaction Runs   
  Table    B.6     Tube - Flow Reactor Data   
  Table    B.7     Oil Extraction from Peanuts Data   
  Table    B.8     Clathrate Formation Data   
  Table    B.9     Pressure Drop Data   
  Table    B.10     Kinematic Viscosity Data   
  Table    B.11     Wine Quality Data   
  Table    B.12     Heat Treating Data   
  Table    B.13     Jet Turbine Engine Thrust Data   
  Table    B.14     Electronic Inverter Data   
  Table    B.15     Air Pollution and Mortality Data   
  Table    B.16     Life Expectancy Data   
  Table    B.17     Patient Satisfaction Data   
  Table    B.18     Fuel Consumption Data   
  Table    B.19     Wine Quality of Young Red Wines   
  Table    B.20     Methanol Oxidation in Supercritical Water   
  Table    B.21     Hald Cement Data    

    
  

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
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  TABLE B.1    National Football League 1976 Team Performance 

   Team      y       x  1       x  2       x  3       x  4       x  5       x  6       x  7       x  8       x  9   

  Washington    10    2113    1985    38.9    64.7     + 4    868    59.7    2205    1917  
  Minnesota    11    2003    2855    38.8    61.3     + 3    615    55.0    2096    1575  
  New 

England  
  11    2957    1737    40.1    60.0     + 14    914    65.6    1847    2175  

  Oakland    13    2285    2905    41.6    45.3     − 4    957    61.4    1903    2476  
  Pittsburgh    10    2971    1666    39.2    53.8     + 15    836    66.1    1457    1866  
  Baltimore    11    2309    2927    39.7    74.1     + 8    786    61.0    1848    2339  
  Los Angeles    10    2528    2341    38.1    65.4     + 12    754    66.1    1564    2092  
  Dallas    11    2147    2737    37.0    78.3     − 1    761    58.0    1821    1909  
  Atlanta    4    1689    1414    42.1    47.6     − 3    714    57.0    2577    2001  
  Buffalo    2    2566    1838    42.3    54.2     − 1    797    58.9    2476    2254  
  Chicago    7    2363    1480    37.3    48.0     + 19    984    67.5    1984    2217  
  Cincinnati    10    2109    2191    39.5    51.9     + 6    700    57.2    1917    1758  
  Cleveland    9    2295    2229    37.4    53.6     − 5    1037    58.8    1761    2032  
  Denver    9    1932    2204    35.1    71.4     + 3    986    58.6    1709    2025  
  Detroit    6    2213    2140    38.8    58.3     + 6    819    59.2    1901    1686  
  Green Bay    5    1722    1730    36.6    52.6     − 19    791    54.4    2288    1835  
  Houston    5    1498    2072    35.3    59.3     − 5    776    49.6    2072    1914  
  Kansas City    5    1873    2929    41.1    55.3     + 10    789    54.3    2861    2496  
  Miami    6    2118    2268    38.2    69.6     + 6    582    58.7    2411    2670  
  New 

Orleans  
  4    1775    1983    39.3    78.3     + 7    901    51.7    2289    2202  

  New York 
Giants  

  3    1904    1792    39.7    38.1     − 9    734    61.9    2203    1988  

  New York 
Jets  

  3    1929    1606    39.7    68.8     − 21    627    52.7    2592    2324  

  Philadelphia    4    2080    1492    35.5    68.8     − 8    722    57.8    2053    2550  
  St. Louis    10    2301    2835    35.3    74.1     + 2    683    59.7    1979    2110  
  San Diego    6    2040    2416    38.7    50.0    0    576    54.9    2048    2628  
  San 

Francisco  
  8    2447    1638    39.9    57.1     − 8    848    65.3    1786    1776  

  Seattle    2    1416    2649    37.4    56.3     − 22    684    43.8    2876    2524  
  Tampa Bay    0    1503    1503    39.3    47.0     − 9    875    53.5    2560    2241  

    y : Games won (per 14 - game season)  
   x  1 : Rushing yards (season)  
   x  2 : Passing yards (season)  
   x  3 : Punting average (yards/punt)  
   x  4 : Field goal percentage (FGs made/FGs attempted 2season)  
   x  5 : Turnover differential (turnovers acquired – turnovers lost)  
   x  6 : Penalty yards (season)  
   x  7 : Percent rushing (rushing plays/total plays)  
   x  8 : Opponents ’  rushing yards (season)  
   x  9 : Opponents ’  passing yards (season)   
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  TABLE B.2    Solar Thermal Energy Test Data 

    y       x  1       x  2       x  3       x  4       x  5   

  271.8    783.35    33.53    40.55    16.66    13.20  
  264.0    748.45    36.50    36.19    16.46    14.11  
  238.8    684.45    34.66    37.31    17.66    15.68  
  230.7    827.80    33.13    32.52    17.50    10.53  
  251.6    860.45    35.75    33.71    16.40    11.00  
  257.9    875.15    34.46    34.14    16.28    11.31  
  263.9    909.45    34.60    34.85    16.06    11.96  
  266.5    905.55    35.38    35.89    15.93    12.58  
  229.1    756.00    35.85    33.53    16.60    10.66  
  239.3    769.35    35.68    33.79    16.41    10.85  
  258.0    793.50    35.35    34.72    16.17    11.41  
  257.6    801.65    35.04    35.22    15.92    11.91  
  267.3    819.65    34.07    36.50    16.04    12.85  
  267.0    808.55    32.20    37.60    16.19    13.58  
  259.6    774.95    34.32    37.89    16.62    14.21  
  240.4    711.85    31.08    37.71    17.37    15.56  
  227.2    694.85    35.73    37.00    18.12    15.83  
  196.0    638.10    34.11    36.76    18.53    16.41  
  278.7    774.55    34.79    34.62    15.54    13.10  
  272.3    757.90    35.77    35.40    15.70    13.63  
  267.4    753.35    36.44    35.96    16.45    14.51  
  254.5    704.70    37.82    36.26    17.62    15.38  
  224.7    666.80    35.07    36.34    18.12    16.10  
  181.5    568.55    35.26    35.90    19.05    16.73  
  227.5    653.10    35.56    31.84    16.51    10.58  
  253.6    704.05    35.73    33.16    16.02    11.28  
  263.0    709.60    36.46    33.83    15.89    11.91  
  265.8    726.90    36.26    34.89    15.83    12.65  
  263.8    697.15    37.20    36.27    16.71    14.06  

    y : Total heat fl ux (kwatts)  
   x  l : Insolation (watts/m 2 )  
   x  2 : Position of focal point in east direction (inches)  
   x  3 : Position of focal point in south direction (inches)  
   x  4 : Position of focal point in north direction (inches)  
   x  5 : Time of day   
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  TABLE B.3    Gasoline Mileage Performance for 32 Antomobiles 

   Automobile      y       x  1       x  2       x  3       x  4       x  5       x  6       x  7       x  8       x  9       x  10       x  11   

  Apollo    18.90    350    165    260    8.0   :   1    2.56   :   1    4    3    200.3    69.9    3910    A  
  Omega    17.00    350    170    275    8.5   :   1    2.56   :   1    4    3    199.6    72.9    2860    A  
  Nova    20.00    250    105    185    8.25   :   1    2.73   :   1    1    3    196.7    72.2    3510    A  
  Monarch    18.25    351    143    255    8.0   :   1    3.00   :   1    2    3    199.9    74.0    3890    A  
  Duster    20.07    225    95    170    8.4   :   1    2.76   :   1    1    3    194.1    71.8    3365    M  
  Jenson 

Conv.  
  11.2    440    215    330    8.2   :   1    2.88   :   1    4    3    184.5    69    4215    A  

  Skyhawk    22.12    231    110    175    8.0   :   1    2.56   :   1    2    3    179.3    65.4    3020    A  
  Monza    21.47    262    110    200    8.5   :   1    2.56   :   1    2    3    179.3    65.4    3180    A  
  Scirocco    34.70    89.7    70    81    8.2   :   1    3.90   :   1    2    4    155.7    64    1905    M  
  Corolla 

SR - 5  
  30.40    96.9    75    83    9.0   :   1    4.30   :   1    2    5    165.2    65    2320    M  

  Camaro    16.50    350    155    250    8.5   :   1    3.08   :   1    4    3    195.4    74.4    3885    A  
  Datsun 

B210  
  36.50    85.3    80    83    8.5   :   1    3.89   :   1    2    4    160.6    62.2    2009    M  

  Capri II    21.50    171    109    146    8.2   :   1    3.22   :   1    2    4    170.4    66.9    2655    M  
  Pacer    19.70    258    110    195    8.0   :   1    3.08   :   1    1    3    171.5    77    3375    A  
  Babcat    20.30    140    83    109    8.4   :   1    3.40   :   1    2    4    168.8    69.4    2700    M  
  Granada    17.80    302    129    220    8.0   :   1    3.0   :   1    2    3    199.9    74    3890    A  
  Eldorado    14.39    500    190    360    8.5   :   1    2.73   :   1    4    3    224.1    79.8    5290    A  
  Imperial    14.89    440    215    330    8.2   :   1    2.71   :   1    4    3    231.0    79.7    5185    A  
  Nova LN    17.80    350    155    250    8.5   :   1    3.08   :   1    4    3    196.7    72.2    3910    A  
  Valiant    16.41    318    145    255    8.5   :   1    2.45   :   1    2    3    197.6    71    3660    A  
  Starfi re    23.54    231    110    175    8.0   :   1    2.56   :   1    2    3    179.3    65.4    3050    A  
  Cordoba    21.47    360    180    290    8.4   :   1    2.45   :   1    2    3    214.2    76.3    4250    A  
  Trans AM    16.59    400    185    NA    7.6   :   1    3.08   :   1    4    3    196    73    3850    A  
  Corolla E - 5    31.90    96.9    75    83    9.0   :   1    4.30   :   1    2    5    165.2    61.8    2275    M  
  Astre    29.40    140    86    NA    8.0   :   1    2.92   :   1    2    4    176.4    65.4    2150    M  
  Mark IV    13.27    460    223    366    8.0   :   1    3.00   :   1    4    3    228    79.8    5430    A  
  Celica GT    23.90    133.6    96    120    8.4   :   1    3.91   :   1    2    5    171.5    63.4    2535    M  
  Charger SE    19.73    318    140    255    8.5   :   1    2.71   :   1    2    3    215.3    76.3    4370    A  
  Cougar    13.90    351    148    243    8.0   :   1    3.25   :   1    2    3    215.5    78.5    4540    A  
  Elite    13.27    351    148    243    8.0   :   1    3.26   :   1    2    3    216.1    78.5    4715    A  
  Matador    13.77    360    195    295    8.25   :   1    3.15   :   1    4    3    209.3    77.4    4215    A  
  Corvette    16.50    350    165    255    8.5   :   1    2.73   :   1    4    3    185.2    69    3660    A  

   y : Miles/gallon     x  6 : Carburetor (barrels)  
   x  1 : Displacement (cubic in.)     x  7 : No. of transmission speeds  
   x  2 : Horsepower (ft - lb)     x  8 : Overall length (in.)  
   x  3 : Torqne (ft - lb)     x  9 : Width (in.)  
   x  4 : Compression ratio     x  10 : Weight (lb)  
   x  5 : Rear axle ratio     x  11 : Type of transmission (A automatic; M manual)  
  Source :    Motor Trend , 1975. 
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  TABLE B.4    Property Valuation Data 

    y       x  1       x  2       x  3       x  4       x  5       x  6       x  7       x  8       x  9   

  25.9    4.9176    1.0    3.4720    0.9980    1.0    7    4    42    0  
  29.5    5.0208    1.0    3.5310    1.5000    2.0    7    4    62    0  
  27.9    4.5429    1.0    2.2750    1.1750    1.0    6    3    40    0  
  25.9    4.5573    1.0    4.0500    1.2320    1.0    6    3    54    0  
  29.9    5.0597    1.0    4.4550    1.1210    1.0    6    3    42    0  
  29.9    3.8910    1.0    4.4550    0.9880    1.0    6    3    56    0  
  30.9    5.8980    1.0    5.8500    1.2400    1.0    7    3    51    1  
  28.9    5.6039    1.0    9.5200    1.5010    0.0    6    3    32    0  
  35.9    5.8282    1.0    6.4350    1.2250    2.0    6    3    32    0  
  31.5    5.3003    1.0    4.9883    1.5520    1.0    6    3    30    0  
  31.0    6.2712    1.0    5.5200    0.9750    1.0    5    2    30    0  
  30.9    5.9592    1.0    6.6660    1.1210    2.0    6    3    32    0  
  30.0    5.0500    1.0    5.0000    1.0200    0.0    5    2    46    1  
  36.9    8.2464    1.5    5.1500    1.6640    2.0    8    4    50    0  
  41.9    6.6969    1.5    6.9020    1.4880    1.5    7    3    22    1  
  40.5    7.7841    1.5    7.1020    1.3760    1.0    6    3    17    0  
  43.9    9.0384    1.0    7.8000    1.5000    15    7    3    23    0  
  37.5    5.9894    1.0    5.5200    1.2560    2.0    6    3    40    1  
  37.9    7.5422    1.5    5.0000    1.6900    1.0    6    3    22    0  
  44.5    8.7951    1.5    9.8900    1.8200    2.0    8    4    50    1  
  37.9    6.0831    1.5    6.7265    1.6520    1.0    6    3    44    0  
  38.9    8.3607    1.5    9.1500    1.7770    2.0    8    4    48    1  
  36.9    8.1400    1.0    8.0000    1.5040    2.0    7    3    3    0  
  45.8    9.1416    1.5    7.3262    1.8310    1.5    8    4    31    0  

    y : Sale price of the house/1000  
   x  1 : Taxes (local, school, county)/1000  
   x  2 : Number of baths  
   x  3 : Lot size (sq   ft    ×    1000)  
   x  4 : Living space (sq   ft    ×    1000)  
   x  5 : Number of garage stalls  
   x  6 : Number of rooms  
   x  7 : Number of bedrooms  
   x  8 : Age of the home (years)  
   x  9 : Number of fi replaces   

  Source :    “ Prediction, Linear Regression and Minimum Sum of Relative Errors, ”  by S. C. Narula and J. F. 
Wellington,  Technometrics ,  19 , 1977. Also see  “ Letter to the Editor, ”   Technometrics ,  22 , 1980. 
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  TABLE B.5    Belle Ayr Liquefaction Runs 

   Run No.      y       x  1       x  2       x  3       x  4       x  5       x  6       x  7   

  1    36.98    5.1    400    51.37    4.24    1484.83    2227.25    2.06  
  2    13.74    26.4    400    72.33    30.87    289.94    434.90    1.33  
  3    10.08    23.8    400    71.44    33.01    320.79    481.19    0.97  
  4    8.53    46.4    400    79.15    44.61    164.76    247.14    0.62  
  5    36.42    7.0    450    80.47    33.84    1097.26    1645.89    0.22  
  6    26.59    12.6    450    89.90    41.26    605.06    907.59    0.76  
  7    19.07    18.9    450    91.48    41.88    405.37    608.05    1.71  
  8    5.96    30.2    450    98.6    70.79    253.70    380.55    3.93  
  9    15.52    53.8    450    98.05    66.82    142.27    213.40    1.97  

  10    56.61    5.6    400    55.69    8.92    1362.24    2043.36    5.08  
  11    26.72    15.1    400    66.29    17.98    507.65    761.48    0.60  
  12    20.80    20.3    400    58.94    17.79    377.60    566.40    0.90  
  13    6.99    48.4    400    74.74    33.94    158.05    237.08    0.63  
  14    45.93    5.8    425    63.71    11.95    130.66    1961.49    2.04  
  15    43.09    11.2    425    67.14    14.73    682.59    1023.89    1.57  
  16    15.79    27.9    425    77.65    34.49    274.20    411.30    2.38  
  17    21.60    5.1    450    67.22    14.48    1496.51    2244.77    0.32  
  18    35.19    11.7    450    81.48    29.69    652.43    978.64    0.44  
  19    26.14    16.7    450    83.88    26.33    458.42    687.62    8.82  
  20    8.60    24.8    450    89.38    37.98    312.25    468.28    0.02  
  21    11.63    24.9    450    79.77    25.66    307.08    460.62    1.72  
  22    9.59    39.5    450    87.93    22.36    193.61    290.42    1.88  
  23    4.42    29.0    450    79.50    21.52    155.96    233.95    1.43  
  24    38.89    5.5    460    72.73    17.86    1392.08    2088.12    1.35  
  25    11.19    11.5    450    77.88    25.20    663.09    994.63    1.61  
  26    75.62    5.2    470    75.50    8.66    1464.11    2196.17    4.78  
  27    36.03    10.6    470    83.15    22.39    720.07    1080.11    5.88  

    y : CO 2   
   x  1 : Space time, min.  
   x  2 : Temperature,  ° C  
   x  3 : Percent solvation  
   x  4 : Oil yield (g/100   g MAF)  
   x  5 : Coal total  
   x  6 : Solvent total  
   x  7 : Hydrogen consumption   

  Source :  “ Belle Ayr Liquefaction Runs with Solvent, ”   Industrial Chemical Process Design Development.  
 17 , No. 3, 1978. 
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  TABLE B.6    Tube - Flow Reactor Data 

   Run No.      y       x  1       x  2       x  3       x  4   

  1    0.000450    0.0105    90.9    0.0164    0.0177  
  2    0.000450    0.0110    84.6    0.0165    0.0172  
  3    0.000473    0.0106    88.9    0.0164    0.0157  
  4    0.000507    0.0116    488.7    0.0187    0.0082  
  5    0.000457    0.0121    454.4    0.0187    0.0070  
  6    0.000452    0.0123    439.2    0.0187    0.0065  
  7    0.000453    0.0122    447.1    0.0186    0.0071  
  8    0.000426    0.0122    451.6    0.0187    0.0062  
  9    0.001215    0.0123    487.8    0.0192    0.0153  

  10    0.001256    0.0122    467.6    0.0192    0.0129  
  11    0.001145    0.0094    95.4    0.0163    0.0354  
  12    0.001085    0.0100    87.1    0.0162    0.0342  
  13    0.001066    0.0101    82.7    0.0162    0.0323  
  14    0.001111    0.0099    87.0    0.0163    0.0337  
  15    0.001364    0.0110    516.4    0.0190    0.0161  
  16    0.001254    0.0117    488.0    0.0189    0.0149  
  17    0.001396    0.0110    534.5    0.0189    0.0163  
  18    0.001575    0.0104    542.3    0.0189    0.0164  
  19    0.001615    0.0067    98.8    0.0163    0.0379  
  20    0.001733    0.0066    84.8    0.0162    0.0360  
  21    0.002753    0.0044    69.6    0.0163    0.0327  
  22    0.003186    0.0073    436.9    0.0189    0.0263  
  23    0.003227    0.0078    406.3    0.0192    0.0200  
  24    0.003469    0.0067    447.9    0.0192    0.0197  
  25    0.001911    0.0091    58.5    0.0164    0.0331  
  26    0.002588    0.0079    394.3    0.0177    0.0674  
  27    0.002635    0.0068    461.0    0.0174    0.0770  
  28    0.002725    0.0065    469.2    0.0173    0.0780  

    y : NbOCl 3  concentration (g - mol/l)  
   x  1 : COCl 2  concentration (g - mol/l)  
   x  2 : Space time (sec)  
   x  3 : Molar density (g - mol/l)  
   x  4 : Mole fraction CO 2    

  Source :    “ Kinetics of Chlorination of Niobium Oxychloride by Phosgene in a Tube - Flow Reactor, ”  
 Industrial and Engineering Chemistry, Process Design Development ,  11 , No. 2, 1972. 
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  TABLE B.7    Oil Extraction from Peanuts Data 

   Pressure 
(bars)  

   Temp. 
( ° C)  

   Moisture 
(% by weight)  

   Flow Rate 
(L/min)  

   Particle Size 
(mm)     Yield  

  415    25    5    40    1.28    63  
  550    25    5    40    4.05    21  
  415    95    5    40    4.05    36  
  550    95    5    40    1.28    99  
  415    25    15    40    4.05    24  
  550    25    15    40    1.28    66  
  415    95    15    40    1.28    71  
  550    95    15    40    4.05    54  
  415    25    5    60    4.05    23  
  550    25    5    60    1.28    74  
  415    95    5    60    1.28    80  
  550    95    5    60    4.05    33  
  415    25    15    60    1.28    63  
  550    25    15    60    4.05    21  
  415    95    15    60    4.05    44  
  550    95    15    60    1.28    96  

  Source :    “ An Application of Fractional Experimental Designs, ”  by M. B. Kilgo,  Quality Engineering ,  1 , 
pp. 19 – 23. 

  TABLE B.8    Clathrate Formation Data 

    x  1       x  2       y       x  1       x  2       y   

  0    10    7.5    0.02    30    19  
  0    50    15    0.02    60    26.4  
  0    85    22    0.02    90    28.5  
  0    110    28.6    0.02    120    29  
  0    140    31.6    0.02    210    35  
  0    170    34    0.02    30    15.1  
  0    200    35    0.02    60    26.4  
  0    230    35.5    0.02    120    27  
  0    260    36.5    0.02    150    29  
  0    290    385    0.05    20    21  
  0    10    12.3    0.05    40    27.3  
  0    30    18    0.05    130    48.5  
  0    62    20.8    0.05    190    50.4  
  0    90    25.7    0.05    250    52.5  
  0    150    32.5    0.05    60    34.4  
  0    210    34    0.05    90    46.5  
  0    270    35    0.05    120    50  
  0.02    10    14.4    0.05    150    51.9  

    y : Clathrate formation (mass %)  
   x  1 : Amount of surfactant (mass %)  
   x  2 : Time (minutes)   

  Source :    “ Study on a Cool Storage System Using HCFC (Hydro - chloro - fl uoro - carbon) - 14 lb (1,1 - dichloro -
 1 - fl uoro - ethane) Clathrate, ”  by T. Tanii, M. Minemoto, K. Nakazawa, and Y. Ando,  Canadian Journal of 
Chemical Engineering ,  75 , 353 – 360. 
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  TABLE B.9    Pressure Drop Data 

    x  1       x  2       x  3       x  4       y   

  2.14    10    034    1    28.9  
  4.14    10    0.34    1    31  
  8.15    10    0.34    1    26.4  
  2.14    10    0.34    0.246    27.2  
  4.14    10    0.34    0.379    26.1  
  8.15    10    0.34    0.474    23.2  
  2.14    10    0.34    0.141    19.7  
  4.14    10    0.34    0.234    22.1  
  8.15    10    0.34    0.311    22.8  
  2.14    10    0.34    0.076    29.2  
  4.14    10    0.34    0.132    23.6  
  8.15    10    0.34    0.184    23.6  
  2.14    2.63    0.34    0.679    24.2  
  4.14    2.63    0.34    0.804    22.1  
  8.15    2.63    0.34    0.89    20.9  
  2.14    2.63    0.34    0.514    17.6  
  4.14    2.63    0.34    0.672    15.7  
  8.15    2.63    0.34    0.801    15.8  
  2.14    2.63    0.34    0.346    14  
  4.14    2.63    0.34    0.506    17.1  
  8.15    2.63    0.34    0.669    18.3  
  2.14    2.63    0.34    1    33.8  
  4.14    2.63    0.34    1    31.7  
  8.15    2.63    0.34    1    28.1  
  5.6    1.25    0.34    0.848    18.1  
  5.6    1.25    0.34    0.737    16.5  
  5.6    1.25    0.34    0.651    15.4  
  5.6    1.25    0.34    0.554    15  
  4.3    2.63    0.34    0.748    19.1  
  4.3    2.63    0.34    0.682    16.2  
  4.3    2.63    0.34    0.524    16.3  
  4.3    2.63    0.34    0.472    15.8  
  4.3    2.63    0.34    0.398    15.4  
  5.6    10.1    0.25    0.789    19.2  
  5.6    10.1    0.25    0.677    8.4  
  5.6    10.1    0.25    0.59    15  
  5.6    10.1    0.25    0.523    12  
  5.6    10.1    0.34    0.789    21.9  
  5.6    10.1    0.34    0.677    21.3  
  5.6    10.1    0.34    0.59    21.6  
  5.6    10.1    0.34    0.523    19.8  
  4.3    10.1    0.34    0.741    21.6  
  4.3    10.1    0.34    0.617    17.3  
  4.3    10.1    0.34    0.524    20  
  4.3    10.1    0.34    0.457    18.6  
  2.4    10.1    0.34    0.615    22.1  
  2.4    10.1    0.34    0.473    14.7  
  2.4    10.1    0.34    0.381    15.8  
  2.4    10.1    0.34    0.32    13.2  

(Continued)
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    x  1       x  2       x  3       x  4       y   

  5.6    10.1    0.55    0.789    30.8  
  5.6    10.1    0.55    0.677    27.5  
  5.6    10.1    0.55    0.59    25.2  
  5.6    10.1    0.55    0.523    22.8  
  2.14    112    0.34    0.68    41.7  
  4.14    112    0.34    0.803    33.7  
  8.15    112    0.34    0.889    29.7  
  2.14    112    0.34    0.514    41.8  
  4.14    112    0.34    0.672    37.1  
  8.15    112    0.34    0.801    40.1  
  2.14    112    0.34    0.306    42.7  
  4.14    112    0.34    0.506    48.6  
  8.15    112    0.34    0.668    42.4  

    y : Dimensionless factor for the pressure drop through a bubble cap  
   x  1 : Superfi cial fl uid velocity of the gas (cm/s)  
   x  2 : Kinematic viscosity  
   x  3 : Mesh opening (cm)  
   x  4 : Dimensionless number relating the superfi cial fl uid velocity of the gas to the superfi cial fl uid 
velocity of the liquid   

  Source :    “ A Correlation of Two - Phase Pressure Drops in Screen - plate Bubble Column, ”  by C. H. Liu, M. 
Kan, and B. H. Chen,  Canadian Journal of Chemical Engineering ,  71 , 460 – 463. 

TABLE B.9 (Continued)
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  TABLE B.10    Kinematic Viscosity Data 

    x  1       x  2       y   

  0.9189     − 10    3.128  
  0.9189    0    2.427  
  0.9189    10    1.94  
  0.9189    20    1.586  
  0.9189    30    1.325  
  0.9189    40    1.126  
  0.9189    50    0.9694  
  0.9189    60    0.8473  
  0.9189    70    0.7481  
  0.9189    80    0.6671  
  0.7547     − 10    2.27  
  0.7547    0    1.819  
  0.7547    10    1.489  
  0.7547    20    1.246  
  0.7547    30    1.062  
  0.7547    40    0.916  
  0.7547    50    0.8005  
  0.7547    60    0.7091  
  0.7547    70    0.6345  
  0.7547    80    0.5715  
  0.5685     − 10    1.593  
  0.5685    0    1.324  
  0.5685    10    1.118  
  0.5685    20    0.9576  
  0.5685    30    0.8302  
  0.5685    40    0.7282  
  0.5685    50    0.647  
  0.5685    60    0.5784  
  0.5685    70    0.5219  
  0.5685    80    0.4735  
  0.361     − 10    1.161  
  0.361    0    0.9925  
  0.361    10    0.8601  
  0.361    20    0.7523  
  0.361    30    0.6663  
  0.361    40    0.594  
  0.361    50    0.5338  
  0.361    60    0.4804  
  0.361    70    0.4361  
  0.361    80    0.4016  

    y : Kinematic viscosity (10  − 6    m 2 /s).  
   x  l : Ratio of 2 - methoxyethanol to 1,2 - dimethoxyethane 
(dimensionless).  
   x  2 : Temperature ( ° C).   

  Source :    “ Viscosimetric Studies on 2 - Methoxyethanol    +    1, 
2 - Dimethoxyethane Binary Mixtures from  − 10 to 80 ° C, ”   Canadian 
Journal of Chemical Engineering ,  75 , 494 – 501. 
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  TABLE B.11    Wine Quality Data (Found in Minitab) 

   Clarity,  x  1      Aroma,  x  2      Body,  x  3      Flavor,  x  4      Oakiness,  x  5      Quality,  y      Region  

  1    3.3    2.8    3.1    4.1    9.8    1  
  1    4.4    4.9    3.5    3.9    12.6    1  
  1    3.9    5.3    4.8    4.7    11.9    1  
  1    3.9    2.6    3.1    3.6    11.1    1  
  1    5.6    5.1    5.5    5.1    13.3    1  
  1    4.6    4.7    5    4.1    12.8    1  
  1    4.8    4.8    4.8    3.3    12.8    1  
  1    5.3    4.5    4.3    5.2    12    1  
  1    4.3    4.3    3.9    2.9    13.6    3  
  1    4.3    3.9    4.7    3.9    13.9    1  
  1    5.1    4.3    4.5    3.6    14.4    3  
  0.5    3.3    5.4    4.3    3.6    12.3    2  
  0.8    5.9    5.7    7    4.1    16.1    3  
  0.7    7.7    6.6    6.7    3.7    16.1    3  
  1    7.1    4.4    5.8    4.1    15.5    3  
  0.9    5.5    5.6    5.6    4.4    15.5    3  
  1    6.3    5.4    4.8    4.6    13.8    3  
  1    5    5.5    5.5    4.1    13.8    3  
  1    4.6    4.1    4.3    3.1    11.3    1  
  0.9    3.4    5    3.4    3.4    7.9    2  
  0.9    6.4    5.4    6.6    4.8    15.1    3  
  1    5.5    5.3    5.3    3.8    13.5    3  
  0.7    4.7    4.1    5    3.7    10.8    2  
  0.7    4.1    4    4.1    4    9.5    2  
  1    6    5.4    5.7    4.7    12.7    3  
  1    4.3    4.6    4.7    4.9    11.6    2  
  1    3.9    4    5.1    5.1    11.7    1  
  1    5.1    4.9    5    5.1    11.9    2  
  1    3.9    4.4    5    4.4    10.8    2  
  1    4.5    3.7    2.9    3.9    8.5    2  
  1    5.2    4.3    5    6    10.7    2  
  0.8    4.2    3.8    3    4.7    9.1    1  
  1    3.3    3.5    4.3    4.5    12.1    1  
  1    6.8    5    6    5.2    14.9    3  
  0.8    5    5.7    5.5    4.8    13.5    1  
  0.8    3.5    4.7    4.2    3.3    12.2    1  
  0.8    4.3    5.5    3.5    5.8    10.3    1  
  0.8    5.2    4.8    5.7    3.5    13.2    1  

   The wine type here is Pinot Noir. Region refers to distinct geographic regions.   
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  TABLE B.12    Heat Treating Data 

   Temp     Soaktime     Soakpct     Difftime     Diffpct     Pitch  

  1650    0.58    1.10    0.25    0.90    0.013  
  1650    0.66    1.10    0.33    0.90    0.016  
  1650    0.66    1.10    0.33    0.90    0.015  
  1650    0.66    1.10    0.33    0.95    0.016  
  1600    0.66    1.15    0.33    1.00    0.015  
  1600    0.66    1.15    0.33    1.00    0.016  
  1650    1.00    1.10    0.50    0.80    0.014  
  1650    1.17    1.10    0.58    0.80    0.021  
  1650    1.17    1.10    0.58    0.80    0.018  
  1650    1.17    1.10    0.58    0.80    0.019  
  1650    1.17    1.10    0.58    0.90    0.021  
  1650    1.17    1.10    0.58    0.90    0.019  
  1650    1.17    1.15    0.58    0.90    0.021  
  1650    1.20    1.15    1.10    0.80    0.025  
  1650    2.00    1.15    1.00    0.80    0.025  
  1650    2.00    1.10    1.10    0.80    0.026  
  1650    2.20    1.10    1.10    0.80    0.024  
  1650    2.20    1.10    1.10    0.80    0.025  
  1650    2.20    1.15    1.10    0.80    0.024  
  1650    2.20    1.10    1.10    0.90    0.025  
  1650    2.20    1.10    1.10    0.90    0.027  
  1650    2.20    1.10    1.50    0.90    0.026  
  1650    3.00    1.15    1.50    0.80    0.029  
  1650    3.00    1.10    1.50    0.70    0.030  
  1650    3.00    1.10    1.50    0.75    0.028  
  1650    3.00    1.15    1.66    0.85    0.032  
  1650    3.33    1.10    1.50    0.80    0.033  
  1700    4.00    1.10    1.50    0.70    0.039  
  1650    4.00    1.10    1.50    0.70    0.040  
  1650    4.00    1.15    1.50    0.85    0.035  
  1700    12.50    1.00    1.50    0.70    0.056  
  1700    18.50    1.00    1.50    0.70    0.068  

    y     =    PITCH: Results of the pitch carbon analysis test  
  TEMP: Furnace temperature  
  SOAKTIME: Duration of the carburizing cycle  
  SOAKPCT: Carbon concentration  
  DIFFTIME: Duration of the diffuse cycle  
  DIFFPCT: Carbon concentration of the diffuse cycle   
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  TABLE B.13    Jet Turbine Engine Thrust Data 

   Observation Number      y       x  1       x  2       x  3       x  4       x  5       x  6   

  1    4540    2140    20640    30250    205    1732    99  
  2    4315    2016    20280    30010    195    1697    100  
  3    4095    1905    19860    29780    184    1662    97  
  4    3650    1675    18980    29330    164    1598    97  
  5    3200    1474    18100    28960    144    1541    97  
  6    4833    2239    20740    30083    216    1709    87  
  7    4617    2120    20305    29831    206    1669    87  
  8    4340    1990    19961    29604    196    1640    87  
  9    3820    1702    18916    29088    171    1572    85  

  10    3368    1487    18012    28675    149    1522    85  
  11    4445    2107    20520    30120    195    1740    101  
  12    4188    1973    20130    29920    190    1711    100  
  13    3981    1864    19780    29720    180    1682    100  
  14    3622    1674    19020    29370    161    1630    100  
  15    3125    1440    18030    28940    139    1572    101  
  16    4560    2165    20680    30160    208    1704    98  
  17    4340    2048    20340    29960    199    1679    96  
  18    4115    1916    19860    29710    187    1642    94  
  19    3630    1658    18950    29250    164    1576    94  
  20    3210    1489    18700    28890    145    1528    94  
  21    4330    2062    20500    30190    193    1748    101  
  22    4119    1929    20050    29960    183    1713    100  
  23    3891    1815    19680    29770    173    1684    100  
  24    3467    1595    18890    29360    153    1624    99  
  25    3045    1400    17870    28960    134    1569    100  
  26    4411    2047    20540    30160    193    1746    99  
  27    4203    1935    20160    29940    184    1714    99  
  28    3968    1807    19750    29760    173    1679    99  
  29    3531    1591    18890    29350    153    1621    99  
  30    3074    1388    17870    28910    133    1561    99  
  31    4350    2071    20460    30180    198    1729    102  
  32    4128    1944    20010    29940    186    1692    101  
  33    3940    1831    19640    29750    178    1667    101  
  34    3480    1612    18710    29360    156    1609    101  
  35    3064    1410    17780    28900    136    1552    101  
  36    4402    2066    20520    30170    197    1758    100  
  37    4180    1954    20150    29950    188    1729    99  
  38    3973    1835    19750    29740    178    1690    99  
  39    3530    1616    18850    29320    156    1616    99  
  40    3080    1407    17910    28910    137    1569    100  

    y : Thrust  
   x  1 : Primary speed of rotation  
   x  2 : Secondary speed of rotation  
   x  3 : Fuel fl ow rate  
   x  4 : Pressure  
   x  5 : Exhaust temperature  
   x  6 : Ambient temperature at time of test   
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  TABLE B.14    Electronic Inverter Data 

   Observation Number      x  1       x  2       x  3       x  4       x  5       y   

  1    3    3    3    3    0    0.787  
  2    8    30    8    8    0    0.293  
  3    3    6    6    6    0    1.710  
  4    4    4    4    12    0    0.203  
  5    8    7    6    5    0    0.806  
  6    10    20    5    5    0    4.713  
  7    8    6    3    3    25    0.607  
  8    6    24    4    4    25    9.107  
  9    4    10    12    4    25    9.210  

  10    16    12    8    4    25    1.365  
  11    3    10    8    8    25    4.554  
  12    8    3    3    3    25    0.293  
  13    3    6    3    3    50    2.252  
  14    3    8    8    3    50    9.167  
  15    4    8    4    8    50    0.694  
  16    5    2    2    2    50    0.379  
  17    2    2    2    3    50    0.485  
  18    10    15    3    3    50    3.345  
  19    15    6    2    3    50    0.208  
  20    15    6    2    3    75    0.201  
  21    10    4    3    3    75    0.329  
  22    3    8    2    2    75    4.966  
  23    6    6    6    4    75    1.362  
  24    2    3    8    6    75    1.515  
  25    3    3    8    8    75    0.751  

    y : Transient point (volts) of PMOS - NMOS inverters  
   x  1 : Width of the NMOS device  
   x  2 : Length of the NMOS device  
   x  3 : Width of the PMOS device  
   x  4 : Length of the PMOS device   

  TABLE B.15    Air Pollution and Mortality Data 

   City     Mort     Precip     Educ     Nonwhite     Nox     SO2  

  San Jose, CA    790.73    13.00    12.20    3.00    32.00    3.00  
  Wichita, KS    823.76    28.00    12.10    7.50    2.00    1.00  
  San Diego, CA    839.71    10.00    12.10    5.90    66.00    20.00  
  Lancaster, PA    844.05    43.00    9.50    2.90    7.00    32.00  
  Minneapolis, MN    857.62    25.00    12.10    3.00    11.00    26.00  
  Dallas, TX    860.10    35.00    11.80    14.80    1.00    1.00  
  Miami, FL    861.44    60.00    11.50    11.50    1.00    1.00  
  Los Angeles, CA    861.83    11.00    12.10    7.80    319.00    130.00  
  Grand Rapids, MI    871.34    31.00    10.90    5.10    3.00    10.00  
  Denver, CO    871.77    15.00    12.20    4.70    8.00    28.00  
  Rochester, NY    874.28    32.00    11.10    5.00    4.00    18.00  
  Hartford, CT    887.47    43.00    11.50    7.20    3.00    10.00  
  Fort Worth, TX    891.71    31.00    11.40    11.50    1.00    1.00  

(Continued)
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   City     Mort     Precip     Educ     Nonwhite     Nox     SO2  

  Portland, OR    893.99    37.00    12.00    3.60    21.00    44.00  
  Worcester, MA    895.70    45.00    11.10    1.00    3.00    8.00  
  Seattle, WA    899.26    35.00    12.20    5.70    7.00    20.00  
  Bridgeport, CT    899.53    45.00    10.60    5.30    4.00    4.00  
  Springfi eld, MA    904.16    45.00    11.10    3.40    4.00    20.00  
  San Francisco, CA    911.70    18.00    12.20    13.70    171.00    86.00  
  York, PA    911.82    42.00    9.00    4.80    8.00    49.00  
  Utica, NY    912.20    40.00    10.30    2.50    2.00    11.00  
  Canton, OH    912.35    36.00    10.70    6.70    7.00    20.00  
  Kansas City, MO    919.73    35.00    12.00    12.60    4.00    4.00  
  Akron, OH    921.87    36.00    11.40    8.80    15.00    59.00  
  New Haven, CT    923.23    46.00    11.30    8.80    3.00    8.00  
  Milwasukee, WI    929.15    30.00    11.10    5.80    23.00    125.00  
  Boston, MA    934.70    43.00    12.10    3.50    32.00    62.00  
  Dayton, OH    936.23    36.00    11.40    12.40    4.00    16.00  
  Providence, RI    938.50    42.00    10.10    2.20    4.00    18.00  
  Flint, MI    941.18    30.00    10.80    13.10    4.00    11.00  
  Reading, PA    946.18    41.00    9.60    2.70    11.00    89.00  
  Syracuse, NY    950.67    38.00    11.40    3.80    5.00    25.00  
  Houston, TX    952.53    46.00    11.40    21.00    5.00    1.00  
  Saint Louis, MO    953.56    34.00    9.70    17.20    15.00    68.00  
  Youngstown, OH    954.44    38.00    10.70    11.70    13.00    39.00  
  Columbus, OH    958.84    37.00    11.90    13.10    9.00    15.00  
  Detroit, MI    959.22    31.00    10.80    15.80    35.00    124.00  
  Nashville, TN    961.01    45.00    10.10    21.00    14.00    78.00  
  Allentown, PA    962.35    44.00    9.80    0.80    6.00    33.00  
  Washington, DC    967.80    41.00    12.30    25.90    28.00    102.00  
  Indianapolis, IN    968.66    39.00    11.40    15.60    7.00    33.00  
  Cincinnati, OH    970.47    40.00    10.20    13.00    26.00    146.00  
  Greensboro, NC    971.12    42.00    10.40    22.70    3.00    5.00  
  Toledo, OH    972.46    31.00    10.70    9.50    7.00    25.00  
  Atlanta, GA    982.29    47.00    11.10    27.10    8.00    24.00  
  Cleveland, OH    985.95    35.00    11.10    14.70    21.00    64.00  
  Louisville, KY    989.27    30.00    9.90    13.10    37.00    193.00  
  Pittsburgh, PA    991.29    36.00    10.60    8.10    59.00    263.00  
  New York, NY    994.65    42.00    10.70    11.30    26.00    108.00  
  Albany, NY    997.88    35.00    11.00    3.50    10.00    39.00  
  Buffalo, NY    1001.90    36.00    10.50    8.10    12.00    37.00  
  Wilmington, DE    1003.50    45.00    11.30    12.10    11.00    42.00  
  Memphis, TE    1006.49    50.00    10.40    36.70    18.00    34.00  
  Philadelphia, PA    1015.02    42.00    10.50    17.50    32.00    161.00  
  Chattanooga, TN    1017.61    52.00    9.60    22.20    8.00    27.00  
  Chicago, IL    1024.89    33.00    10.90    16.30    63.00    278.00  
  Richmond, VA    1025.50    44.00    11.00    28.60    9.00    48.00  
  Birmingham, AL    1030.38    53.00    10.20    38.50    32.00    72.00  
  Baltimore, MD    1071.29    43.00    9.60    24.40    38.00    206.00  
  New Orleans, LA    1113.06    54.00    9.70    31.40    17.00    1.00  

TABLE B.15 (Continued)
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  TABLE B.16    Life Expectancy Data 

   Country     LifeExp  
   People -
 per - TV     People - per - Dr     LifeExpMale     LifeExpFemale  

  Argentina    70.5    4    370    74    67  
  Bangladesh    53.5    315    6,166    53    54  
  Brazil    65    4    684    68    62  
  Canada    76.5    1.7    449    80    73  
  China    70    8    643    72    68  
  Colombia    71    5.6    1,551    74    68  
  Egypt    60.5    15    616    61    60  
  Ethiopia    51.5    503    36,660    53    50  
  France    78    2.6    403    82    74  
  Germany    76    2.6    346    79    73  
  India    57.5    44    2,471    58    57  
  Indonesia    61    24    7,427    63    59  
  Iran    64.5    23    2,992    65    64  
  Italy    78.5    3.8    233    82    75  
  Japan    79    1.8    609    82    76  
  Kenya    61    96    7,615    63    59  
  Korea, North    70    90    370    73    67  
  Korea, South    70    4.9    1,066    73    67  
  Mexico    72    6.6    600    76    68  
  Morocco    64.5    21    4,873    66    63  
  Burma    54.5    592    3,485    56    53  
  Pakistan    56.5    73    2,364    57    56  
  Peru    64.5    14    1,016    67    62  
  Philippines    64.5    8.8    1,062    67    62  
  Poland    73    3.9    480    77    69  
  Romania    72    6    559    75    69  
  Russia    69    3.2    259    74    64  
  South Africa    64    11    1,340    67    61  
  Spain    78.5    2.6    275    82    75  
  Sudan    53    23    12,550    54    52  
  Taiwan    75    3.2    965    78    72  
  Thailand    68.5    11    4,883    73    66  
  Turkey    70    5    1,189    72    68  
  Ukraine    70.5    3    226    75    66  
  United Kingdom    76    3    611    79    73  
  United States    75.5    1.3    404    79    72  
  Venezuela    74.5    5.6    576    78    71  
  Vietnam    65    29    3,096    67    63  
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  Table B.17    Patient Satisfaction Data 

   Satisfaction     Age     Severity     Surgical - Medical     Anxiety  

  68    55    50    0    2.1  
  77    46    24    1    2.8  
  96    30    46    1    3.3  
  80    35    48    1    4.5  
  43    59    58    0    2  
  44    61    60    0    5.1  
  26    74    65    1    5.5  
  88    38    42    1    3.2  
  75    27    42    0    3.1  
  57    51    50    1    2.4  
  56    53    38    1    2.2  
  88    41    30    0    2.1  
  88    37    31    0    1.9  

  102    24    34    0    3.1  
  88    42    30    0    3  
  70    50    48    1    4.2  
  82    58    61    1    4.6  
  43    60    71    1    5.3  
  46    62    62    0    7.2  
  56    68    38    0    7.8  
  59    70    41    1    7  
  26    79    66    1    6.2  
  52    63    31    1    4.1  
  83    39    42    0    3.5  
  75    49    40    1    2.1  
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  TABLE B.18    Fuel Consumption Data 

    y       x  1       x  2       x  3       x  4       x  5       x  6       x  7       x  8   

  343    0    52.8    811.7    2.11    220    261    87    1.8  
  356    1    52.8    811.7    2.11    220    261    87    1.8  
  344    0    50.0    821.3    2.11    223    260    87    16.6  
  356    1    50.0    821.3    2.11    223    260    87    16.6  
  352    0    47.2    832.0    2.09    221    261    92    23.0  
  361    1    47.2    832.0    2.09    221    261    92    23.0  
  372    0    47.0    831.3    2.26    190    323    75    25.1  
  355    1    47.0    831.3    2.26    190    323    75    25.1  
  375    0    48.3    836.8    2.47    180    364    71    26.1  
  359    1    48.3    836.8    2.47    180    364    71    26.1  
  364    0    44.7    808.3    1.41    180    300    64    20.0  
  357    1    44.7    808.3    1.41    180    300    64    20.0  
  368    0    55.7    808.7    1.44    176    299    64    20.5  
  360    1    55.7    808.7    1.44    176    299    64    20.5  
  372    0    52.8    813.2    1.96    175    301    75    17.3  
  352    1    52.8    813.2    1.96    175    301    75    17.3  

    y : fuel consumption (g/km)  
   x  1 : vehicle (0 — bus, 1 — truck)  
   x  2 : cetane number  
   x  3 : density (g/L, 15 ° C)  
   x  4 : viscosity (KV, 40 ° C)  
   x  5 : initial boiling point (degrees C)  
   x  6 : fi nal boiling point (degrees C)  
   x  7 : fl ash point (degrees C)  
   x  8 : total aromatics (percent)   

  Source :    “ A Multivariate Statistical Analysis of Fuel - Related Polycyclic Aromatic Hydrocarbon Emis-
sions from Heavy - Duty Diesel Vehicles, ”  by R. Westerholm and H. Li,  Environmental Science and 
Technology ,  28 , 965 – 972. 
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  TABLE B.19    Wine Quality of Young Red Wines 

    y       x  1       x  2       x  3       x  4       x  5       x  6       x  7       x  8       x  9       x  10   

  19.2    0    3.85    66    9.35    5.65    2.40    3.25    0.33    19    0.065  
  18.3    0    3.73    79    11.15    6.95    3.15    3.80    0.36    21    0.076  
  17.1    0    3.88    73    9.40    5.75    2.10    3.65    0.40    18    0.073  
  17.3    0    3.86    99    12.85    7.70    3.90    3.80    0.35    22    0.076  
  16.8    0    3.98    75    8.55    5.05    2.05    3.00    0.49    12    0.060  
  16.5    0    3.85    61    10.30    6.20    2.50    3.70    0.38    20    0.074  
  15.8    0    3.93    66    4.90    2.75    1.20    1.55    0.29    11    0.031  
  15.2    0    3.66    86    6.40    4.00    1.50    2.50    0.27    19    0.050  
  15.2    0    3.91    78    5.80    3.30    1.40    1.90    0.40    9    0.038  
  14.0    0    3.47    178    3.60    2.25    0.75    1.50    0.37    8    0.030  
  14.0    0    3.91    81    3.90    2.15    1.00    1.15    0.32    7    0.023  
  13.8    0    3.75    108    5.80    3.20    1.60    1.60    0.38    8    0.032  
  13.6    0    3.90    92    5.40    2.85    1.55    1.30    0.44    6    0.026  
  12.8    0    3.92    96    5.00    2.70    1.40    1.30    0.35    7    0.026  
  18.5    1    3.87    89    9.15    5.60    1.95    3.65    0.46    16    0.073  
  17.3    1    3.97    59    10.25    6.10    2.40    3.70    0.40    19    0.074  
  16.3    1    3.76    22    8.20    5.00    1.85    3.15    0.25    25    0.063  
  16.3    1    3.76    77    8.35    5.05    1.90    3.15    0.37    17    0.063  
  16.0    1    3.98    58    10.15    6.00    2.60    3.40    0.38    18    0.068  
  16.0    1    3.88    85    6.85    4.10    1.50    2.60    0.33    16    0.052  
  15.7    1    3.75    120    8.80    5.50    1.85    3.65    0.39    19    0.073  
  15.5    1    3.98    94    5.45    3.05    1.50    1.55    0.41    8    0.031  
  15.3    1    3.69    122    8.00    5.05    1.90    3.15    0.27    23    0.063  
  15.3    1    3.77    144    5.60    3.35    1.10    2.25    0.36    12    0.045  
  14.8    1    3.74    10    7.90    4.75    1.95    2.80    0.25    23    0.056  
  14.3    1    3.76    100    5.55    3.25    1.15    2.10    0.34    12    0.042  
  14.3    1    3.91    73    4.65    2.70    0.95    1.75    0.36    10    0.035  
  14.2    1    3.60    301    4.25    2.40    1.25    1.15    0.42    6    0.023  
  14.0    1    3.76    104    8.70    5.10    2.25    2.85    0.34    17    0.057  
  13.8    1    3.90    67    7.40    4.40    1.60    2.80    0.45    13    0.056  
  12.5    1    3.80    89    5.35    3.15    1.20    1.95    0.32    12    0.039  
  11.5    1    3.65    192    6.35    3.90    1.25    2.65    0.63    8    0.053  

    y : quality rating (20 maximum)  
   x  1 : wine varietal (0 — Cabernet Sauvignon, 1 — Shiraz)  
   x  2 : pH  
   x  3 : Total  SO  2  (ppm)  
   x  4 : color density  
   x  5 : wine color  
   x  6 : polymeric pigment color  
   x  7 : anthocyanin color  
   x  8 : total anthocyanins (g/L)  
   x  9 : degree of ionization of anthocyanins (percent)  
   x  10 : ionized anthocyanins (percent)   

  Source :    “ Wine Quality: Correlations with Colour Density and Anthocyanin Equilibria in a Group of 
Young Red Wines, ”  by T. C. Somers and M. E. Evans,  Journal of the Science of Food and Agriculture ,  25 , 
1369 – 1379. 
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  TABLE B.20    Methanol Oxidation in Supercritical Water 

    x  1       x  2       x  3       x  4       x  5       y   

  0    454    8.8    3.90    1.30    1.1  
  0    474    8.2    3.68    1.16    4.2  
  0    524    7.0    2.78    1.25    94.2  
  0    503    7.4    2.27    1.57    20.7  
  0    493    7.6    2.40    1.55    15.7  
  0    493    7.6    1.28    2.71    15.9  
  0    493    7.5    5.68    0.54    14.7  
  0    493    7.6    4.65    0.74    10.8  
  0    493    7.4    3.30    1.01    9.6  
  0    493    7.4    2.52    1.12    12.7  
  0    493    7.5    2.44    0.86    7.1  
  0    493    7.5    2.47    0.45    9.0  
  1    530    6.7    1.97    1.74    96.0  
  1    522    6.9    2.03    0.94    78.4  
  1    522    6.9    2.05    0.93    78.3  
  1    503    7.3    2.16    0.94    71.4  
  1    453    8.7    2.76    0.90    0.5  
  1    483    7.7    2.42    0.91    3.1  

    x  1 : reactor system  
   x  2 : temperature (degrees C)  
   x  3 : reactor residence time (seconds)  
   x  4 : inlet concentration of methanol  
   x  5 : ratio of inlet oxygen to inlet methanol  
   y : percent conversion   

  Source :    “ Revised Global Kinetic Measurements of Methanol Oxidation in Supercritical Water, ”  by J. W. 
Tester, P. A. Webley, and H. R. Holgate,  Industrial and Engineering Chemical Research ,  32 , 236 – 239. 

  TABLE B.21    Hald Cement Data 

   Observation  

    i       y i        x i   1       x i   2       x i   3       x i   4   

  1    78.5    7    26    6    60  
  2    74.3    1    29    15    52  
  3    104.3    11    56    8    20  
  4    87.6    11    31    8    47  
  5    95.9    7    52    6    33  
  6    109.2    11    55    9    22  
  7    102.7    3    71    17    6  
  8    72.5    1    31    22    44  
  9    93.1    2    54    18    22  

  10    115.9    21    47    4    26  
  11    83.8    1    40    23    34  
  12    113.3    11    66    9    12  
  13    109.4    10    68    8    12  

   Source :   Hald, A. [1952],  Statistical Theory with Engineering Applica-
tions , Wiley, New York. 
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  APPENDIX C 

SUPPLEMENTAL TECHNICAL MATERIAL     

        C.1   Background on Basic Test Statistics  
  C.2   Background from the Theory of linear Models  
  C.3   Important Results on  SS  R  and  SS  Res   
  C.4   Gauss - Markov Theorem, Var(  ε  )    =      σ    2 I  
  C.5   Computational Aspects of Multiple Regression  
  C.6   Result on the Inverse of a Matrix  
  C.7   Development of the PRESS Statistic  
  C.8   Development of   S i( )

2   
  C.9   Outlier Test Based on  R  - Student  
  C.10   Independence of Residuals and Fitted Values  
  C.11   Gauss - Markov Theorem, Var(  ε  )    =     V   
  C.12   Bias in  MS  Res  When the Model Is Underspecifi ed  
  C.13   Computation of Infl uence Diagnostics  
  C.14   Generalized Linear Models     

  C.1   BACKGROUND ON BASIC TEST STATISTICS 

 We indicate that  Y  is a random variable that follows a normal distribution with 
mean   μ   and variance   σ    2  by

   Y N∼ μ σ, 2( )   

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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  C.1.1   Central Distributions 

    1.     Let  Y  1 ,  Y  2 ,    . . .    ,  Y n   be independent normally distributed random variables with 
 E ( Y i  )    =      μ  i   and   Var Yi i( ) = σ 2. Let  a  1 ,  a  2 ,    . . .    ,  a n   be known constants. If we defi ne 
the linear combination of the  Y i   ’ s by

   U a Yi i

i

n

=
=
∑

1

 

  then

   U N a ai i i i

i

n

i

n

∼ μ σ, 2 2

11 ==
∑∑⎛

⎝⎜
⎞
⎠⎟

  

 The key point is that linear combinations of normally distributed random 
variables also follow normal distributions.  

  2.     If  Y     ∼     N (  μ  ,  σ   2 ), then

   Z
Y

N=
− ( )μ
σ
∼ 0 1,  

 Z  is called the standard normal random variable.  
  3.     Let Z    =    (Y    −      μ  )/  σ  . If  Y     ∼     N (  μ  ,   σ   2 ), then  Z  2  follows a   χ    2  distribution, which we 

denote by

   Z2
1
2∼ χ   

 The key point is that the square of a standard normal random variable is a   χ   2  
random variable with one degree of freedom.  

  4.     Let  Y  1 ,  Y  2 ,    . . .    ,  Y n   be independent normally distributed random variables with 
 E ( Y i  )    =      μ  i   and   Var Yi i( ) = σ 2, and let

   Z
Y

i
i i

i

=
− μ
σ

.   

 Then

   Zi

i

n

n
2

1

2

=
∑ ∼ χ   

 The key points are (1) the sum of  n  squared standard normal random variables 
follows a   χ   2  distribution with  n  degrees of freedom and (2) the sum of   χ   2  
random variables also follows a   χ   2  distribution.  

  5.     The Central Limit Theorem     If  Y  1 ,  Y  2 ,    . . .    ,  Y n   are independent and identically 
distributed random variables with  E ( Y i  )    =      μ   and Var( Y i  )    =      σ   2     <     ∞ , then

   
Y

n

− μ
σ
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  converges in distribution to a standard normal distnbution as  n     →     ∞ . The key 
point is that if  n  is suffi ciently large, then   Y approximately follows a normal 
distribution. What constitutes suffi ciently large depends on the underlying 
distribution of the  Y i   ’ s.  

  6.     If  Z     ∼     N (0, 1),   V ∼ χν
2 , and  Z  and  V  are independent, then

   
Z

V
t

ν
ν∼  

  where  t v   is the  t  distribution with  v  degrees of freedom.  
  7.     Let   V ∼ χν

2 , and let   W ∼ χη
2 . If  V  and  W  are independent, then

   
V
W

F
ν
η ν η∼ ,  .

  where  F  ν , η    is the  F  distribution with   ν   and   η   degrees of freedom. The key point 
is that the ratio of two independent   χ   2  random variables, each divided by their 
respective degrees of freedom, follows an  F  distribution.     

  C.1.2   Noncentral Distributions 

    1.     Let  X     ∼     N (  δ  , 1), and let   V ∼ χν
2 . If  X  and  V  are independent, then

   
X

V
t

ν
ν δ∼ ′,  

  where   ′tν δ,  is the noncentral  t  distribution with   ν   degrees of freedom and non-
centrality parameter   δ  .  

  2.     If  X     ∼     N (  δ  , 1), then

   X 2
1
2

2∼ χ
δ,′  

  where   χ
δ1

2
2,
′  is the noncentral   χ   2  distribution with one degree of freedom and 

noncentrality parameter   δ   2 .  
  3.     If  X  1 ,  X  2 ,    . . .    ,  X n  , are independent normally distributed random variables with 

 E ( X i  )    =      δ  i   and Var( X i  )    =    1, then

   Xi

i

n

n
2

1

2

=
∑ ∼ χ λ,′  

  where the noncentrality parameter,   λ  , is.

   λ δ=
=
∑ i

i

n
2

1
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  4.     Let   V ∼ χν λ,
2′ , and let   W ∼ χη

2 . If  V  and  W  are independent, then

   
V
W

F
ν
η ν η λ∼ ′, ,  

  where   ′Fν η λ, ,  is a noncentral  F  distnbution with   ν   and   η   degrees of freedom and 
noncentrality parameter   λ  .      

  C.2   BACKGROUND FROM THE THEORY OF LINEAR MODELS 

  C.2.1   Basic Defi nitions 

    1.     Rank of a Matrix     The rank of a matrix,  A , is the number of linearly inde-
pendent columns. Equivalently, it is the number of linearly independent rows.  

  2.     Identity Matrix     The identity matrix of order  k , denoted by  I  or  I   k  , is a  k     ×     k  
square matrix whose diagonal elements are 1 ’ s and whose nondiagonal ele-
ments are 0 ’ s; thus,

   I =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0 0

0 1 0 0

0 0 0 1

�
�

� � � � �
�

   

  3.     Inverse of a Matrix     Let  A  be a  k     ×     k  matrix. The inverse of  A , denoted by 
 A   − 1 , is another  k     ×     k  matrix such that

   AA A A I− −= =1 1   

 If the inverse exists, it is unique.  
  4.     Transpose of a Matrix     Let  A  be an  n     ×     k  matrix. The transpose of  A , 

denoted by  A  ′  or  A   T  , is a  k     ×     n  matrix whose columns are the rows of  A ; thus, 
if

   A A=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′ =

a a a

a a a

a a a

ak

k

n n nk

11 12 1

21 22 2

1 2

1�
�

� � � �
�

, then

11 21 1

12 22 2

1 2

a a

a a a

a a a

n

n

k k nk

�
�

� � � �
�

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

 Note: If  A  is an  n     ×     m  matrix and  B  is an  m     ×     p  matrix, then

   AB B A( ) = ′ ′′    

  5.     Symmetric Matrix     Let  A  be a  k     ×     k  matrix.  A  is said to be symmetric if 
 A     =     A  ′ .  

  6.     Idempotent Matrix     Let  A  be a  k     ×     k  matrix.  A  is called idempotent if

   A AA=   
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 If  A  is also symmetric, then  A  is called symmetric idempotent. If  A  is sym-
metric idempotent, then  I     −     A  is also symmetric idempotent.  

  7.     Orthonormal Matrix     Let  A  be a  k     ×     k  matrix. If  A  is an orthonormal 
matrix, then  A  ′  A     =     I . As a consequence, if  A  is an orthonormal matrix, then 
 A   − 1     =     A  ′ .  

  8.     Quadratic Form     Let  y  be a  k     ×    1 vector, and let  A  be a  k     ×     k  matrix. The 
function

   ′ =
==
∑∑y Ay a y yij i j

j

k

i

k

11

 

  is called a quadratic form.  A  is called the matrix of the quadratic form.  
  9.     Positive Defi nite and Positive Semidefi nite Matrices     Let  A  be a  k     ×     k  

matrix.  A  is said to be positive defi nite if the following condition holds 
 

  (a)      A     =     A  ′  ( A  is symmetric)  
  (b)      y  ′  Ay     >    0 ∀  y     ∈     ℜ   k  ,  y      ≠      0  

  A  is said to be positive semidefi nite if the following condition holds:  

  (c)      y  ′  Ay     =    0 for some  y      ≠      0     
  10.     Trace of a Matrix     Let  A  be a  k     ×     k  matrix. The trace of  A , denoted by 

trace( A ) or tr( A ), is the sum of the diagonal elements of  A ; thus,

   trace A( ) =
=
∑aii

i

k

1

  

 Note: 
   (a)     If  A  is an  m     ×     n  matrix and  B  is an  n     ×     m  matrix, then

   trace traceAB BA( ) = ( )    

  (b)     If the matrices are appropriately conformable, then

   trace traceABC CAB( ) = ( )    

  (c)     If  A  and  B  are  k     ×     k  matrices and  a  and  b  are scalars, then

   trace trace tracea b a bA B A B+( ) = ( ) + ( )      

  11.     Rank of an Idempotent Matrix     Let  A  be an idempotent matrix. The rank 
of  A  is its trace.  

  12.     An Important Identity for a Partitioned Matrix     Let  X  be an  n     ×     p  matrix 
partitioned such that

   X X X= [ ]1 2   
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 We note that

   X X X X X X′( ) ′ =−1  

   X X X X X X X′( ) ′ [ ] =−1
1 2  

   X X X X X X X X′( ) ′ [ ] = [ ]−1
1 2 1 2   

 Consequently,

   X X X X X X X X X X X X′( ) ′ = ′( ) ′ =− −1
1 1

1
2 2and   

 Similarly,

   ′ ′( ) ′ = ′ ′ ′( ) ′ = ′− −X X X X X X X X X X X X1
1

1 2
1

2and    

  13.     Inverse of a Partitioned Matrix     Consider a matrix of the form

   ′ =
′ ′
′ ′

⎡
⎣⎢

⎤
⎦⎥

X X
X X X X

X X X X
1 1 1 2

2 1 2 2

  

 It can be shown that the inverse of this matrix is

   ′( ) =
′( ) + ′( ) ′ ′ ′( ) − ′( ) ′−

− − − −

X X
X X X X X X GX X X X X X1 1 1

1
1 1

1
1 2 2 1 1 1

1
1 1

1 XX X G

GX X X X G

1 2

2 1 1 1
1− ′ ′( )

⎡

⎣
⎢

⎤

⎦
⎥−

 

  where   H X X X X1 1 1 1
1

1= ′( ) ′−  and   G X I H X= ′ −( )[ ]−2 1 2
1 .     

  C.2.2   Matrix Derivatives 

 Let  A  be a  k     ×     k  matrix of constants,  a  be a  k     ×    1 vector of constants, and  y  be a 
 k     ×    1 vector of variables.

   1.     If  z     =     a  ′  y , then

   
∂
∂

=
∂ ′
∂

=
z
y

a y
y

a    

  2.     If  z     =     y  ′  y , then

   
∂
∂

=
∂ ′
∂

=
z
y

y y
y

y2    

  3.     If  z     =     a  ′  Ay , then

   
∂
∂

=
∂ ′
∂

= ′
z
y

a Ay
y

A a    
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  4.     If  z     =     y  ′  Ay , then

   
∂
∂

=
∂ ′
∂

= + ′
z
y

y Ay
y

Ay A y   

 If  A  is symmetric, then

   
∂ ′
∂

=
y Ay

y
Ay2       

  C.2.3   Expectations 

 Let  A  be a  k     ×     k  matrix of constants,  a  be a  k     ×    1 vector of constants, and  y  
be a  k     ×    1 random vector with mean   µ   and nonsingular variance – covariance 
matrix  V .

   1.      E ( a  ′  y )    =     a  ′   µ  .  
  2.      E ( Ay )    =     A   µ  .  
  3.     Var( a  ′  y )    =     a  ′  Va .  
  4.     Var( Ay )    =     AVA  ′ . 
 Note: If  V     =      σ   2  I , then Var( Ay )    =      σ   2  AA  ′ .  
  5.      E ( y  ′  Ay )    =    trace( AV )    +      µ   ′  A   µ  . 
 Note: If  V     =      σ   2  I , then  E ( y  ′  Ay )    =      σ   2  trace( A )    +      µ   ′  A   µ  .     

  C.2.4   Distribution Theory 

 Let  A  be a  k     ×     k  matrix of constants and  y  be a  k     ×    1 multivariate normal random 
vector with mean   μ   and nonsingular variance – covariance matrix  V ; thus,

   y V∼ N m,( )   

 Let  U  be the quadratic form defi ned by  U     =     y  ′  Ay .

   1.     If  AV  or  VA  is an idempotent matrix of rank  p,  then

   U p∼ χ λ,
2′  

  where   λ      =      µ   ′  A   µ  .  
  2.     Let  V     =      σ   2  I , which is a typical assumption. If  A  is idempotent with rank  p , then

   
U

pσ
χ λ2

2∼ ,′  

  where   λ      =      µ   ′  A   µ  /  σ   2 .  
  3.     Let  B  be a  q     ×     k  matrix, and let  W  be the linear form given by  W     =     By . The 

quadratic form  U     =     y  ′  Ay  and  W  are independent if
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   BVA 0=   

 Note: If  V     =      σ   2  I , then  U  and  W  are independent if  BA     =     0 .  
  4.     Let  B  be a  k     ×     k  matrix. Let  V     =     y  ′  By . The two quadratic forms,  U  and  V,  are 

independent if

   AVB 0=   

 Note: If  V     =      σ   2  I , then  U  and  V  are independent if  AB     =     0 .      

  C.3   IMPORTANT RESULTS ON   SS  R   AND   SS  RES   

  C.3.1     SS  R   

 By defi nition,

   SS y yi

i

n

R = −( )
=
∑ ˆ 2

1

  

 We note that  ŷ     =     X ( X  ′  X )  − 1  X  ′  y  and that

   y
n

y
n

i

i

n

= = ′
=
∑1 1

1

1 y  

  where  1  is an  n     ×    1 vector all of whose elements are l ’ s. Further,  n     =     1  ′  1 ; thus, 
  y = ′( ) ′−1 1 1 y1 . Consequently, we can write  SS  R  as

   

SS y y

y y

i

i

n

R = −( )

= −[ ] −[ ]
= ′( ) ′ − ′( ) ′⎡

=

− −

∑ ˆ

ˆ ˆ

2

1

1 1

y 1 y 1

X X X X y 1 1 1 1 y

′

⎣⎣ ⎤⎦ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦
= ′ ′( ) ′ − ′( ) ′⎡⎣

− −

− −

′ X X X X y 1 1 1 1 y

y X X X X 1 1 1 1

1 1

1 1 ⎤⎤⎦ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦
− −′ X X X X 1 1 1 1 y1 1

  

 Please note that  X     =     [1 X R  ], where  X R   is the matrix formed by the actual values for 
the regressors. Consequently,  SS  R  involves a special case of a partitioned matrix. We 
thus may use the special identity for partitioned matrices to show that

   X X X X 1 1 1 X X X X 1′( ) ′ = ′ ′( ) ′ = ′− −1 1and   

 Consequently, we can show that [ X ( X  ′  X )  − 1  X  ′     −     1 ( 1  ′  1 )  − 1  1  ′ ] is idempotent. Under the 
assumption that Var(  ε  )    =      σ   2  I ,

   
SSR

σ σ2 2

1 11
= ′ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦

− −y X X X X 1 1 1 1 y  
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  follows a noncentral   χ   2  distribution with noncentrality parameter   λ   and degrees of 
freedom equal to the rank of [ X ( X  ′  X )  − 1  X  ′     −     1 ( 1  ′  1 )  − 1  1  ′ ]. Since this matrix is idempo-
tent, its rank is its trace. We note that

   

trace trace traceX X X X 1 1 1 1 X X X X 1′( ) ′ − ′( ) ′⎡⎣ ⎤⎦ = ′( ) ′⎡⎣ ⎤⎦ − ′− − −1 1 1 11 1 1

X X X X 1 1 1 1

( ) ′⎡⎣ ⎤⎦
= ′ ′( )⎡⎣ ⎤⎦ − ′ ′( )⎡⎣ ⎤⎦
=

−

− −

1

1 1trace trace

tracee traceIp

p k

( ) − ( )
= − =

1

1

  

 Under the assumption that the model is correct,

   E y X 1 X 1 X( ) = = [ ]⎡
⎣⎢

⎤
⎦⎥
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b
bR

R
R R

β
β0

0   

 Thus, the noncentrality parameter is

   

λ
σ

σ
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 If we defi ne the matrix of  centered  regressors values,  X  C , by

   XC =

− − −
− − −

− −

x x x x x x

x x x x x x

x x x x x

k k

k k

n n

11 1 12 2 1

21 1 22 2 2

1 1 2 2

�
�

� � �
� nnk kx−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

  where   x1 is the average value for the fi rst regressor,   x2 is the average value for the 
second regressor, and so forth, then it is easily established that we can rewrite the 
noncentrality parameter as

   λ
σ

= ′ ′[ ]1
2
b bR C C RX X   
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 The expected value for  SS  R  is

   

E SS ER

trace

( ) = ′ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦( )
= ′( ) ′ − ′

− −

−

y X X X X 1 1 1 1 y

X X X X 1 1

1 1

1 11 1 I

y X X X X 1 1 1 1 y

( ) ′⎡⎣ ⎤⎦( )
+ ( ) ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦ ( )

= + ′

−

− −

1 2

1 1

2

σ

σ

E E

k

′

bb bR C C R′X X

  

 As a result,

   E MS E
SS

k k
R

R R C C R( ) = ⎛
⎝⎜

⎞
⎠⎟ = + ′ ′σ 2 b bX X

   

  C.3.2     SS    R   es  

 By defi nition,

   SS y yi i

i

n

Res = −( )
=
∑ ˆ 2

1

  

 We note that we can rewrite  SS  Res  as

   

SSRes = −( ) −( )
= − ′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦
= ′

− −

y y y y

y X X X X y y X X X X y

y

ˆ ˆ′

′1 1

II X X X X y− ′( ) ′⎡⎣ ⎤⎦
−1

  

 It is trivial to show that [ I     −     X ( X  ′  X )  − l   X  ′ ] is symmetric idempotent. Consequently,

   
SSRes

σ σ2 2

11
= ′ − ′( ) ′⎡⎣ ⎤⎦

−y I X X X X y  

  follows a   χ   2  distribution. The degrees of freedom come from the rank of 
[ I     −     X ( X  ′  X )  − 1  X  ′ ], which is the trace. It is straightforward to show that the trace is 
 n     −     p.  Under the assumption that the model is correct,

   E y X( ) = b   

 Thus, the noncentrality parameter is

   

1 1

1

2

1

2

1

2

σ σ

σ

E Ey I X X X X y X I X X X X X( ) − ′( ) ′⎡⎣ ⎤⎦ ( ) = ′ ′ − ′( ) ′⎡⎣ ⎤⎦

=

− −′ b b

′′ ′ − ′ ′( ) ′⎡⎣ ⎤⎦ =−b bX X X X X X X X1 0
  

 As a result,
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SS

n p
Res

σ
χ

2
∼ −

2   

 The expected value for  SS  Res  is

   

E SS ERes

trace

( ) = ′ − ′( ) ′⎡⎣ ⎤⎦( )
= − ′( ) ′⎡⎣ ⎤⎦( )

−

−

y I X X X X y

I X X X X I

1

1 2σ ++ ( ) − ′( ) ′⎡⎣ ⎤⎦ ( )
= −( )

−E E

n p

y I X X X X y′ 1

2σ

  

 As a result,

   E MS E
SS
n p

Res
Res( ) =
−

⎛
⎝⎜

⎞
⎠⎟
= σ 2    

  C.3.3   Global or Overall   F   Test 

 An  F  statistic is the ratio of two independent   χ   2  random variables, each divided by 
its respective degrees of freedom. We have shown that both  SS  R /  σ   2  and  SS  Res /  σ   2  
follow   χ   2  distributions. The key point now is to show that they are independent. 
From basic linear models theory,  SS  R  and  SS  Res  are independent under the assump-
tion that Var(  ε  )    =      σ   2  I  if

   X X X X 1 1 1 1 I I X X X X 0′( ) ′ − ′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦ =
− − −1 1 2 1σ   

 We note that

   

X X X X 1 1 1 1 I I X X X X

X X X X

′( ) ′ − ′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦
= ′( ) ′ −

− − −

−

1 1 2 1

2 1

σ

σ 11 1 1 1 I X X X X

X X X X 1 1 1 1 X

′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦
= ′( ) ′ − ′( ) ′ − ′

− −

− −

1 1

2 1 1σ XX X X X X X X

1 1 1 1 X X X X

X X X X X

( ) ′ ′( ) ′⎡⎣
+ ′( ) ′ ′( ) ′⎤⎦
= ′( ) ′ − ′

− −

− −

−

1 1

1 1

1 XX X X 1 1 1 1 1 1 1 1 0( ) ′ − ′( ) ′ + ′( ) ′ =− − −1 1 1

  

 Thus,  SS  R  and  SS  Res  are independent. We next note that

   
SS
k

MS SS
n p

MSR R Res Resand
σ σ σ σ2 2 2 2

=
−( )

=   

 are   χ   2  random variables, each divided by their respective degrees of freedom. As a 
result,

   
MS

MS
Fk n p

R

Res

∼ ′ −, ,λ  

  where

   λ
σ

= ′ ′
1

2
b bR C C RX X   
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 In the special case of simple linear regression, we have only a single regressor; thus, 
  β   R     =      β   1 , and

   ′ = −( )
=
∑X XC C x xi

i

n
2

1

  

 As a result, for simple linear regression,

   
MS

MS
F n

R

Res

∼ 1 2, ,− λ  

  where   λ β= ∑ −( )=1
2

1
2

i
n

ix x .  

  C.3.4   Extra - Sum - of - Squares Principle 

  SS  R  is a special case of the extra - sum - of - squares principle. Consider the model

   y X X X= + = + +b e b b e1 1 2 2  

  where  X  1  is the  p  1     ×    1 model matrix associated with   β   1 ,  X  2  is the  p  2     ×    1 model matrix 
associated with   β   2 , and  p  1     +     p  2     =     p . A common measure of the contribution of   β   2  
given the presence of   β   1  in the model is

   R b b2 1
1

1 1 1
1

1( ) = ′ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦
− −y X X X X X X X X y   

 In the case of  SS  R ,  X  1     =     1  and  X  2     =     X  R . In some sense,  SS  R     =     R (  β   R |  β   0 ). It can be 
shown that   X X X X X X X X′( ) ′ − ′( ) ′⎡⎣ ⎤⎦

− −1
1 1 1

1
1  is symmetric idempotent. The keys to 

this derivation are that  X ( X  ′  X )  − 1  X  ′  X  1     =     X  1  and that   ′ ′( ) ′ = ′−X X X X X X1
1

1 . It is then 
straightforward to show that

   
R

p

b b2 1

2
2

2

( )
σ

χ λ∼ ,′  

  where   λ σ= ( ) ′ ′ − ′( ) ′⎡⎣ ⎤⎦
−1 2

2 2 1 1 1
1

1 2 2b bX I X X X X X . It then follows that

   
R
p MS

Fp n p
b b2 1

2
2

( )
′ −

Res

∼ , ,λ    

  C.3.5   Relationship of the   t   Test for an Individual Coeffi cient and the 
Extra - Sum - of - Squares Principle 

 Squaring the  t  test for an individual coeffi cient is exactly equivalent to the  F  test 
using the extra - sum - of - squares principle, where  X  2  is simply the column vector of 
the model matrix  X  associated with the specifi c coeffi cient,   β  j  . Once again, consider 
the model

    y X X X= + = + +b e b b e1 1 2 2     (C.3.1)   

 To show that the  t  test is exactly equivalent to the  F  test based on the extra - sum -
 of - squares principle, we need to establish that
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ˆ

ˆ
β
β σ

j

j

2

2

1
1 1 1

1
1

1

Var ( ) = ′ ′( ) ′ − ′( ) ′⎡⎣ ⎤⎦
− −y X X X X X X X X y   

 We fi rst need to express   ˆ ˆβ βj j
2 Var ( )  in matrix form. We fi rst note that   β̂ j  and 

  Var β̂ j( )  are both scalars. As a result,

   
ˆ

ˆ
ˆ ˆ ˆβ

β
β β βj

j

j j j

2 1

Var
Var( ) = ′ ( )⎡⎣ ⎤⎦

−
  

 We now need to express   β̂ j  in matrix form. Let   H X X X X1 1 1 1
1

1= ′( ) ′− . Premultiplying 
both sides of  (C.3.1)  by  I     −     H  1  yields

   I H y I H X I H X I H−( ) = −( ) + −( ) + −( )1 1 1 1 1 2 2 1β β e   

 However,

   I H X X H X X X X X X X X X−( ) = − = − ′( ) ′ = − =−
1 1 1 1 1 1 1 1 1

1
1 1 1 1 0   

 Thus,

   I H y I H X I H−( ) = −( ) + −( )1 1 2 2 1β e   

 Let  y  *     =    ( I     −     H ) y ,   X I H X2 1 2
* = −( ) , and   ε   *     =    ( I     −     H  1 )  ε  . We observe that

   Var * Vare e( ) = −( )[ ] = −[ ]I H I H1
2

1σ   

 For this particular case, the ordinary least - squares estimate of   β   2  is the same as the 
generalized least squares estimate. We leave the proof to the reader. The appropriate 
estimate of   β   2  is

   
ˆ ( )* * *β2 2 2

1
2

2 1 1 2
1

2 1 1

=

= ′ −( ) −( )[ ] ′ −( ) −

−

−

X X X y

X I H I H X X I H I H

′ ′

′ ′

*

(( )y
  

 However,  I     −     H  1  is symmetric and idempotent. As a result,

   β̂2 2 1 2
1

2 1= ′ −( )[ ] ′ −( )−X I H X X I H y   

 It can be shown that

   Var β̂ σ2
2

2 1 2
1( ) = ′ −( )[ ]−X I H X   

 As a result,
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ˆ
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β
β β β
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2 2
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2 2 1 2 2 1
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Var( ) = ′ ( )⎡⎣ ⎤⎦ = ′ −( ) ′ −( )

−
y I H X X I H X22

1
2 1[ ] ′ −( )− X I H y   

 (C.3.2)   

 Recall from Section C.2.1 (13),
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   ′( ) =
′( ) + ′( ) ′ ′ ′( ) − ′( ) ′−
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  where   H X X X X1 1 1 1
1

1= ′( ) ′−  and   G X I H X= ′ −( )[ ]−2 1 2
1. As a result,
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 As a result,
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  which is exactly  (C.3.2) . Thus, the square of the  t  test for an individual coeffi cient is 
exactly the same  F  statistic based on the extra - sum - of - squares principle.   

  C.4   GAUSS – MARKOV THEOREM,  V AR(  ε  )    =       σ     2   I   

 The Gauss – Markov Theorem establishes that the ordinary least - squares (OLS) 
estimator of   β  ,   b̂ = ′( ) ′−X X X y1 , is BLUE ( best linear unbiased estimator ). By best, 
we mean that   b̂  has the smallest variance, in some meaningful sense, among 
the class of all unbiased estimators that are linear combinations of the data. One 
problem is that   b̂  is a vector; hence, its variance is actually a matrix. Consequently, 
we seek to show that   b̂  minimizes the variance for any linear combination of the 
estimated coeffi cients,   ′� b̂ . We note that

   

Var Var′( ) = ′ ( )
= ′ ′( )⎡⎣ ⎤⎦
= ′ ′( )

−

−

� � �

� �

� �

ˆ ˆb b

σ

σ

2 1

2 1

X X

X X

 

  which is a scalar. Let   �b  be another unbiased estimator of   β   that is a linear 
combination of the data. Our goal, then, is to show that   Var ′( ) ≥ ′ ′( )−� � ��b σ 2 1X X  
with at least one  �  such that   Var ′( ) ≥ ′ ′( )−� � ��b σ 2 1X X . 
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 We fi rst note that we can write any other estimator of   β   that is a linear combination 
of the data as

   �b = ′( ) ′ +⎡⎣ ⎤⎦ +−X X X B y b1
0  

  where  B  is a  p     ×     n  matrix and  b  0  is a  p     ×    1 vector of constants that appropriately 
adjusts the OLS estimator to form the alternative estimate. We next note that if the 
model is correct, then

   

E E�b( ) = ′( ) ′ +⎡⎣ ⎤⎦ +( )
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1
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b

b b
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0

1
0

0

  

 Consequently,   �b  is unbiased if and only if both  b  0     =     0  and  BX     =     0 . The variance of 
  �b  is

   

Var Var

Var
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  because  BX     =     0 , which in turn implies that ( BX ) ′     =     X  ′  B  ′     =     0 . As a result,

   

Var Var′( ) = ′ ( )
= ′ ′( ) ′ + ′⎡⎣ ⎤⎦( )
= ′ ′( )
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 We fi rst note that  BB  ′  is at least a positive semidefi nite matrix; hence,   σ   2  �    ′  BB  ′  �     ≥     0 . 
Next note that we can defi ne  �      *     =     B  ′   �  . As a result,

   ′ ′ = ′ =
=
∑� � � � �BB * * i

i

p
*2

1

 

  which must be strictly greater than 0 for some  �     ≠     0  unless  B     =     0 . Thus, the OLS 
estimate of   β   is the best linear unbiased estimator.  
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  C.5   COMPUTATIONAL ASPECTS OF MULTIPLE REGRESSION 

 In this section we briefl y outline an important computational procedure for solving 
the least - squares regression problem. The least - squares criterion is

   min
b

b b bS ( ) = −( ) −( )y X y X′  

  and recall from Section  3.2.2  that the least - squares solution vector is normal to the 
 p  - dimensional estimation space. Since the Euclidean norm is invariant under an 
orthogonal transformation, an equivalent formulation of the least - squares problem 
is

    min
b

b b bS ( ) = −( ) −( )Qy QX Qy QX′     (C.5.1)  

  where  Q  is an  n     ×     n  orthogonal matrix. Now  Q  may be chosen so that

   QX
R

0
= ⎡
⎣⎢

⎤
⎦⎥

 

  where  R  is a  p     ×     p  upper triangular matrix (i.e., a matrix with zeros below the main 
diagonal). If we let
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2

 

  where   ′Q1  is a  p     ×     n  matrix consisting of the fi rst  p  rows of  Q ,   ′Q2  is an ( n     −     p )    ×     n  
matrix consisting of the last  n     −     p  rows of  Q , and  q  1  is a  p     ×    1 column vector, then 
the solution to  (C.5.l)  satisfi es

    R qb̂ = 1     (C.5.2)  

  or

    b̂ = = ′− −R q R Q y1
1

1
1     (C.5.3)   

 One advantage of this approach is that we can obtain a numerically stable inverse 
of  R  by the method of back substitution. To illustrate, suppose that  R  and   q Q y1 1= ′  
are, for  p     =    3,
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 The equations  (C.5.2)  are
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  and the system of equations that must actually be solved is

   

3 1 2 3

3 1 1

2 4

0 1 2

1 2

2

ˆ ˆ ˆ

ˆ ˆ

ˆ

β β β

β β

β

+ + =

+ = −

=

  

 From the bottom equation, we have   2 42β̂ =  or   β̂2 2= . Substituting in the 
equation directly, it yields   3 1 2 11β̂ + ( ) = −  or   β̂1 1= − . Finally, the fi rst equation gives 
  3 1 2 30 1 2

ˆ ˆβ β β+ + =  or   β̂0 0= . 
 Algorithms for computing the  QR  decomposition are described by Golub [1969], 

Lawson and Hanson [1974], and Seber [1977].  
 The ( X  ′  X )  − 1  matrix can be found directly from the  QR  factorization. Since

   QX
R

0
= ⎡
⎣⎢

⎤
⎦⎥

 

  then

   X Q
R

0
Q R= ′ ⎡

⎣⎢
⎤
⎦⎥
= 1   

 Consequently, since   ′ =Q Q I1 1 ,

    ′( ) = ′ ′( ) = ′( ) = ′( )− − − − −X X R Q Q R R R R R1
1 1

1 1 1 1     (C.5.4)   

 This decomposition also leads to effi cient computation of the elements of the hat 
matrix, which we have seen to be useful in several respects. Note that

    H X X X X Q RR R R Q Q Q= ′( ) ′ = ′( ) ′ ′ = ′− − −1
1

1 1
1 1 1     (C.5.5)   

 Therefore, the main diagonal elements of the hat matrix may be formed as the sums 
of squares of the rows of  Q  1 . Thus, we may easily compute many important regres-
sion diagnostic statistics, such as the studentized residuals and Cook ’ s distance 
measure. Belsley, Kuh, and Welsch [1980] show how a number of regression diag-
nostics may be computed using these ideas.  

  C.6   RESULT ON THE INVERSE OF A MATRIX 

 The result given in this section is the Sherman – Morrison – Woodbury theorem (or 
the Woodbury matrix identity). It is used in obtaining the computational form of 
the PRESS statistic and several infl uence diagnostics. Consider the  p     ×     p  matrix  X  ′  X  
and let  x  ′  be the  i th row of  X . Note that  X  ′  X     −     xx  ′  is the  X  ′  X  matrix with the  i th 
row removed. The result is

    ′ − ′( ) = ′( ) + ′( ) ′ ′( )
− ′ ′( )

− −
− −

−X X xx X X
X X xx X X

x X X x
1 1

1 1

11
    (C.6.1)   
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 This result can be proved by multiplying the right - hand side by  X  ′  X     −     xx  ′  to give 
an identity matrix as follows:

   

′( ) + ′( ) ′ ′( )
− ′ ′( )

⎡

⎣
⎢

⎤

⎦
⎥ ′ − ′( )

= + ′

−
− −

−X X
X X xx X X

x X X x
X X xx

I
X X

1
1 1

11

(( ) ′
− ′ ′( )

− ′( ) ′ −
′( ) ′

− ′ ′( )
′(

−

−
−

−

−

1

1
1

1

11 1

xx

x X X x
X X xx

X X xx

x X X x
X X)) ′

= +
′( ) ′ − ′( ) ′ − ′ ′( )( ) − ′( ) ′ ′

−

− − − −

1

1 1 1 11

xx

I
X X xx X X xx x X X x X X x x X XX x x

x X X x

I
X X xx X X xx X X x

( )⎡⎣ ⎤⎦ ′

− ′ ′( )

= −
′( ) ′ − ′( ) ′ + ′( )

−

−

− − −

1

1

1 1 1

1

′′ ′ ′( )⎡⎣ ⎤⎦ − ′( ) ′ ′ ′( )⎡⎣ ⎤⎦
− ′ ′( )

=

− − −

−

x x X X x X X xx x X X x

x X X x

I

1 1 1

11

  

 Note that we can write the result  (C.6.1)  as

    ′[ ] = ′( ) + ′( ) ′ ′( )
−( ) ( )

− −
− −

X X X X
X X x x X X

i i
i i

iih
1 1

1 1

1
    (C.6.2)  

  since   hii i i= ′ ′( )−x X X x1  and  X  (   i   )  represents the original  X  matrix with the  i th row  x   i   
withheld.  

  C.7   DEVELOPMENT OF THE PRESS STATISTIC 

 We have used the PRESS statistic as a measure of regression model validity and 
potential performance in prediction. Recall that   e y yi i i( ) ( )= − ˆ  is the PRESS residual, 
where   ̂y i( ) is the predicted value obtained from a model fi t with the  i th observation 
withheld. Then

    PRESS = = −[ ]( )
=

( )
=

∑ ∑e y yi

i

n

i i

i

n
2

1

2

1

ˆ     (C.7.1)   

 It would initially seem that calculating PRESS requires fi tting  n  different regres-
sions. However, it is possible to calculate PRESS from the results of a single least -
 squares fi t to all  n  observations. To see how this is accomplished, let   b̂ i( ) be the vector 
of regression coeffi cients obtained by withholding the  i th observation. Then

    b̂ i i i i i( ) ( ) ( )
−

( ) ( )= ′[ ] ′X X X y1     (C.7.2)  

  where  X  (   i   )  and  y  (   i   )  are the  X  and  y  vectors with the  i th observation withheld. 
 Thus, the  i th PRESS residual may be written as

   

e y y

y

y

i i i

i i i

i i i i i i

( ) ( )

( )

( ) ( )
−

( ) ( )

= −

= − ′

= − ′ ′( ) ′

ˆ

ˆx

x X X X y

b
1
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 There is a close connection between the ( X  ′  X )  − 1  and [ X  (   i   )  X  (   i   ) ]  − 1  matrices; specifi cally, 
from Eq.  (C.6.2) ,

    ′[ ] = ′( ) + ′( ) ′ ′( )
−( ) ( )

− −
− −

X X X X
X X x x X X

i i
i i

iih
1 1

1 1

1
    (C.7.3)  

  where   hii i i= ′ ′( )−x X X x1 . Using Eq.  (C.7.3) , we may write

   

e y
h

i i i
i i

ii
i i( )

−
− −

( ) ( )= − ′ ′( ) + ′( ) ′ ′( )
−

⎡

⎣
⎢

⎤

⎦
⎥ ′x X X

X X x x X X
X y1

1 1

1

== − ′ ′( ) ′ −
′ ′( ) ′ ′( ) ′

−
−

( ) ( )

− −
( ) ( )yi i i i

i i i i ix X X X y
x X X x x X X X y1

1 1

1 hh

h y h h

ii

ii i ii i i i ii i i=
−( ) − −( ) ′ ′( ) ′ − ′ ′( ) ′−

( ) ( )
−1 1 1 1x X X X y x X X X(( ) ( )

−
( ) ( )

−

=
−( ) − ′ ′( ) ′

−

y

x X X X y

i

ii

ii i i i i

ii

h

h y

h

1

1

1

1

  

 Since   ′ = ′ +( ) ( )X y X y xi i i iy , this last equation becomes

    

e
h y

h

h y

i
ii i i i i

ii

ii i i

( )

−

=
−( ) − ′ ′( ) ′ −( )

−

=
−( ) − ′ ′(

1
1

1

1y x X X X y x

x X X)) ′ + ′ ′( )
−

=
−( ) − ′ +

−

=
−

− −1 1

1

1
1

X y x X X x

x

i i i

ii

ii i i ii i

ii

i

y
h

h y h y
h

y

b̂

′′
−

xi

iih
b̂

1

    (C.7.4)   

 Now the numerator of Eq.  (C.7.4)  is the ordinary residual  e i   from a least - squares fi t 
to all  n  observations, so the  i th PRESS residual is

    e
e

h
i

i

ii
( ) = −1

    (C.7.5)   

 Thus, since PRESS is just the sum of the squares of the PRESS residuals, a simple 
computing formula is

    PRESS =
−

⎛
⎝⎜

⎞
⎠⎟

=
∑ e

h
i

iii

n

1

2

1

    (C.7.6)   

 In this form, it is easy to see that PRESS is just a weighted sum of squares of the 
residuals, where the weights are related to the leverage of the observations. PRESS 
weights the residuals corresponding to high - leverage observations more severely 
than the residuals from less infl uential points.  
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  C.8   DEVELOPMENT OF   S i( )
2  

 In Chapter  4  we presented an expression for the residual mean square in a regres-
sion model with the  i th observation withheld. The resulting quantity,   S i( )

2 , is used in 
computing  R  - student. This computing formula for   S i( )

2  may be derived by starting 
with the Sherman – Morrison – Woodbury identity from Section  C.6 :

   ′[ ] = ′( ) + ′( ) ′ ′( )
−( ) ( )

− −
− −

X X X X
X X x x X X

i i
i i

iih
1 1

1 1

1
  

 If we postmultiply both sides by  X  ′  y     −     x   i   y   i  , we obtain

   ˆ ˆb bi i i
i i i i

ii

y
y

h
( )

−
− −

= − ′( ) + ′( ) ′ ′( ) ′ −( )
−

X X x
X X x x X X X y x1

1 1

1
 

  which reduces to

    ˆ ˆb b− = ′( )
−( )

−

i
i i

ii

e
h

X X x1

1
    (C.8.l)   

 Now

    n p S yi j j i

j i

− −( ) = − ′( )( ) ( )
≠
∑1 2

2
x b̂     (C.8.2)  

  and after using Eq.  (C.8.l) , this becomes

    

y y
e

h
j j i

j i

i j
j i i

iij

n

− ′( ) = − ′ +
′ ′( )

−
⎛
⎝⎜

⎞
⎠⎟

( )
≠

−

=
∑ ∑x x

x X X x
b̂ b

2
1 2

1 1
−− − ′ +

−
⎛
⎝⎜

⎞
⎠⎟

= +
−

⎛
⎝⎜

⎞
⎠⎟ −

=
∑

y
h e

h

e
h e

h
e

i i
ii i

ii

j
ii i

iij

n
i

x b̂
1

1

2

2

1

2

11 2−( )hii

    (C.8.3)   

 When we expand the fi rst term on the right - hand side of Eq.  (C.8.3) , we obtain

   e
h e

h
e

e
h

e h
e

j
ii i

iij

n

j

j

n
i

ii
j ij

j

n
i+

−
⎛
⎝⎜

⎞
⎠⎟ = +

−
−

= = =
∑ ∑ ∑1

2
1 1

2

1

2

1 1

2

−−( ) =
∑h

h
ii

ij

j

n

2
2

1

  

 However, since   Hy Hy= ˆ ,   ∑ ==j
n

j ije h1 0. Also, since  H  is idempotent,   ∑ ==j
n

ij iih h1
2 . 

Therefore, Eq.  (C.8.2)  can be written as

   

n p S e
h e

h

e

h

e

i j

j

n
ii i

ii

i

ii

j

j

n

− −( ) = +
−( )

−
−( )

= −

( )
=

=

∑

∑

1
1 1

2 2

1

2

2

2

2

2

1

ee
h

n p MS
e

h

i

ii

i

ii

2

2

1

1

−

= −( ) −
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 Finally, we obtain the result in Eq.  (4.12) , that is,

   S
n p MS e h

n pi
i ii

( ) =
−( ) − −( )

− −
2

2 1
1

Res    

  C.9   OUTLIER TEST BASED ON   R   - STUDENT 

 A common way to model an outlier is the  mean shift outlier model . Suppose we fi t 
the model  y     =     X   β      +      ε   when the true model is

   y X= + +b d e  

  where   δ   is an  n     ×    1 vector of zeros except for the  u th observation, which has a value 
of   δ  u  . Thus,

   d =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0

0

0

0

�

�

δu   

 For both the model we fi t and the mean shift outlier model, assume that  E (  ε  )    ∼ 
   N ( 0 ,   σ    2  I ). Our goal is to fi nd an appropriate test statistic for the hypotheses

   H Hu u0 00 0: , :δ δ= ≠   

 This procedure assumes that we are specifi cally interested in the  u th observation, 
that is, that we have a priori information that the uth observation may be an outlier. 

 The fi rst step is to fi nd an appropriate estimate of   δ  u  . A logical candidate is the 
 u th residual. Let  e     =    [ I     −     X ( X  ′  X )  − l  X  ′ ] y  be the  n     ×    1 vector of residuals. The expected 
value of  e  is

   

E E

E

e I X X X X y

I X X X X y

I X X X

( ) = − ′( ) ′⎡⎣ ⎤⎦( )
= − ′( ) ′⎡⎣ ⎤⎦ ( )
= − ′( ) ′

−

−

−

1

1

1 XX X

I X X X X X I X X X X

X X I

⎡⎣ ⎤⎦ +[ ]
= − ′( ) ′⎡⎣ ⎤⎦ + − ′( ) ′⎡⎣ ⎤⎦
= −[ ] +

− −

b d

b d

b

1 1

−− ′( ) ′⎡⎣ ⎤⎦
= − ′( ) ′⎡⎣ ⎤⎦

−

−

X X X X

I X X X X

1

1

d

d

  

 Thus,
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   E e hu uu u( ) = −( )δ  

  where  h  uu   is the  u th hat diagonal or the uth diagonal element of  X ( X  ′  X )  − l  X  ′ . Con-
sequently, an unbiased estimator of   δ  u   is

   δ̂u
u

uu

e
h

=
−1

  

 In Chapter  4 , we showed that   δ̂u is simply the  u th PRESS residual. The next step is 
to determine the variance of our estimator. We note that

   

Var Vare I X X X X y

I X X X X I I X X X

( ) = − ′( ) ′⎡⎣ ⎤⎦( )
= − ′( ) ′⎡⎣ ⎤⎦ − ′( )

−

− −

1

1 2σ 11

2 1 1

2 1

′⎡⎣ ⎤⎦
= − ′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦
= − ′( ) ′

− −

−

X

I X X X X I X X X X

I X X X

′

σ

σ XX⎡⎣ ⎤⎦

  

 Thus, Var( e u  )    =    (1    −     h uu  )  σ   2 . The variance of   ̂δu then is

   

Var Var
e
h h

e

h

h h

u

uu uu
u

uu

uu u

1
1

1

1

1 1

2

2

2

2

−
⎛
⎝⎜

⎞
⎠⎟ = −( )

( )

=
−( )
−( )

=
−

σ σ
uu

  

 We next note that  e  is a linear combination of  y . Thus,  e  is a linear combination of 
normally distributed random variables. As a result,  e  follows a normal distribution, 
as does   ̂δu. Consequently, under  H  0 :   δ  u      =    0,

   
e h

h

e

h
u uu

uu

u

uu

1

1 1

−( )
−( ) = −σ σ  

  follows a standard normal distribution. We note that this quantity is simply an 
example of a studentized residual, as we saw in Chapter  4 . In general,   σ   2  is unknown. 
We have seen that  MS  Res  is an unbiased estimator of   σ   2 . Further, we have seen that

   
MSRes

σ 2
 

  is a   χ   2  random variable divided by its degrees of freedom. As a result, a candidate 
test statistic is

   
e

MS h
u

uuRes 1−( )  

  which follows a  t  distribution if  e     =    [ I     −     X ( X  ′  X )  − 1  X  ′ ] y  and  SS  Res     =     y  ′ [ I     −     X ( X  ′  X )  − 1  X  ′ ] y  
are independent. We can show that  e  and  SS  Res  are independent if
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   I X X X X I I X X X X 0− ′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦ =
− −1 2 1σ   

 Unfortunately,

   I X X X X I I X X X X I X X X X 0− ′( ) ′⎡⎣ ⎤⎦ − ′( ) ′⎡⎣ ⎤⎦ = − ′( ) ′⎡⎣ ⎤⎦ ≠
− − −1 2 1 2 1σ σ   

 The problem is that

   SS ei

i

n

Res = ′ =
=
∑e e 2

1

 

  which means that  SS  Res  is correlated with each individual residual because the 
square of each individual residual is a component of  SS  Res . In Section  C.8  we devel-
oped an estimate of   σ   2  with the  u th observation deleted. This estimate is indepen-
dent of  e u   by the basic independence assumption on our random errors. As a result, 
an appropriate test statistic for the mean shift outlier model is

   
e

S h
u

u uu( ) −1
 

  which is the externally studentized residual or  R  - student. Under  H  0 :   δ  u      =    0, this 
statistic follows the central  t n    −    p    − 1  distribution, and under  H  0 :   δ  u      ≠    0, this statistic 
follows the   ′− −tn p 1,γ  distribution, where

   γ
δ

σ
δ

σ
=

−( ) =
−u

uu

i uu

h

h

1

1
  

 It is important to note that the power of this test depends on  h uu  . Recall that if we 
fi t an intercept to our model, then 1/ n     ≤  h uu      ≤    1. Maximum power occurs when 
 h uu      =    1/ n , which is at the center of the data cloud in terms of the  X  ’ s. As  h uu      →    1, 
the power goes to 0. In other words, this test has less ability to detect outliers at the 
high - leverage data points.  

  C.10   INDEPENDENCE OF RESIDUALS AND FITTED VALUES 

 We know that   ˆ ˆy X X X X X y Hy= = ′( ) ′ =−b 1  and   e y y I H y= − = −( )ˆ . Furthermore, 
we assume that  y     ∼     N ( X β  ,   σ   2  I ). To prove that the residuals and fi tted values are 
independent, from the new vector

   
ŷ

e

H

I H
y My

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ =   

 Because  y  is multivariate normal, the new vector  My  is also multivariate normal. 
The expected value of  My  is
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   E EMy M y
H

I H
X

X

0
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⎡

⎣
⎢

⎤

⎦
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⎡

⎣
⎢

⎤

⎦
⎥b

b
  

 The covariance matrix of  My  is

   

Var VarMy M y M

H

I H
H I H

HH H I H

I H H I H

( ) = ( ) ′

= −
⎡

⎣
⎢
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−( ) −( )
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II H
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0 I H

−( )
⎡

⎣
⎢

⎤

⎦
⎥

= −
⎡

⎣
⎢

⎤

⎦
⎥σ 2

  

 Because all of the covariances between   ŷ and  e  are zero and the random variables 
  ̂y and  e  are jointly normally distributed, the fi tted values and the residuals are 
independent.  

  C.11   GAUSS - MARKOV THEOREM,  V AR( ε )    =     V  

 The Gauss - Markov theorem establishes that the generalized least - squares (GLS) 
estimator of   β  ,   b̂ = ′( ) ′− − −X V X X V y1 1 1 , is BLUE ( best linear unbiased estimator ). 
Once again, by best, we mean   b̂  minimizes the variance for any linear combination 
of the estimated coeffi cients,   ′� b̂ . We note that if the model is correct,

   
E E′( ) ′⎡⎣ ⎤⎦ = ′( ) ′ ( )

= ′( ) ′

− − − − − −

− − −

X V X X V y X V X X V y

X V X X V X

1 1 1 1 1 1

1 1 1 bb b=
  

 Thus, ( X  ′  V   − 1  X )  − l  X  ′  V   − l  y  is an unbiased estimator of   β  . The variance of this 
estimator is

   

Var Var′( ) ′⎡⎣ ⎤⎦ = ′( ) ′⎡⎣ ⎤⎦ ( ) ′( )− − − − − − − −
X V X X V y X V X X V y X V X1 1 1 1 1 1 1 11 1

1 1 1 1 1 1

′⎡⎣ ⎤⎦

= ′( ) ′⎡⎣ ⎤⎦ ′( ) ′⎡⎣ ⎤⎦

= ′

−

− − − − − −

−

X V

X V X X V V X V X X V

X V

′

′

11 1 1 1 1 1

1 1

X X V V V X X V X

X V X

( ) ′⎡⎣ ⎤⎦ ′( )⎡⎣ ⎤⎦

= ′( )

− − − − −

− −

  

 Thus,

   Var Var′( ) = ′ ( ) = ′ ′( )⎡⎣ ⎤⎦
− −� � � � �ˆ ˆb b X V X1 1
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 Let   �b  be another unbiased estimator of   β   that is a linear combination of the data. 
Our goal, then, is to show that   Var ′( ) ≥ ′ ′( )− −� � ��b X V X1 1  with at least one � such 
that   Var ′( ) > ′ ′( )− −� � ��b X V X1 1 . 

 We fi rst note that we can write any other estimator of   β   that is a linear combina-
tion of the data as

   �b = ′( ) ′ +⎡⎣ ⎤⎦ +− − −X V X X V B y b1 1 1
0  

  where  B  is an  p     ×     n  matrix and  b  0  is a  p     ×    1 vector of constants that appropriately 
adjusts the GLS estimator to form the alternative estimate. We next note that if the 
model is correct, then

   

E E

E

�b( ) = ′( ) ′ +⎡⎣ ⎤⎦ +( )
= ′( ) ′ +⎡⎣ ⎤⎦
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1 1 1
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b

X V X X V B X b

X V X X V X BX b

0

1 1 1
0

1 1 1
0

b

b b
== + +b bBX b0

  

 Consequently,   �b  is unbiased if and only if both  b  0     =     0  and  BX     =     0 . The variance of 
  �b  is

   

Var Var
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  because  BX     =     0 , which in turn implies that ( BX ) ′     =     X  ′  B  ′     =    0. As a result,

   

Var Var′( ) = ′ ( )
= ′ ′( ) + ′⎡⎣ ⎤⎦( )
= ′ ′( )

− −

− −

� � �
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+ ′ ′
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 We note that  V  is a positive defi nite matrix. Consequently, there exists some nons-
ingular matrix   Γ   such that  V     =      Γ   ′   Γ  . As a result,  BVB  ′     =     B Γ   ′   Γ B  ′  is at least a positive 
semidefi nite matrix; hence, � ′  BVB  ′  �     ≥     0 . Next note that we can defi ne  �  *     =      Γ B  ′  � . As 
a result,
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   ′ ′ = ′ =
=
∑� � � � �BVB * * i

i

p
*2

1

 

  which must be strictly greater than zero for some �      ≠     0  unless  B     =     0 . Thus, the GLS 
estimate of   β   is the best linear unbiased estimator.  

  C.12   BIAS IN   MS    R   ES  WHEN THE MODEL IS UNDERSPECIFIED 

 In Section  C.3.2 , we have shown that if the model is correctly specifi ed, then 
 E ( MS  Res )    =      σ   2 , and thus,  MS  Res  is an unbiased estimator of   σ   2 . Now, suppose we fi t 
the model  y     =     X   p    β    p      +      ε  , where  X   p   is the  n     ×     p  model matrix associated with   β    p  , the 
vector of parameters we fi t. Suppose further that the actual model is

   y X X X X= + + + [ ]⎡
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+p p r r p r

p

r

b b e
b
b

e  

  where  X   r   is the model matrix associated with   β    r  , the vector of important terms we 
did not fi t, for whatever reason. For both models we assume that  E (  ε  )    =     0  and 
Var(  ε  )    =      σ    2  I . In Section  10.1.2 , we showed for this situation that   b̂p p p p= ′( ) ′−X X X y1  
is a biased estimator of   β    p  . Consider the expected value of  SS  Res , which is
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 The expected value for  MS  Res  in this situation is

   E MS E
SS
n p

r r r r p p p p r

Res
Res( ) =
−

⎛
⎝⎜

⎞
⎠⎟
= +

′ ′ − ′ ′( ) ′⎡⎣
−

σ 2

1b X X X X X X X X ⎤⎤⎦
−

br

n p
  

 As a result,  MS  Res  is not an unbiased estimator of   σ   2  when the model is underspeci-
fi ed. The bias is
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′ ′ − ′ ′( ) ′⎡⎣ ⎤⎦

−

−b br r r r p p p p r

n p

X X X X X X X1

   

  C.13   COMPUTATION OF INFLUENCE DIAGNOSTICS 

 In this section we will develop the very useful computational forms of the infl uence 
diagnostics  DFFITS ,  DFBETAS , and Cook ’ s  D  given initially in Chapter  6 . 

  C.13.1     DFFITS    i   

 Recall from Eq.  (6.9)  that

    DFFITS
y y

S h
i ni

i i

i ii

=
−

=( )

( )

ˆ ˆ
, , , ,

2
1 2 …     (C.13.1)   

 Also, from Section  C.8 , we have

    ˆ ˆb bi i
i i

ii

e
h

− = ′( )
−( )

−X X x1

1
    (C.13.2)   

 Multiplying both sides of Eq.  (C.13.2)  by   ′xi  produces

    ˆ ˆy y
h e

h
i i

ii i

ii

− =
−( )

1
    (C.13.3)   

 Dividing both sides of Eq.  (C.13.3)  by   S hi ii( )
2  will produce  DFFITS i  :
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    (C.13.4)  

  where  t i   is  R  - student.  

  C.13.2   Cook ’ s  D    i    

 We may use Eq.  (C.13.2)  to develop a computational form for Cook ’ s D  i  . Recall 
that Cook ’ s D  i   statistic is

    D
pMS

i ni

i i i i
=

−( ) ′ −( )
=

( ) ( )
ˆ ˆ ˆ ˆ

, , , ,
b b b b′X X

Res

1 2 …     (C.13.5)   

 Using Eq.  (C.13.2)  in Eq.  (C.13.5) , we obtain
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  where  r i   is the studentized residual.  

  C.13.3     DFBETAS    j,i   

 The  DFBETAS j,i   statistic is defi ned in Eq.  (6.7)  as

   DFBETAS
S C

j i
j j i

i jj

, =
− ( )

( )

β β
2

  

 Thus,  DFBETAS j,i   is just the  j th element of   ˆ ˆb b− ( )i  in Eq.  (C.13.2)  divided by a 
standardization factor. Now

    ˆ ˆ ,β βj j i
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ii

r e
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    (C.13.6)  

  and recall that  R     =    ( X  ′  X )  − 1  X , so that

   RR X X X X X X X X C R R′( ) = ′( ) ′ ′( )⎡⎣ ⎤⎦ = ′( ) = = ′− − −′ ′1 1 1   

 Therefore,   Cjj j j= ′r r , so we may write the standardization factor

   S C Si jj i j j( ) ( )= ′2 2 r r   

 Finally, the computation form of  DFBETAS j,i   is
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  where  t i   is  R  - student.   

  C.14   GENERALIZED LINEAR MODELS 

  C.14.1   Parameter Estimation in Logistic Regression 

 The log - likelihood for a logistic regression model was given in Eq.  (14.8)  as

   ln , ln expL yi i

i

n

i

i

n

y x xb b b( ) = ′ − + ′( )[ ]
= =
∑ ∑

1 1

1   
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 In many applications of logistic regression models we have repeated observations 
or trials at each level of the  x  variables. Let  y i   represent the number of 1 ’ s observed 
for the ith observation and  n i   be the number of trials at each observation. Then the 
log - likelihood becomes

   ln , ln lnL y n yi i

i

n

i i

i

n

i i

i

n

y b( ) = − −( ) − −( )
= = =
∑ ∑ ∑π π π

1 1 1

1 1   

 The maximum - likelihood estimates (MLEs) may be computed using an iteratively 
reweighted least - squares (IRLS) algorithm. To see this recall that the MLEs are the 
solutions to

   
∂
∂
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L
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  which can be expressed as
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  and
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 Putting this all together gives
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 Therefore, the maximum - likelihood estimator solves

   ′ −( ) =X y 0m  

  where  y  ′     =    [ y  1 ,  y  2 ,    . . .    ,  y   n  ] and   μ   ′     =    [ n  1   π   1 ,  n  2   π   2 ,    . . .    ,  n n  π  n  ]. This set of equations is often 
called the  maximum - likelihood score equations . They are actually the same form of 
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the normal equations that we have seen previously for linear least squares, because 
in the linear regression model,  E ( y )    =     X   β      =      μ   and the normal equations are

   ′ = ′X X X yb̂  

  which can be written as

   ′ −( ) =X y X 0b  

   ′ −( ) =X y 0m   

 The  Newton - Raphson  method is actually used to solve the score equations for 
the logistic regression model. This procedure observes that in the neighborhood 
of the solution, we can use a fi rst - order Taylor series expansion to form the 
approximation

    pi i
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  where
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  and   β   *  is the value of   β   that solves the score equations. Now   ηi i= ′x b , and
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 Therefore, we can rewrite Eq.  (C.14.1)  as
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  where   ηi
*  is the value of   η  i   evaluated at   β   * . We note that

   y n n p n n pi i i i i i i i i i−( ) = −( ) = −( )π π π  

  and since
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 Consequently,

   y n ni i i i i i i i− ≈ −( )[ ] = −( )π π π η η1 *   

 Now the variance of the linear predictor   ηi i
* = ′x b* is, to a fi rst approximation,
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  and we may rewrite the score equations as
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 or, in matrix notation,

   ′ −( ) =−X V 01 h h*  

  where  V  is a diagonal matrix of the weights formed from the variances of the   η  i  . 
Because   η      =     X   β   we may write the score equations as

   ′ −( ) =−X V X 01 h b*  

  and the maximum - likelihood estimate of   β   is

   b̂ h= ′( ) ′− − −X V X X V1 1 1 *   
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 However, there is a problem because we do not know   η   * . Our solution to this 
problem uses Eq.  (C.14.2) :

   pi i
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  which we can solve for   ηi
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 Let  z i      =      η  i      +     (p i      −      π  i  )( ∂   η  i  )�( ∂   π  i  ) and  z  ′     =    [ z  1 ,  z  2 ,    . . .    ,  z n  ]. Then the Newton - Raphson 
estimate of   β   is
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 Note that the random portion of  z i   is
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 So  V  is the diagonal matrix of weights formed from the variances of the random 
part of  z . Thus, the IRLS algorithm based on the Newton – Raphson method can be 
described as follows:

   1.     Use ordinary least squares to obtain an initial estimate of   β  , say   b̂0.  
  2.     Use   b̂0 to estimate  V  and   π  .  
  3.     Let   h b0 0= X ˆ .  
  4.     Base  z  1  on   η   0 .  
  5.     Obtain a new estimate   b̂1, and iterate until some suitable convergence criterion 

is satisfi ed.     

  C.14.2   Exponential Family 

 It is easy to show that the normal, binomial, and Poisson distributions are members 
of the exponential family. Recall that the exponential fantily of distributions is 
defi ned by Eq.  (13.48) , repeated below for convenience:
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   f y y b a h yi i i i i i, , exp ,θ φ θ θ φ φ( ) = − ( )[ ] ( ) + ( ){ }  

   1.      The Normal Distribution 
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 Thus, for the normal distribution, we have
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  2.      The Binomial Distribution 

   

f y
n

m

n

y
y n y

i i
y n y, ,

exp ln ln ln

θ φ π π

π

( ) = ⎛
⎝⎜

⎞
⎠⎟

−( )

= ⎛
⎝⎜

⎞
⎠⎟
+ + −( ) −

−1

1 ππ

π π π

( )⎧
⎨
⎩

⎫
⎬
⎭

= ⎛
⎝⎜

⎞
⎠⎟
+ + −( ) − −( )⎧

⎨
⎩

⎫
⎬
⎭

=

exp ln ln ln ln

exp

n

y
y n y

y

1 1

lln ln ln
π
π

π
1

1
−

⎛
⎝⎜

⎞
⎠⎟ + −( ) + ⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

n
n

y

  

 Therefore, for the binomial distribution,
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 We recognize this as the mean of the binomial distribution. Also,
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 This last expression is just the variance of the binomial distribution.  
  3.      The Poisson Distribution 
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  the mean of the Poisson distribution is

   E y( ) = ⋅ =1 λ λ   

 The variance of the Poisson distribution is
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dE y

d i

( ) = ( ) =
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λ       

  C.14.3   Parameter Estimation in the Generalized Linear Model 

 Consider the method of maximum likelihood applied to the GLM, and suppose we 
use the canonical link. The log - likelihood function is
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 For the canonical link, we have   η μi i i ig E y g= ( )[ ] = ( ) = ′x b ; therefore,
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 Consequently, we can fi nd the maximum - likelihood estimates of the parameters by 
solving the system of equations
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 In most cases,  a (  ϕ  ) is a constant, so these equations become

   yi i i
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=
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 This is actually a  system  of  p     =     k     +    1 equations, one for each model parameter. In 
matrix form, these equations are

   ′ −( ) =X y 0m  

  where   μ   ′     =    [  μ   1 ,   μ   2 ,    . . .    ,   μ  p  ]. These are called the maximum - likelihood score equa-
tions, and they are just the same equations that we saw previously in the case of 
logistic regression, where   μ   ′     =    [ n  1   π   1 ,  n  2   π   2 ,    . . .    ,  n  n   π  n  ]. 

 To solve the score equations, we can use IRLS, just as we did in the case of logistic 
regression. We start by fi nding a fi rst - order Taylor series approximation in the neigh-
bothood of the solution
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 Now for a canonical link   η  i      =      θ  i  , and
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 This expression provides a basis for approximating the variance of   ̂ηi. 
 In maximum - likelihood estimation, we replace   η  i   by its estimate,   ̂ηi. Then we have
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  where Var( y i  )    =    Var(  μ  i  ) a (  ϕ  ). Consequently,
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 For convenience, defi ne Var(  η  i  )    =    [Var(  μ  i  )]  − 1 , so we have

   Var Varˆ ˆη η φi i a( ) ≈ ( ) ( )   

 Substituting this into Eq.  (C.14.3)  results in
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 If we let  V  be an  n     ×     n  diagonal matrix whose diagonal elements are the Var(  η  i  ), 
then in matrix form, Eq.  (C.14.4)  becomes
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   y V− ≈ −( )−m h h1 *   

 We may then rewrite the score equations as follows:

   ′ −( ) =X y 0m  

   ′ −( ) =−X V 01 h h*  

   ′ −( ) =−X V X 01 h b*   

 Thus, the maximum - likelihood estimate of   β   is

   b̂ = h′( ) ′− − −X V X X V1 1 1 *   

 Now just as we saw in the logistic regression situation, we do not know   η   * , so we 
pursue an iterative scheme based on
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 Using iteratively reweighted least squares with the Newton – Raphson method, the 
solution is found from

   b̂ = ′( ) ′− − −X V X X V z1 1 1   

 Asymptotically, the random component of  z  comes from the observations  y i  . The 
diagonal elements of the matrix  V  are the variances of the  z i   ’ s, apart from  a (  ϕ  ). 

 As an example, consider the logistic regression case:
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 Thus, for logistic regression, the diagonal elements of the matrix  V  are
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  which is exactly what we obtained previously. 
 Therefore, IRLS based on the Newton – Raphson method can be described as 

follows:

   1.     Use ordinary least squares to obtain an initial estimate of   β  , say   b̂0.  
  2.     Use   b̂0 to estimate  V  and   μ  .  
  3.     Let   h b0 0= X ˆ .  
  4.     Base  z  1  on   η   0 .  
  5.     Obtain a new estimate   b̂1, and iterate until some suitable convergence criterion 

is satisfi ed.    

 If we do not use the canonical link, then   η  i      ≠      θ  i  , and the appropriate derivative of 
the log - likelihood is
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 Putting this all together yields
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 Once again, we can use a Taylor series expansion to obtain
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 Following an argument similar to that employed before,
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  and eventually we can show that
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 Equating this last expression to zero and writing it in matrix form, we obtain

   ′ −( ) =−X V 01 h h*  

  or, since   η      =     X   β  ,

   ′ −( ) =−X V X 01 h b*   

 The Newton – Raphson solution is based on

   b̂ = ′( ) ′− − −X V X X V z1 1 1  

  where
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 Just as in the case of the canonical link, the matrix  V  is a diagonal matrix formed 
from the variances of the estimated linear predictors, apart from  a (  ϕ  ).         
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 APPENDIX  D  

 INTRODUCTION TO  SAS      

        D.l   Basic Data Entry  
  D.2   Creating Permanent SAS Data Sets  
  D.3   Importing Data from an EXCEL File  
  D.4   Output Command  
  D.5   Log File  
  D.6   Adding Variables to an Existing SAS Data Set    

 One of the hardest parts about learning SAS is creating data sets. For the most 
part, this appendix deals with data set creation. It is vital to note that the default 
data set used by SAS at any given time is the data set most recently created. We 
can specify the data set for any SAS procedure (PROC). Suppose we wish to do 
multiple regression analysis on a data set named delivery. The appropriate PROC 
REG statement is

 proc reg data = delivery;  

 We now consider in more detail how to create SAS data sets.  

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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   D .1   BASIC DATA ENTRY 

   A .   Using the  SAS  Editor Window 

 The easiest way to enter data into SAS is to use the SAS Editor. We will use the 
delivery time data, given in Table  3.2  as the example throughout this appendix. 

  Step 1: Open the  SAS  Editor Window     The SAS Editor window opens automati-
cally upon starting the Windows or UNIX versions of SAS.  

  Step 2: The Data Command     Each SAS data set requires a name, which the data 
statement provides. This appendix uses a convention whereby all capital letters 
within a SAS command indicates a name the user must provide. The simplest form 
of the data statement is

 data NAME;  

 The most painful lesson learning SAS is the use of the semicolon (;). Each SAS 
command must end in a semicolon. It seems like 95% of the mistakes made by SAS 
novices is to forget the semicolon. SAS is merciless about the use of the semicolon! 
For the delivery time data, an appropriate data command is

 data delivery;  

 Later, we will discuss appropriate options for the data command.  

  Step 3: The Input Command     The input command tells SAS the name of each 
variable in the data set. SAS assumes that each variable is numeric. The general 
form of the input command is

 input VARl VAR2    . . .    ;  

 We fi rst consider the command when all of the variables are numeric, as in the 
delivery data from Chapter  2 :

 input time cases distance;  

 We designate a variable as alphanumeric (contains some characters other than 
numbers) by placing a $ after the variable name. For example, suppose we know 
the delivery person ’ s name for each delivery. We could modify these names through 
the following input command:

 input time cases distance person $;   

  Step 4: Give the Actual Data     We alert SAS to the actual data by either the cards 
(which is fairly archaic), or the lines commands. The simplest way to enter the data 
is in space - delimited form. Each line represents a row from Table  3.2 .  Do not place 
a semicolon (;) at the end of the data rows . Many SAS users do place a semicolon 
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on a row unto itself after the data to indicate the end of the data set. This semicolon 
is not required, but many people consider it good practice. For the delivery data, 
the actual data portion of the SAS code follows: 

   cards;   
   16.68      7      560   
   11.50      3      220   
   12.03      3      340   
   14.88      4      80   
   13.75      6      150   
   18.11      7      330   

   8.00      2      110   
   17.83      7      210   
   79.24      30      1460   
   21.50      5      605   
   40.33      16      688   
   21.00      10      215   
   13.50      4      255   
   19.75      6      462   
   24.00      9      448   
   29.00      10      776   
   15.35      6      200   
   19.00      7      132   

   9.50      3      36   
   35.10      17      770   
   17.90      10      140   
   52.32      26      810   
   18.75      9      450   
   19.83      8      635   
   10.75      4      150   
   ;   

  Step 5: Using  PROC   PRINT  to Check Data Entry     It is very easy to make mis-
takes in entering data. If the data set is suffi ciently small, it is always wise to print 
it. The simplest statement to print a data set in SAS is

 proc print; 

which prints the most recently created data set. This statement prints the entire data 
set. If we wish to print a subset of the data, we can print specifi c variables:

 proc print; 
 var VAR1 VAR2    . . .    ;  

 Many SAS users believe that it is good practice to specify the desired data set. 
In this manner, we guarantee that we print the data set we want. The modifi ed 
command is
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 proc print data = NAME;  

 The following command prints the entire delivery data set:

 proc print data = delivery;  

 The following commands print only the times from the delivery data set:

 proc print data = delivery; 
 var time;  

 The run command submits the code. When submitted, SAS produces two fi les: the 
output fi le and the log fi le. The output fi le for the delivery data PROC PRINT 
command follows: 

   The SAS System   
   Obs      time      cases      distance   

   1      16.68      7      560   
   2      11.50      3      220   
   3      12.03      3      340   
   4      14.88      4      80   
   5      13.75      6      150   
   6      18.11      7      330   
   7      8.00      2      110   
   8      17.83      7      210   
   9      79.24      30      1460   

   10      21.50      5      605   
   11      40.33      16      688   
   12      21.00      10      215   
   13      13.50      4      255   
   14      19.75      6      462   
   15      24.00      9      448   
   16      29.00      10      776   
   17      15.35      6      200   
   18      19.00      7      132   
   19      9.50      3      36   
   20      35.10      17      770   
   21      17.90      10      140   
   22      52.32      26      810   
   23      18.75      9      450   
   24      19.83      8      635   
   25      10.75      4      150   

 The resulting log fi le follows:

 NOTE: Copyright (c) 2002 – 2003 by SAS Institute Inc., Cary, 
                      NC, USA. 
 NOTE: SAS (r) 9.1 (TS1M2) 
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                      Licensed to VA POLYTECHNIC INST  &  
                      STATE UNIV - CAMPUSWIDE - IN, Site 0001798011. 
 NOTE: This session is executing on the WIN_PRO platform 
 NOTE: SAS initialization used: 
                      real time                19.30 seconds 
                      cpu time                      1.56 seconds 
 1                data delivery; 
 2                input time cases distance; 
 3                cards; 
 NOTE: The data set WORK.DELIVERY has 25 observations and 3 
  variables. 
 NOTE: DATA statement used (Total process time): 
                      real time                   1.22 seconds 
                      CPU time                      0.23 seconds 
 29             proc print data - delivery; 
 30          run; 
 NOTE: There were 25 observations read from the data set 
                      WORK.DELIVERY. 
 NOTE: PROCEDURE PRINT used (Total process time): 
                      real time                   0.55 seconds 
                      cpu time                      0.17 seconds  

 The log fi le provides a brief summary of the SAS session. It tells the analyst how 
many observations are in the data set, how many observations have missing data 
(in this case, there are no missing data), the commands executed, and any errors. 
The log fi le is almost essential for debugging SAS code. Section  D.5  provides more 
details about this fi le.   

   B .   Entering Data from a Text File 

 We can use the infi le statement to read data from a text fi le. The form of this state-
ment is

 infi le  ‘ FULL FILE NAME ’ ;  

 The infi le statement requires the full fi le name, including all path information (all 
the directories). The full fi le name must be enclosed by single quotes. Of course, the 
statement must end in a semicolon (;). The following example has the data in a text 
fi le named delivery.txt that is located in the directory

 C:\My Stuff\Disk - Books\Regression 5th Ed 

of my Windows laptop. UNIX follows a slightly different path convention. The 
following example illustrates how to use the infi le statement for the delivery 
data:
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 data delivery; 
       infi le  ‘ C:\My Stuff\Disk - Books\Regression 5th Ed\ 
 delivery.txt ′ ; 
       input time cases distance; 
 run;    

   D .2   CREATING PERMANENT SAS DATA SETS 

 There are many occasions where we expect to use a single data set many times. For 
example, many regression courses require projects that involve analyzing a single 
data set several times over the semester as the students learn more analytical tech-
niques. In such a situation, it is nice to read the data only once and then create a 
permanent data set that is available for future use. 

     Step 1: Specify the Directory for the Permanent Data Set     We specify the 
directory for our permanent data set through the libname statement, which has the 
form

 libname NAME1  ‘ FULL DIRECTORY NAME ’ ;  

 NAME - l is the name for the directory that we use purely within the SAS code. 
FULL DIRECTORY NAME is the actual name of the directory, including the full 
path information.  

  Step 2: Use the Data Statement to Create the Data Set     The key point is to 
use the appropriate permanent name for the data set in the data statement. Specifi -
cally, suppose that we wish to create a data set named setname and that we named 
the directory namel. The appropriate name for the permanent SAS data set is namel.
setname. The following example creates a SAS data set named book.delivery in the 
directory; C:\ My Stuff \ Disk - Books \ Regression 5th Ed. 

  libname book  ' c:\My Stuff\Disk - Books\Regression 5th Ed ' ; 
 data book.delivery; 
       infi le  ' C:\My Stuff\Disk - Books\Regression 5th Ed\ 
 delivery.txt ' ; 
       input time cases distance; 
 run;  

 The following code illustrates how to use the permanent data set. The libname state-
ment must appear somewhere in the SAS code prior to the data set ’ s use by a 
procedure:

 libname book  ‘ c:\My Stuff\Disk - Books\Regression 5th Ed ′ ; 
 proc reg data = book.delivery; 
       model time = cases distance; 
 run;  
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 The output from this code follows: 

   The REG Procedure   
   Model: MODELl   

   Dependent Variable: time   

   Number of Observations Read      25   
   Number of Observations Used      25   

   Analysis of Variance   

   Source      DF   
   Sum of 
Squares   

   Mean 
Square      F Value      Pr    >    F   

   Model      2      5550.81092      2775.40546      261.24       < .0001   
   Error      22      233.73168      10.62417           
   Corrected Total      24      5784.54260               

   Root MSE      3.25947      R -  square      0.9596       
   Dependent Mean      22.38400      Adj R -  Sq      0.9559       
   Coeff Var      14.56162               

   Parameter Estimates   

   Variable      DF   
   Parameter 
Estimate   

   Standard 
Error      t Value      Pr    >    |t|   

   Intercept      1      2.34123      1.09673      2.13      0.0442   
   cases      1      1.61591      0.17073      9.46       < .0001   
   distance      1      0.01438      0.00361      3.98      0.0006   

   D .3   IMPORTING DATA FROM AN EXCEL FILE 

 The PC version of SAS has a nice wizard for importing an EXCEL spreadsheet as 
a SAS data set. The user has the option to bring the data in as a permanent data 
set or a temporary data set. A temporary data set exists purely for the duration of 
the SAS session. To bring the EXCEL spreadsheet as a permanent data set, we need 
to run an appropriate libname statement prior to using the wizard. 

 The fi rst row of the EXCEL spreadsheet needs to provide the variable names 
associated with each column. The names provided in the fi rst row will become the 
variables in the SAS data set. 

 It is not as easy to import an EXCEL spreadsheet into the UNIX version of SAS. 
The steps required follow. 

     Step 1: Export the  EXCEL  Spreadsheet     We will need the EXCEL spreadsheet 
in dbf format (DBF III, IV, or V), which is easily done by the Save As button in 
EXCEL.  

  Step 2: Get the dbf File into  UNIX  Format     If the dbf fi le was created on a 
Windows computer, we need to change its format for UNIX. Save the fi le in a UNIX 
directory and then execute the following UNIX command:

 dos2unix - ascii data > newdata   
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  Step 3: Import the File into  SAS      Let NAME.dbf be the name of the dbf fi le. 
The following command creates a temporary work fi le named NAME:

 proc import dbms = dbf out = work.NAME datafi le = ”NAME.dbf“;   

  Step 4: When in Doubt, Contact Your System ’ s Administrator!     Things often 
seem to go wrong when crossing platforms, such as from Windows to UNIX. What 
works for one set of systems may not work perfectly for another.    

   D .4   OUTPUT COMMAND 

 The output command allows the user to append a previously created data set with 
information generated by a SAS procedure. Many SAS procedures support the 
output command. Its general form is

 output out = SAS - NAME (output list) ;  

 In this case SAS - NAME is the name of the data set created by the output command. 
The resulting data set is the data set used by the procedure plus the variables added 
through (output list). Suppose we wish to add the predicted values and the raw 
residuals to the delivery time data set. Let delivery2 be the new data set. Suppose 
that we call the predicted delivery times ptime and that we call the raw residuals 
res. The appropriate output command is

 output out = delivery2 p = ptime r = res;  

 The p is SAS ’ s designation for the predicted values generated by PROC REG, and 
r is the designation for the raw residuals. In the output list, the SAS designation 
always is on the left - hand side of the    =    sign. The variable name within the new data 
set is always on the right - hand side. To create a data set with 

 It is very important to remember that the default data set used by a SAS proce-
dure is the one most recently created. One of the saving graces of the output 
command is that it includes the data set used by the procedure to create the output 
data set.  

   D .5   LOG FILE 

 Every SAS session generates a  “ log ”  fi le that provides a brief summary. New SAS 
users fi nd out very quickly (and very painfully) that SAS source code is a computer 
program that must be compiled. As such, the code must follow certain syntax rules. 
It is important to note that SAS can produce an incorrect, even nonsensical, analysis 
even if SAS does not reject the syntax. The log fi le is almost essential for debugging 
SAS code. 

 The log fi le provides a brief summary of the SAS session. It tells the analyst how 
many observations are in the data set, how many observations have missing data 
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(in this case, there are no missing data), the commands executed, and any errors. 
Below is a simple example from a correct analysis:

 NOTE: Copyright (c) 2002 - 2003 by SAS Institute Inc., Cary, 
                      NC, USA 
 NOTE: SAS (r) 9.1 (TSIM2) 
                      Licensed to VA POLYTECHNIC INST  &  STATE UNIV -  
                      CAMPUSWIDE - IN, Site 0001798011. 
 NOTE: This session is executing on the WIN_PRO platform. 
  
 NOTE: SAS initialization used: 
                      real time                      19.30 seconds 
                      cpu time                            1.56 seconds 
  
 1                data delivery; 2          input time cases distance; 
 3                cards; 
  
 NOTE: The data set WORK.DELIVERY has 25 observations and 3 
  variables. 
 NOTE: DATA statement used (Total process time): 
                      real time                      1.22 seconds 
                      cpu time                         0.23 seconds 
  
 29          proc print data = delivery; 30       run; 
 NOTE: There were 25 observations read from the data set 
 WORK.DELIVERY 
 NOTE: PROCEDURE PRINT used (Total process time): 
                      real time                      0.55 seconds 
                      cpu time                         0.17 seconds  

 Below is an example where we give the command

 print data = deli very 

instead of the proper syntax

   proc print data = delivery; 

 NOTE: Copyright (c) 2002 - 2003 by SAS Institute Inc., Cary, 
                      NC, USA. 
 NOTE: SAS (r) 9.1 (TS1M2) 
                      Licensed to VA POLYTECHNIC INST  &  STATE UNIV -  
                      CAMPUSWIDE - IN, Site 0001798011. 
 NOTE: This session is executing on the WIN_PRO 
  platform. 
 NOTE: SAS initialization used: 
                      real time                      5.03 seconds 
                      cpu time                         1.73 seconds 
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 1                libname book     ‘ c:\My Stuff\Disk - Books\Regression 5th 
  Ed  ’ ; 
 NOTE: Libref BOOK was successfully assigned as follows: 
                      Engine    2q    V9 
                      Physical Name:    c:\My Stuff\Disk - Books\Regression 5th 
 Ed 
 2                print data = book.delivery; 
                       —  –  
                      180 
                        ERROR 180 -  322: Statement is not valid or it is 
used out of 
 proper order. 
   3                run;  

 One of the most frustrating errors in SAS occurs when we forget a semicolon. SAS 
rarely, if ever, fl ags a missing semicolon directly as an error! It fl ags a syntax problem 
later in the source code that is the consequence of the missing semicolon. 

 Finally, for large sets it is not practical to print the entire data set. Many people 
use SAS to create massive data sets through  “ merges, ”  among other techniques. In 
these circumstances, the log fi le gives the fi rst information, usually through the 
number of observations in the data set, of problems. As such, the log fi le is essential 
to good SAS programming.  

   D .6   ADDING VARIABLES TO AN EXISTING  SAS  DATA SET 

 We can add variables to a previously created SAS data set. For example, suppose 
that we would like to use cases2    =    cases 2  as a regressor for the delivery data, and 
suppose that the delivery data are in a SAS data set named delivery. We shall call 
the new data set delivery2. The appropriate SAS commands are

 data delivery2; 
       set delivery; 
       cases2 = cases * cases; 
 run;  

 Suppose we wish to create a new permanent SAS data set where we add cases2 to 
the permanent SAS data set book.delivery Suppose further that our code already 
includes the appropriate libname statement. The appropriate SAS commands are

 data book.delivery2; 
       set book.delivery; 
       cases2 = cases * cases; 
 run;         
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 APPENDIX  E  

 INTRODUCTION TO  R  TO PERFORM 
LINEAR REGRESSION ANALYSIS     

     R is a popular statistical software package, primarily because it is freely available 
at  www.r - project.org . As a result, many instructors as well as many of the more 
sophisticated statistical practitioners are switching to it. We have found that using 
R makes sense with graduate students who are already familiar with statistical 
methodology, especially those students with some experience using more sophisti-
cated statistical software packages such as SAS. We personally recommend using 
less sophisticated and fully supported statistical software packages such as Minitab 
and SAS - JMP for undergraduates and those new to formal statistical analysis. 
However, we realize that some instructors prefer to use R even for these less sophis-
ticated students. As a result, we created this appendix to introduce some of the 
basics of R.  

   E .1   BASIC BACKGROUND ON  R  

 According to the project ’ s webpage:

  The R Foundation is a not - for - profi t organization working in the public interest. It has 
been founded by the members of the R Development Core Team in order to 

   •      Provide support for the R project and other innovations in statistical computing. 
We believe that R has become a mature and valuable tool and we would like to 
ensure its continued development and the development of future innovations in 
software for statistical and computational research.  

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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   •      Provide a reference point for individuals, instititutions or commercial enterprises 
that want to support or interact with the R development community.  

   •      Hold and administer the copyright of R software and documentation.    

 R is an offi cial part of the Free Software Foundation ’ s GNU project, and the R Foun-
dation has similar goals to other open source software foundations like the Apache 
Foundation or the GNOME Foundation. 

 Among the goals of the R Foundation are the support of continued development of 
R, the exploration of new methodology, teaching and training of statistical computing 
and the organization of meetings and conferences with a statistical computing orienta-
tion. We hope to attract suffi cient funding to make these goals realities.   

 R is a very sophisticated statistical software environment, even though it is freely 
available. The contributors include many of the top researchers in statistical comput-
ing. In many ways, it refl ects the very latest statistical methodologies. On the other 
hand, the contributors truly form a community that is quite fl uid. It can take quite 
a bit of work to keep current with the latest features of R. The help documentation 
with the basic releases is really of limited value. Of course, it many ways, you get 
what you pay for! 

 R itself is a high - level programming language. Most of its commands are pre -
 written functions. It does have the ability to run loops and call other routines, for 
example, in C. Since it is primarily a programming language, it often presents chal-
lenges to novice users.  

   E .2   BASIC DATA ENTRY 

 The best way to understand R is through examples. We present here some of the R 
code illustrated through the text. We can illustrate many of the basic features of 
basic data entry and data manipulation with the vapor pressure data set in Exercise 
5.2. The data are: 

  Temp    vp  

  273    4.6  
  283    9.2  
  293    17.5  
  303    31.8  
  313    55.3  
  323    92.5  
  333    149.4  
  343    233.7  
  353    355.1  
  363    525.8  
  373    760.0  

 The brute force way to enter the data uses the c() function:
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 temp  <  -  c(273, 283, 293, 303, 313, 323, 333, 343, 353, 
363, 373) 
 vp  <  -  c(4.6, 9.2, 17.5, 31.8, 55.3, 92.5, 149.4, 233.7, 
355.1, 525.8, 760.0)  

 To check your data entry, you can use the print() function. In our case,

 print(temp) 
 print(vp)  

 The resulting output is:

  >  print(temp) 
    [1] 273 283 293 303 313 323 333 343 353 363 373 
  >  print(vp) 
    [1]    4.6    9.2    17.5    31.8    55.3    92.5 149.4 233.7 355.1 
525.8 760.0  

 For small data sets, the brute force approach works well. For larger data sets, we 
recommend using the read.table() function. You can create a text fi le with the data 
in columns. Generally, the fi rst row is a  “ header ”  giving the variable names. The read.
table() function works well for this type of fi le. Let vapor.txt be such a fi le for the 
vapor pressure data. The fi rst step is to change the working directory for R to the 
directory that contains the data fi le. You can do this under the File box. The follow-
ing command reads the data fi le and places the data into the object vapor. 

  vapor  <  -  read.table( “ vapor.txt ” , header = TRUE, sep =  ”  ” )  

 To check the contents of vapor, we can use the print() function. The resulting 
output is:

   >  print(vapor)  

   temp      vp   

   1      273      4.6   
   2      283      9.2   
   3      293      17.5   
   4      303      31.8   
   5      313      55.3   
   6      323      92.5   
   7      333      149.4   
   8      343      233.7   
   9      353      355.1   
   10      363      525.8   
   11      373      760.0   
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 If we read the data from a fi le, then we cannot refer to the temperatures as temp 
even though temp was the name of the column in the original data fi le; rather, we 
must also specify the object that contains it. The following command prints the temp 
column of the vapor object. 

   >  print(vapor$temp) 
    [1] 273 283 293 303 313 323 333 343 353 363 373  

 Basic physical chemistry suggests modeling the natural log of the vapor pressure as 
a linear function of the inverse of the temperature. The following commands create 
the inverse of the temperatures and then prints them. 

   >  inv_temp  <  -  1/vapor$temp 
  >  print(inv_temp) 
    [1] 0.003663004 0.003533569 0.003412969 0.003300330 
0.003194888 0.003095975 
    [7] 0.003003003 0.002915452 0.002832861 0.002754821 
0.002680965  

 The log() function genrates the natural log. The following commands create the 
natural log of the vapor pressures and then prints them. 

   >  log\_vp  <  -  log(vapor$vp) 
  >  print(log_vp) 
    [1] 1.526056 2.219203 2.862201 3.459466 4.012773 4.527209 
5.006627 5.454038 
    [9] 5.872399 6.264921 6.633318  

 Another useful command for regression analysis is the sqrt() function, which works 
exactly like the log() function. 

 R does generate plots, but it takes a great deal of work to make good looking 
plots. The basic plot function is plot(y,x) where y is the object on the y - axis and x is 
the object on the y - axis. The following command generates the scatter plot for the 
vapor pressure data. 

   >  plot(vapor$vp,vapor$temp)  

 The write.table() function generates an output data fi le that is useful for using other 
plotting software. The following code appends the inverse temperatures and the 
natural logs of the vapor pressures to the original data to form a new object vapor2 
and then creates the output data fi le vapor_output.txt. 

   >  vapor2  <  -  cbind(vapor,inv_temp,log\_vp) 
  >  write.table(vapor2,”vapor\_output.txt”)   

   E .3   BRIEF COMMENTS ON OTHER FUNCTIONALITY IN  R  

 R does a very nice job manipulating matrices. This textbook, however, uses statistical 
software to perform the matrix calculations  “ under the hood, ”  so to speak. The text 
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does show the matrix formulations of the procedures we discuss. However, we do 
not expect students to perform these calculations directly. As a result, we consider 
an introduction to the matrix manipulations within R beyond our scope. As appro-
priate, the text does give the basic R code to perform analyses. We leave it to the 
course instructor to present the details of the matrix manipulations within R.  

   E .4    R  COMMANDER 

 R Commander is an add - on package to R. It also is freely available. It provides an 
easy - to - use user interface, much like Minitab and JMP, to the parent R product. R 
Commander makes it much more convenient to use R; however, it does not provide 
much fl exibility in its analysis. For example, R Commander does not allow the user 
to use the externally studentized residual for the residual plots. R Commander is a 
good way for users to get familiar with R. Ultimately, however, we recommend the 
use of the parent R product.         
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Scaled residuals, 130
Scatter diagram, 1, 82
Second-order model, 69, 242
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Standardized residuals, 130
Starting values in nonlinear regression, 408
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Stepwise regression, 345, 348, 350
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Testing the general linear hypothesis, 95
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